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Notation

Consider Markov network process {X(¢) : ¢ > 0} with
states

r = (x1,...,T,) = numbers of units at nodes.

Dynamics are determined by transition rates

qlx,y) =limt " PLX (1) = y| X (t) = 2}

Stationary distribution 7 is solution to

m(z) 2 q(z,y) = > m(y)q(y, x).



Production —Maintenance Network

Machines in Use

Repair Depots

Node 1: s; Machine Stations

Nodes 2, 6 : Delay Nodes (Infinite Servers)
Nodes 3, 4, 5: Single Servers

(; is service rate at node j

Z?:l x; = v number of machines in network

Stationary distribution

1 @ 1 6 N
" = g i ey B
where

w; = Nyj, J=3,4,9, w; = 1 otherwise.



Closed Jackson Network

Transition rates are

q(z,x —ej +ex) = Njrpj(xj).

Then
m(z) = c®(z) [ vy,
j=1
where N
CI)(Z‘) =11 ¢j(n)_17
j=1n=1

and w; satisfy traffic equations
Wi > Ajk = D WAk
k k

Other Variations: Open network with unlimited capacity (or
limited capacity)



Performance Parameters

Recall

() :Cﬁw;:j ﬁ ij(T)_l :Cﬁfj(ﬂﬁj), Z.’L’jzl/.
7=1 r=1 j=1 j

Normalization constant

= Y I file) = fix.

Zj zj=v j=1
fxg(n) = z f(i)g(n — 1),

Marginal Distributions

l
P{ny in Ji,...,ngin Jo} = c [ f1.(n),
i=1

where f; is convolution of f;,j € J.

Throughputs
Arc j — k:

pit = E(# movements j — k in [0, 1])

cox fm(v).

n > 0.

n+...+ny=r,

= Y m(x)q(z, Tirr)

T

Sector J — K: PIK = 2jeJ 2keK Pjk-

Node or Sector: Aj = Xtk Piks A= pJre.



Sojourn Times via Little Law

Consider average sojourn (waiting) time

Wy = lim n™* > Wi(J) wp.1,
=1

where W;(J) is sojourn time of ith arrival.

Theorem 1 The average waiting time Wy exits and Ly = AjWy,
where Ly is average number of units in J.

Little Law for Markovian System

Suppose number of units in system is
Xt — h(}/;f)a

where Y; is ergodic Markov process.
Assume existence of arrival rate

A= lim ¢t IN(t).
t—00
Key idea
Assume X; = 0 is possible. At these times
¢ N(t)
/0 Xeds = > W,.
n=1

Furthermore

! /Ot X,ds = (t'N(t))N(t)™! Nz(t) W, + o(1).

Therefore, as t — 0o
L=\



Computations

Recall
w(zn) = c [[wy ] ¢j(r) ' =c I fi(zy), Yz =n.

j=1 r=1 j=1 j

Define

oy = ;wz)\w, hj(k) = Oéj_lf](k)fj(k — 1)_1.

i#]

Proposition 2 For eachn =1,2,...,v and j,

Win) = > khj(k)m;(k — 1;n — 1),
k=1
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1 <k <n,

Another Approach: Monte Carlo Simulation of Metropolis Markov
Chain



Whittle Network Process (Closed or Open)

Suppose transition rates of X; are

q(z,x —ej +ex) = \jrpj(x).
Assume ¢; are ®-balanced, where ® is a positive function such

that
®(2)¢;(z) = S(Tjer) or(Tirz).
Theorem 3 For the Whittle process X,

Zj
Jj o

—3

m(x) = c®(z) [J w

j=1

where w; satisfy traffic equations

w; Xk: >\jk = %kak’j

Treelike Network with Load Balancing

Assume

q(x, Torx) = Aoxdo(|x|)
q(z, Tipz) = Ajxgj(x;)dm,(x(B;)).

The ¢; is “local service intensity”, and ¢p, (z(B;)) is a “load-
balancing intensity” for branch B; containing j. Then

m |z

Tj z(B;)
m(z) = [T wy’ 1;[ ¢o(i — 1) 1 ¢j(n)* Hl ¢p,(n)", z€E.

j=1 i=1



Multiclass Whittle Processes

Consider Markov network process X; with states

T = (zgj:ajeM,j#0)elE
To; = number of a-units at node j

Tj =Y T, = number of units at j.
(67
The transition rates are

q(z, Tojprt) = Aajprdaj(T).

Network may be closed, open, or closed-open combination.
The ¢, are ®-balanced:

() @aj(z) = ®(Tujprr)Ppr(TajsT)-
Theorem 4 For the multiclass Whittle network process,

m(x) = c®(x) ] wzjj, x € IE,
ajeM
where

Waj D Aajfk = D WekAgkaj, «J € M.
BkeM BkeM

Service Rates Proportional to Local Populations

xa.
¢ozj(x) = —J¢j($1, ceey LL‘m)
L j
Then - 1
() = (21, ... 2m) [T 2! ]I —-
j=1 a Toj-



Kelly Networks: Route-Dependent Services

Consider an open network where units arrive by a Poisson
process with rate A(r) and traverse route r = (ry,..., 7). Ar-
rivals on different routes are independent. A unit traversing route
r at stage s (at node r,) is a rs-unit.

The Markov network process X; has states

r = (x5:78 € M)

z,s = number of rs-units in the network at node ry.

The transition rates are

q(x,z+eq1) = Ar)
Q(xa T — eps + er(s+1)) = ¢rs(37)-

Assume ¢, are ®-balanced.

