Equilibrium Behavior of Stochastic Networks

- Notation for Markov Network Process
- Production-Maintenance Network
- Jackson Network
- Performance Parameters of Jackson Network Little Law for Markovian Systems
- Whittle Networks
- Multiclass Jackson and Whittle Networks Kelly Networks
- Space-Time Poisson-Markov Processes
- Spatial Birth-Death and Queueing Processes Reversible Markov Processes

Notation

Consider Markov network process $\{X(t): t \geq 0\}$ with states

$$x = (x_1, \ldots, x_m) = \text{ numbers of units at nodes.}$$

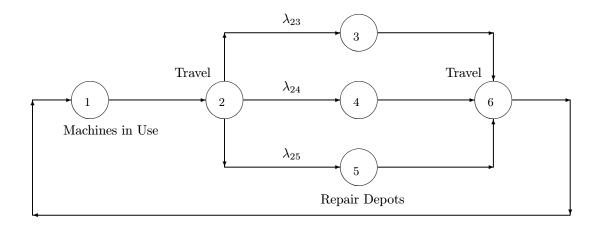
Dynamics are determined by transition rates

$$q(x,y) = \lim_{t\downarrow 0} t^{-1} P\{X(t) = y | X(t) = x\}.$$

Stationary distribution π is solution to

$$\pi(x) \textstyle\sum_y q(x,y) = \textstyle\sum_y \pi(y) q(y,x).$$

Production –Maintenance Network



Node 1: s_1 Machine Stations

Nodes 2, 6 : Delay Nodes (Infinite Servers)

Nodes 3, 4, 5: Single Servers

 μ_j is service rate at node j

 $\sum_{j=1}^{6} x_j = \nu$ number of machines in network

Stationary distribution

$$\pi(x) = c \frac{1}{x_2! x_6!} \prod_{n=1}^{x_1} \frac{1}{\min\{n, s_1\}} \prod_{j=1}^{6} (w_j/\mu_j)^{x_j},$$

where

$$w_j = \lambda_{2j}, \quad j = 3, 4, 5,$$
 $w_j = 1$ otherwise.

Closed Jackson Network

Transition rates are

$$q(x, x - e_j + e_k) = \lambda_{jk}\phi_j(x_j).$$

Then

$$\pi(x) = c\Phi(x) \prod_{j=1}^{m} w_j^{x_j},$$

where

$$\Phi(x) = \prod_{j=1}^{m} \prod_{n=1}^{x_j} \phi_j(n)^{-1},$$

and w_j satisfy traffic equations

$$w_j \sum_k \lambda_{jk} = \sum_k w_k \lambda_{kj}.$$

Other Variations: Open network with unlimited capacity (or limited capacity)

Performance Parameters

Recall

$$\pi(x) = c \prod_{j=1}^{m} w_j^{x_j} \prod_{r=1}^{x_j} \phi_j(r)^{-1} = c \prod_{j=1}^{m} f_j(x_j), \qquad \sum_j x_j = \nu.$$

Normalization constant

$$c^{-1} = \sum_{\sum_{j} x_{j} = \nu} \prod_{j=1}^{m} f_{j}(x_{j}) = f_{1} \star \ldots \star f_{m}(\nu).$$

$$f \star g(n) = \sum_{i=0}^{n} f(i)g(n-i), \quad n \ge 0.$$

Marginal Distributions

$$P\{n_1 \text{ in } J_1, \dots, n_\ell \text{ in } J_\ell\} = c \prod_{i=1}^\ell f_{J_i}(n_i), \qquad n_1 + \dots + n_\ell = \nu,$$

where f_J is convolution of $f_j, j \in J$.

Throughputs

Arc $j \to k$:

$$\rho_{jk} \equiv E(\# \text{ movements } j \to k \text{ in } [0,1]) = \sum_{x} \pi(x) q(x, T_{jk}x)$$

$$= c_{\nu} c_{\nu-1}^{-1} w_{j} \lambda_{jk}.$$

Sector $J \to K$: $\rho_{JK} = \sum_{j \in J} \sum_{k \in K} \rho_{jk}$.

