

Recent Advances in Solving Multistage Stochastic Mixed-integer Programs

Merve Bodur

University of Edinburgh
School of Mathematics

Outline

Introduction

Deterministic Equivalent

Tree Decomposition based Bounds

Exact Approaches

Partially Extended Formulations

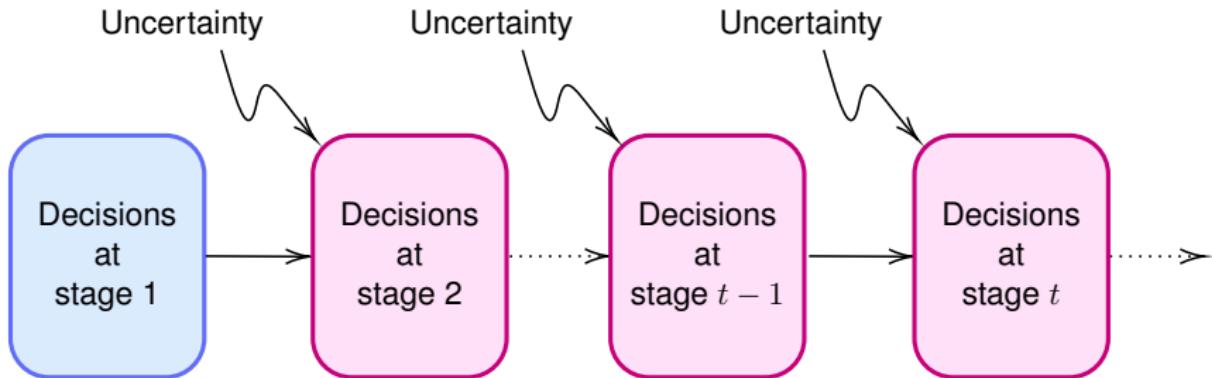
Policy Development

Aggregation Policies

Decision Rules

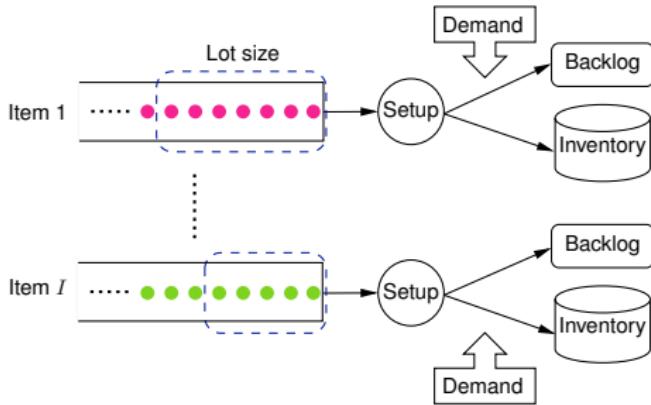
Conclusion

Sequential Decision-making Under Uncertainty

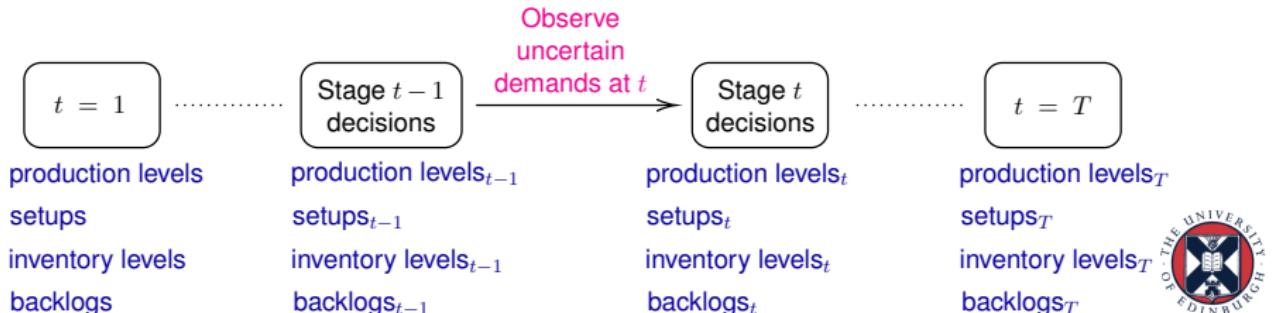


- ▶ Uncertainty is **gradually** observed
- ▶ Decisions are dynamically **adapted** to:
 - Observed uncertainty
 - Previous decisions