Corollary 5 For the Kelly network process,
n(x) = e@(z) TN ()™
where x, is number of units on route r.
Proof. This is multiclass Whittle network with traffic equations
wry = A1), Wps = Wy(s—1), 5=2,...,L

The solution is w,s = A(r).
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Birth-Death Processes

Consider Markov jump process X; on IE with rates q(z,y).
It is reversible with respect to a positive 7 if

m()q(z,y) = 7(y)a(y,x), =,y € E.

This detailed balance implies the total balance
m(x) ;qw, y) = gﬂ(y)q(y,w), z € IE.

Hence 7 is invariant measure (or stationary distribution).

Classical Birth-Death Process. With birth rates A\, and death
rates u, has

This is reversible w.r.t

w(w) = IT Mo/ (2)

Batch Birth-Death Process. Batch sizes < b.
y—1 T
gz, y) =TT Mlly—z <b)+ I ml(z—y<0b).
k=z kE=y+1
This is reversible w.r.t (2).
Key idea
q(z,y) = kH q(xr, Try1),
=1

where 7 is defined by (1) and x = 1, 29, ..., z, = y is path from
r to y.



Space-Time Poisson Process

A Poisson process N on IE with finite intensity measure w is a
random element of (IM, M) such that:
e The number of points N(A) in any A € € has a Poisson distri-
bution with mean w(A).
e /N has independent increments.

The Poisson distribution of N is
mw(C) = P{N € C}
00 1 n
= 10€C) +e"® Y [ —w(dr) - w(de,) (Y &, € O).
n=1 - k=1

n

Space-Time Poisson process is Poisson process M on IR, X IE.
It is time homogeneous with spatial intensity A if

E[M((a,b] x A)] = (b —a)\(A).
It is Space-Time Customer Arrival Process if
M ((a,b] x A) = number of arrivals in A during (a, b].

Arrivals into disjoint Ay, ..., A, form independent homogeneous
Poisson processes with rates A(4;), for 1 <i < n.

12



More Birth-Death Processes

Multi-variate Batch Birth-Death Process

g(x,dy) = [e OV (x < y) + e M1 (y < x)]y(dy),

where u, v and ¢ are measures on IR'Y". This is reversible w.r.t

m(dx) = e~ OXI=0Oxy,(gx),

Simple Spatial Birth-Death Process

Units arrive into system by time homogeneous space-time Pois-
son process with spatial intensity A. Each unit spends exponential
time with rate y(x) then exits.

Consider

X:(A) = number of units in A at time ¢.

The X; is reversible w.r.t. the Poisson distribution m,, with inten-
sity
w(dz) = y(x)"'X\(0, dz).
When is it ergodic?
lim sup |P{X; € C} —n(C)| =0.
t—00

The X, is ergodic if and only if w(IE) < 1/2.

13



Space-Time Poisson-Markov Process

e Space-time Poisson arrivals with expectation (b — a)A(0, A).

e Units move independently according to Markov kernel A(z, dy)
until they exit network. Assume A(z, A) is irreducible with sta-
tionary distribution w on IE:

[, wd)\(z,E) = [w(dy)\(y,4), AT

Then X;(A) = number of units in A, is measure-valued Markov
process with transition rate kernel

a(1.C) = 3 [ Ma.dy)L(p— 8, +6,€C), pell CeM.

zelE

Theorem 6 The space-time Poisson-Markov process X; has
a Poisson stationary distribution with intensity w. The process
is ergodic if and only if w(IE) < 1/2.
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Reversible Spatial Queueing Process

Consider system as above with

e Space-time Poisson arrivals with expectation (b—a)A(0, A)

e Units routed by Markov kernel A(z, A).
e X;(A) = number of customers (units) in A.

Now, movements of units depend on congestion as in a
queueing network. The transition rates are

q(p, C) = ZE/ET(M,Txyu)A(a:, dy)|(Toyp € C)M.
TE
where

(a unit at & moves to the location y).
Here r(pw, Tyypt) is a departure-attraction rate of depar-
ture from x and be attracted to y.

For instance
u(,u - 53:) U(M -+ 5y).
u(p) ()

T(,LL, Txy:“) =

15



Reversible Spatial Queueing Process

Theorem 7 Suppose
o \(z, A) is reversible w.r.t. w.

e There is positive function f such that f(u)r(u,n) is
symmetric.

Then X; is reversible w.r.t.

m(dp) = f(p)me(dp),

where m, is the Poisson distribution with intensity w.

Key idea

q(, dn) = r(p, n)q(p, dn),

where q( s, dn) is Space-Time Poisson-Markov process with
Poisson stationary distribution .

For example, f(u) = u(p)v(p) when

)
u(p — 0z) v(p + 6y)
u(p)  v(p)

(g, Toypt) =

16



Jackson Network with Occasional Clearing

Consider Jackson network, where all units from a node
may occassionally be deleted.

Transitions Rates

r — T — €; + ek )\jkqu(xj)

T — T — xj€; Aooj@j(xj)  (Clearing)
Then

n(w) = ed() 1T wy’,
j=1
where 0 < w; < 1 satisty traffic equations
w][% )\jk‘ + Aooj(l — wj)_l] = %’wk)\k;]

This equation is
wjﬂj = )‘j-
e /i; is departure rate when node is not empty.

o )\ is effective arrival rate.
e \;/[i; is traffic intensity.
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Basic Types of Stochastic Network Processes

e Jackson Networks— Whittle Networks

e Multiclass Jackson and Whittle Networks
Kelly and BCMP Networks

e Quasi-reversible Networks (Product-form distributions)

e Reversible Networks (Batch movements, dependent ser-
vices, blocking)

e Networks with String Transitions (Batch movements,
multiple activities at transition)

e Spatial Queueing Systems (Poisson-Markov, Birth-Death)

e Brownian Motion Networks (Diffusion approximations
for heavy traffic, fluid models)
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