Node or Sector: $\lambda_j = \sum_{j \neq k} \rho_{jk}, \quad \lambda_J = \rho_{JJ^c}.$

Sojourn Times via Little Law

Consider average sojourn (waiting) time

$$W_J = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n W_i(J)$$
 w.p.1,

where $W_i(J)$ is sojourn time of ith arrival.

Theorem 1 The average waiting time W_J exits and $L_J = \lambda_J W_J$, where L_J is average number of units in J.

Little Law for Markovian System

Suppose number of units in system is

$$X_t = h(Y_t),$$

where Y_t is ergodic Markov process. Assume existence of arrival rate

$$\lambda = \lim_{t \to \infty} t^{-1} N(t).$$

Key idea

Assume $X_t = 0$ is possible. At these times

$$\int_{0}^{t} X_{s} ds = \sum_{n=1}^{N(t)} W_{n}.$$

Furthermore

$$t^{-1} \int_0^t X_s \, ds = (t^{-1} N(t)) N(t)^{-1} \sum_{n=1}^{N(t)} W_n + o(1).$$

Therefore, as $t \to \infty$

$$L = \lambda W$$
.

Computations

Recall

$$\pi(x;n) = c \prod_{j=1}^{m} w_j^{x_j} \prod_{r=1}^{x_j} \phi_j(r)^{-1} = c \prod_{j=1}^{m} f_j(x_j), \quad \sum_j x_j = n.$$

Define

$$\alpha_j = \sum_{i \neq j} w_i \lambda_{ij}, \quad h_j(k) = \alpha_j^{-1} f_j(k) f_j(k-1)^{-1}.$$

Proposition 2 For each $n = 1, 2, ..., \nu$ and j,

$$W_{j}(n) = \sum_{k=1}^{n} k h_{j}(k) \pi_{j}(k-1; n-1),$$

$$\lambda_{j}(n) = n \alpha_{j} / \sum_{J' \in \mathcal{M}} \alpha_{i} W_{i}(n),$$

$$L_{j}(n) = \lambda_{j}(n) W_{j}(n),$$

$$\pi_{j}(k; n) = \lambda_{j}(n) h_{j}(k) \pi_{j}(k-1; n-1), \quad 1 \leq k \leq n,$$

$$\pi_{j}(0; n) = 1 - \sum_{k=1}^{n} \pi_{j}(k; n),$$

where $L_j(0) = 0$ and $\pi_j(0;0) = 1$.

Another Approach: Monte Carlo Simulation of Metropolis Markov Chain

Whittle Network Process (Closed or Open)

Suppose transition rates of X_t are

$$q(x, x - e_j + e_k) = \lambda_{jk}\phi_j(x).$$

Assume ϕ_j are Φ -balanced, where Φ is a positive function such that

$$\Phi(x)\phi_j(x) = \Phi(T_{jk}x)\phi_k(T_{jk}x).$$

Theorem 3 For the Whittle process X_t ,

$$\pi(x) = c\Phi(x) \prod_{j=1}^{m} w_j^{x_j},$$

where w_i satisfy traffic equations

$$w_j \sum_k \lambda_{jk} = \sum_k w_k \lambda_{kj}.$$

Treelike Network with Load Balancing

Assume

$$q(x, T_{0k}x) = \lambda_{0k}\phi_0(|x|)$$

$$q(x, T_{jk}x) = \lambda_{jk}\phi_j(x_j)\phi_{B_j}(x(B_j)).$$

The ϕ_j is "local service intensity", and $\phi_{B_j}(x(B_j))$ is a "load-balancing intensity" for branch B_j containing j. Then

$$\pi(x) = \prod_{j=1}^{m} w_j^{x_j} \prod_{i=1}^{|x|} \phi_0(i-1) \prod_{n=1}^{x_j} \phi_j(n)^{-1} \prod_{n'=1}^{x(B_j)} \phi_{B_j}(n')^{-1}, \quad x \in E.$$