Example: Production Planning



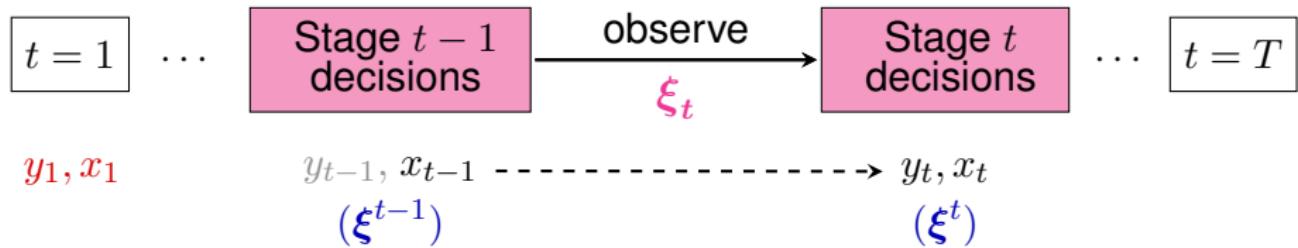
Multi-item multi-period multi-stage lot-sizing problem under uncertainty



Multi-stage Stochastic Programs

Finite-horizon sequential decision making problems under uncertainty

- ▶ $T \geq 2$ decision stages $[T] := \{1, 2, \dots, T\}$
- ▶ Stochastic process: $\{\xi_t\}_{t=1}^T$
- ▶ History of the process: $\xi^t := (\xi_1, \dots, \xi_t)$
- ▶ Dynamics:



- ▶ Decision variables: (nonanticipative)
 - ◊ State variables: $x_t(\xi^t)$
 - ◊ Recourse (stage) variables: $y_t(\xi^t)$
- ▶ For convenience: ξ_1 is constant (i.e., deterministic first stage)

MS(I)LP Formulation

- ▶ Uncertainty: $\{\xi_t\}_{t \in [T]}$ has probability distribution \mathbb{P} and support Ξ
- ▶ Decision variables: $y_t(\xi^t) \in \mathbb{R}^{n_t}$, $x_t(\xi^t) \in \mathbb{R}^{d_t}$
- ▶ Objective:

$$\min \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top y_t(\xi^t) + h_t(\xi^t)^\top x_t(\xi^t) \right]$$

- ▶ Constraints: For all $t \in [T]$, \mathbb{P} -a.s.,

- State equations

$$A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1}) + C_t(\xi^t)y_t(\xi^t) = b_t(\xi^t)$$

- Recourse constraints (+ integrality)

$$D_t(\xi^t)x_t(\xi^t) + E_t(\xi^t)y_t(\xi^t) \geq d_t(\xi^t)$$

Infinite-dimensional problem!

Common Approaches

Approximate!

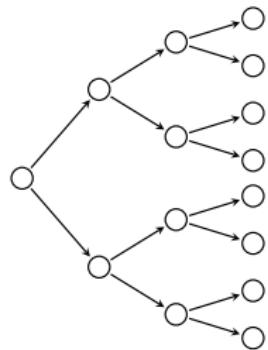
- ▶ Restrict the functional form of the policy Decision rules

$$(x_t(\xi_t), y_t(\xi_t)) \in \mathcal{F}_t(x_{t-1}(\xi^{t-1}), \xi_t)$$

- ▶ Model the underlying stochastic process in a structured way

Scenario trees

- Further assumptions \Rightarrow Exact methods
- Otherwise \Rightarrow Bounding techniques
 - Policy development
 - Dual bounding

