Perot Systems Nederland

Data Mining for (e)-CRM

Agenda

Key factors in CRM & e-CRM

Importance of CRM-Analytics

Features of Data Mining Technology

Case of Applied Analytics

Customer Relationship Fundamental steps:

Understand your customers:

- What products & services they buy
- What are their needs & behaviors
- What is the level of current & potential profitability
- Align the organisation's capabilities to better deliver appropriate value to each type of customer.

Key Factors in e-CRM

- $E = (not) just MC^2$?
- Multiple Channels, with their own features, added to the already existing ones
- Create holistic view (360 degree) of Customer (gets more difficult)
- Create <u>actionable</u> business intelligence (real-time)

The Place of CRM-Analytics

The CRM Lifecycle

Hahnke, 1999

Message: Look further than Integration

Basic Ideas CRM-Analytics

- "Transform the raw data from each of the operational systems and contact points into a set of customer-specific behavior measurements tailored for the business issue at hand."
- Detecting customer behavior patterns, analyzing and choosing channels to market, enhance the performance of your front line communication.
- Create complete, holistic view of each customer.
- Away from projects with internal, cost reduction focus towards projects focussed on revenue generation and increasing customer loyalty.

Importance of CRM-Analytics

"META Group believes that a CRM initiative lacking the analytical component will fail to provide a panoramic customer view long-term. In 100% of the CRM projects we've seen that lack CRM analysis, there was a total and complete inability to effect change in the customer relationship and improve the return on the customer relationship."

Elizabeth Shahnam, Senior Program Director, Application Delivery Strategies, META Group

DATA MINING

What Is Data Mining?

"Simply put, data mining is used to <u>discover patterns and relationships</u> in your data in order to help you make <u>better business decisions.</u>"

-- Robert Small, Two Crows

Data Mining Technology Compared

Search Path Determination

		Manual	Automatic
Data Processing & Visualization	Manual	SQL	
	Automatic	OLAP/STAT	DM

SQL: good if you know exactly what to look for.

- OLAP & STAT tools: fall short when data gets overwhelming.
- DM: ideal with the many attributes necessary for personalising customer (web)-experience.

Algorithm Types

Classification & Regression Trees

- Categorizing normally using a binary output target
- Ability to handle large numbers of records and attributes
- Maximum number of nodes and density functions for controlling tree size

Neural Networks

- Ability to handle non-linear relationships well
- Works well with numeric attributes but can't handle very many attributes

k-Nearest Neighbors/ Clustering

- Classifying records on the basis of their similarity with other records
- Distance (similarity) measure necessary
- Ability to handle large numbers of records and attributes

Association Rules

- Affinities of data items (i.e. events that frequently occur together)
- No ability to handle numeric attributes

Data Mining Insight

Data Mining Insight: Highly accurate predictions of customer behavior, where statistical techniques fall short

Based on: Michael J. A. Berry, Data Miners, http://www.data-miners.com

Decision Trees - Segmentation

Oracle Darwin

New Directions in DM-Algorithms

- Multi-table capability complex data –customer/account/transaction
- Multi-record examples
 - -group of companies, collection of tests, sequence of events
- Projects
 - -Inductive Logic Programming (ILP)
 - with SPSS, BT.. in Aladin
 - -Multi-Relational Data Mining (MR-DM)
 - with Kepler, Swiss Life.. in MiningMart

-Object-Oriented Data Mining

New Directions in DM-Algorithms

CustID		tID	Age	Children		ProductX		
1			35 1		Ye		5	
2		2	45 2		No			
			•••					
		Account		CustID Ba		alance		
		123		1		432		
		456		1	1987			
	789		2	579				
			•••	•••				

- Customer table and account table
 - May be more than one account per customer
- ILP gets rules like:
 - Propensity to buy product X if customer has ANY account with a balance of more than \$1000
- No need to calculate max.
 balance in advance

Build on Data Mining Strengths

Example DM Retention Strategy

Customer Retention Strategy Bank

Call Center Applying Data Mining