Multiclass Whittle Processes

Consider Markov network process X_t with states

$$x = (x_{\alpha j} : \alpha j \in M, j \neq 0) \in \mathbb{E}$$
 $x_{\alpha j} = \text{number of } \alpha\text{-units at node } j$
 $x_j \equiv \sum_{\alpha} x_{\alpha j} = \text{number of units at } j.$

The transition rates are

$$q(x, T_{\alpha j, \beta k}x) = \lambda_{\alpha j, \beta k}\phi_{\alpha j}(x).$$

Network may be closed, open, or closed-open combination.

The $\phi_{\alpha j}$ are Φ -balanced:

$$\Phi(x)\phi_{\alpha j}(x) = \Phi(T_{\alpha j,\beta k}x)\phi_{\beta k}(T_{\alpha j,\beta k}x).$$

Theorem 4 For the multiclass Whittle network process,

$$\pi(x) = c\Phi(x) \prod_{\alpha i \in M} w_{\alpha j}^{x_{\alpha j}}, \quad x \in \mathbb{E},$$

where

$$w_{\alpha j} \sum_{\beta k \in M} \lambda_{\alpha j, \beta k} = \sum_{\beta k \in M} w_{\beta k} \lambda_{\beta k, \alpha j}, \quad \alpha j \in M.$$

Service Rates Proportional to Local Populations

$$\phi_{\alpha j}(x) = \frac{x_{\alpha j}}{x_j} \phi_j(x_1, \dots, x_m).$$

Then

$$\Phi(x) = \tilde{\Phi}(x_1, \dots, x_m) \prod_{j=1}^m x_j! \prod_{\alpha} \frac{1}{x_{\alpha j}!}.$$

Kelly Networks: Route-Dependent Services

Consider an open network where units arrive by a Poisson process with rate $\lambda(r)$ and traverse route $r = (r_1, \ldots, r_\ell)$. Arrivals on different routes are independent. A unit traversing route r at stage s (at node r_x) is a rs-unit.

The Markov network process X_t has states

$$x = (x_{rs} : rs \in M)$$

 x_{rs} = number of rs-units in the network at node r_s .

The transition rates are

$$q(x, x + e_{r1}) = \lambda(r)$$

 $q(x, x - e_{rs} + e_{r(s+1)}) = \phi_{rs}(x).$

Assume ϕ_{rs} are Φ -balanced.

Corollary 5 For the Kelly network process,

$$\pi(x) = c\Phi(x) \prod_r \lambda(r)^{x_r},$$

where x_r is number of units on route r.

Proof. This is multiclass Whittle network with traffic equations

$$w_{r1} = \lambda(r), \quad w_{rs} = w_{r(s-1)}, \quad s = 2, \dots, \ell.$$

The solution is $w_{rs} = \lambda(r)$.

Birth-Death Processes

Consider Markov jump process X_t on \mathbb{E} with rates q(x, y). It is reversible with respect to a positive π if

$$\pi(x)q(x,y) = \pi(y)q(y,x), \quad x,y \in \mathbb{E}.$$

This detailed balance implies the total balance

$$\pi(x)\sum_{y}q(x,y)=\sum_{y}\pi(y)q(y,x),\quad x\in\mathbb{E}.$$

Hence π is invariant measure (or stationary distribution).

Classical Birth-Death Process. With birth rates λ_x and death rates μ_x has

$$q(x,y) = \lambda_x 1(y = x + 1) + \mu_x 1(y = x - 1), \quad x, y \in \mathbb{R}_+.$$
 (1)

This is reversible w.r.t

$$\pi(x) = \prod_{k=1}^{x} \lambda_{k-1}/\mu_k. \tag{2}$$

Batch Birth-Death Process. Batch sizes $\leq b$.

$$q(x,y) = \prod_{k=x}^{y-1} \lambda_k 1(y - x \le b) + \prod_{k=y+1}^{x} \mu_k 1(x - y \le b).$$

This is reversible w.r.t (2).

Key idea

$$q(x,y) = \prod_{k=1}^{n} \overline{q}(x_k, x_{k+1}),$$

where \overline{q} is defined by (1) and $x = x_1, x_2, \dots, x_n = y$ is path from x to y.

Space-Time Poisson Process

A Poisson process N on \mathbb{E} with finite intensity measure w is a random element of $(\mathbb{IM}, \mathcal{M})$ such that:

- The number of points N(A) in any $A \in \mathcal{E}$ has a Poisson distribution with mean w(A).
- N has independent increments.

The Poisson distribution of N is

$$\pi_w(C) \equiv P\{N \in C\}$$

$$= 1(0 \in C) + e^{-w(\mathbb{E})} \sum_{n=1}^{\infty} \int_{\mathbb{E}^n} \frac{1}{n!} w(dx_1) \cdots w(dx_n) 1(\sum_{k=1}^n \delta_{x_k} \in C).$$

Space-Time Poisson process is Poisson process M on $\mathbb{R}_+ \times \mathbb{E}$. It is time homogeneous with *spatial intensity* λ if

$$E[M((a,b] \times A)] = (b-a)\lambda(A).$$

It is Space-Time Customer Arrival Process if

$$M((a,b] \times A) = \text{number of arrivals in } A \text{ during } (a,b].$$

Arrivals into disjoint A_1, \ldots, A_n form independent homogeneous Poisson processes with rates $\lambda(A_i)$, for $1 \le i \le n$.

More Birth-Death Processes

Multi-variate Batch Birth-Death Process

•

$$q(\mathbf{x}, d\mathbf{y}) = [e^{-u(\mathbf{x}, \mathbf{y})} 1(\mathbf{x} < \mathbf{y}) + e^{-v(\mathbf{y}, \mathbf{x})} 1(\mathbf{y} < \mathbf{x})] \psi(d\mathbf{y}),$$

where u, v and ψ are measures on \mathbb{R}^m_+ . This is reversible w.r.t

$$\pi(d\mathbf{x}) = e^{-[u(0,\mathbf{x}]-v(0,\mathbf{x})]}\psi(d\mathbf{x}).$$

Simple Spatial Birth-Death Process

•

Units arrive into system by time homogeneous space-time Poisson process with spatial intensity λ . Each unit spends exponential time with rate $\gamma(x)$ then exits.

Consider

$$X_t(A)$$
 = number of units in A at time t.

The X_t is reversible w.r.t. the Poisson distribution π_w with intensity

$$w(dx) = \gamma(x)^{-1}\lambda(0, dx).$$

When is it ergodic?

$$\lim_{t \to \infty} \sup_{C} |P\{X_t \in C\} - \pi(C)| = 0.$$

The X_t is ergodic if and only if $w(\mathbb{E}) < 1/2$.

Space-Time Poisson-Markov Process

- Space-time Poisson arrivals with expectation $(b-a)\lambda(0,A)$.
- Units move independently according to Markov kernel $\lambda(x, dy)$ until they exit network. Assume $\lambda(x, A)$ is irreducible with stationary distribution w on $\overline{\mathbb{E}}$:

$$\int_A w(dx)\lambda(x,\overline{\mathbb{E}}) = \int_{\overline{\mathbb{E}}} w(dy)\lambda(y,A), \quad A \in \overline{\mathbb{E}}.$$

Then $X_t(A)$ = number of units in A, is measure-valued Markov process with transition rate kernel

$$q(\mu, \mathcal{C}) = \sum_{x \in \mathbb{E}} \int_{\mathbb{E}} \lambda(x, dy) 1(\mu - \delta_x + \delta_y \in \mathcal{C}), \quad \mu \in \mathbb{M}, \ \mathcal{C} \in \mathcal{M}.$$

Theorem 6 The space-time Poisson-Markov process X_t has a Poisson stationary distribution with intensity w. The process is ergodic if and only if $w(\mathbb{E}) < 1/2$.

Reversible Spatial Queueing Process

Consider system as above with

- ullet Space-time Poisson arrivals with expectation $(b-a)\lambda(0,A)$
- Units routed by Markov kernel $\lambda(x, A)$.
- $X_t(A)$ = number of customers (units) in A.

Now, movements of units depend on congestion as in a queueing network. The transition rates are

$$q(\mu, C) = \sum_{x \in \overline{\mathbb{E}}} \int_{\overline{\mathbb{E}}} r(\mu, T_{xy}\mu) \lambda(x, dy) 1(T_{xy}\mu \in C) M.$$

where

$$T_{xy}\mu \equiv \mu - \delta_x + \delta_y \in \mathbb{M},$$

(a unit at x moves to the location y).

Here $r(\mu, T_{xy}\mu)$ is a departure-attraction rate of departure from x and be attracted to y.

For instance

$$r(\mu, T_{xy}\mu) = rac{u(\mu - \delta_x)}{u(\mu)} rac{v(\mu + \delta_y)}{v(\mu)}.$$

Reversible Spatial Queueing Process

Theorem 7 Suppose

- $\lambda(x, A)$ is reversible w.r.t. w.
- There is positive function f such that $f(\mu)r(\mu, \eta)$ is symmetric.

Then X_t is reversible w.r.t.

$$\pi(d\mu) = f(\mu)\pi_w(d\mu),$$

where π_w is the Poisson distribution with intensity w.

Key idea

$$q(\mu,d\eta)=r(\mu,\eta)\overline{q}(\mu,d\eta),$$

where $\overline{q}(\mu, d\eta)$ is Space-Time Poisson-Markov process with Poisson stationary distribution π_w .

For example, $f(\mu) = u(\mu)v(\mu)$ when

$$r(\mu, T_{xy}\mu) = \frac{u(\mu - \delta_x)}{u(\mu)} \frac{v(\mu + \delta_y)}{v(\mu)}.$$

Jackson Network with Occasional Clearing

Consider Jackson network, where all units from a node may occassionally be deleted.

$\begin{array}{ll} \textbf{Transitions} & \textbf{Rates} \\ x \to x - e_j + e_k & \lambda_{jk} \phi_j(x_j) \\ x \to x - x_j e_j & \lambda_{\infty j} \phi_j(x_j) & \text{(Clearing)} \end{array}$

Then

$$\pi(x) = c\Phi(x) \prod_{j=1}^{m} w_j^{x_j},$$

where $0 < w_j < 1$ satisfy traffic equations

$$w_j\left[\sum_k \lambda_{jk} + \lambda_{\infty j} (1 - w_j)^{-1}\right] = \sum_k w_k \lambda_{kj}.$$

This equation is

$$w_j \tilde{\mu}_j = \tilde{\lambda}_j.$$

- $\tilde{\mu}_j$ is departure rate when node is not empty.
- $\tilde{\lambda}_j$ is effective arrival rate.
- $\tilde{\lambda}_j/\tilde{\mu}_j$ is traffic intensity.

Basic Types of Stochastic Network Processes

- Jackson Networks—Whittle Networks
- Multiclass Jackson and Whittle Networks Kelly and BCMP Networks
- Quasi-reversible Networks (Product-form distributions)
- Reversible Networks (Batch movements, dependent services, blocking)
- Networks with String Transitions (Batch movements, multiple activities at transition)
- Spatial Queueing Systems (Poisson-Markov, Birth-Death)
- Brownian Motion Networks (Diffusion approximations for heavy traffic, fluid models)