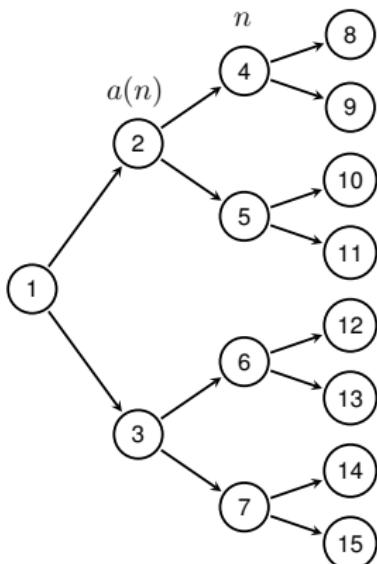


Deterministic Equivalent

Scenario-tree Setting

Usually an *exponentially large* tree

Uncertainty model



MSP model

Extensive Form (node-based):

$$\min \sum_{n \in \mathcal{N}} p_n f_n(x_n, y_n)$$

s.t. $(x_n, y_n) \in \mathcal{X}_n(x_{a(n)}) \quad \forall n \in \mathcal{N}$

$y_n \rightarrow$ local variables

$x_n \rightarrow$ state variables

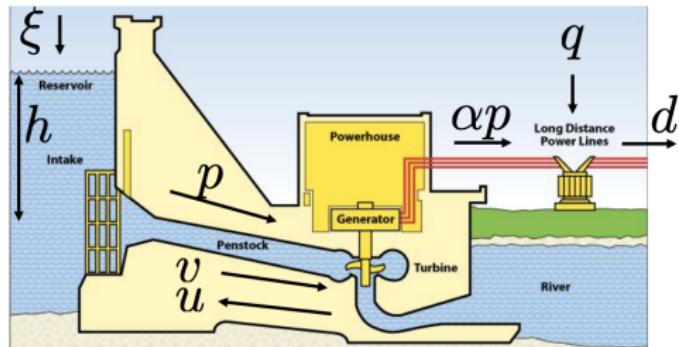
► Suppose fully linear

⇒ Large-scale MILP

Example: Hydropower planning

[Ahmed, 2016]

How much hydro power to generate in each period to satisfy demand?



$$\min \sum_{t \in [T]} (b_t q_t + c_t u_t + g_t v_t)$$

$$\text{s.t. } h_t = h_{t-1} + \xi_t - p_t + u_t - v_t \quad t \in [T]$$

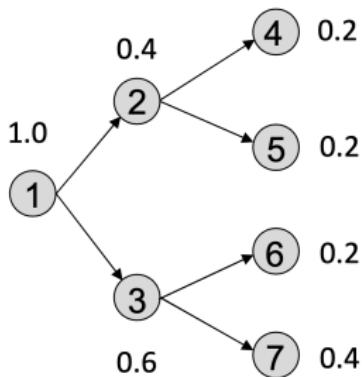
$$\alpha p_t + q_t = d_t \quad t \in [T]$$

$$0 \leq h_t \leq h^{\max} \quad t \in [T]$$

$$p_t, q_t, u_t, v_t \geq 0 \quad t \in [T]$$

Hydropower Example

Suppose inflows ξ are stochastic with the following scenario tree



$$\begin{aligned}
 & \min 1.0 \cdot (b_1 q_1 + c_1 u_1 + g_1 v_1) + \\
 & \quad 0.4 \cdot (b_2 q_2 + c_2 u_2 + g_2 v_2) + \\
 & \quad 0.6 \cdot (b_2 q_3 + c_2 u_3 + g_2 v_3) + \\
 & \quad \dots \\
 & \quad 0.4 \cdot (b_3 q_7 + c_3 u_7 + g_3 v_7)
 \end{aligned}$$

s.t. $\forall n = 1, \dots, 7 :$

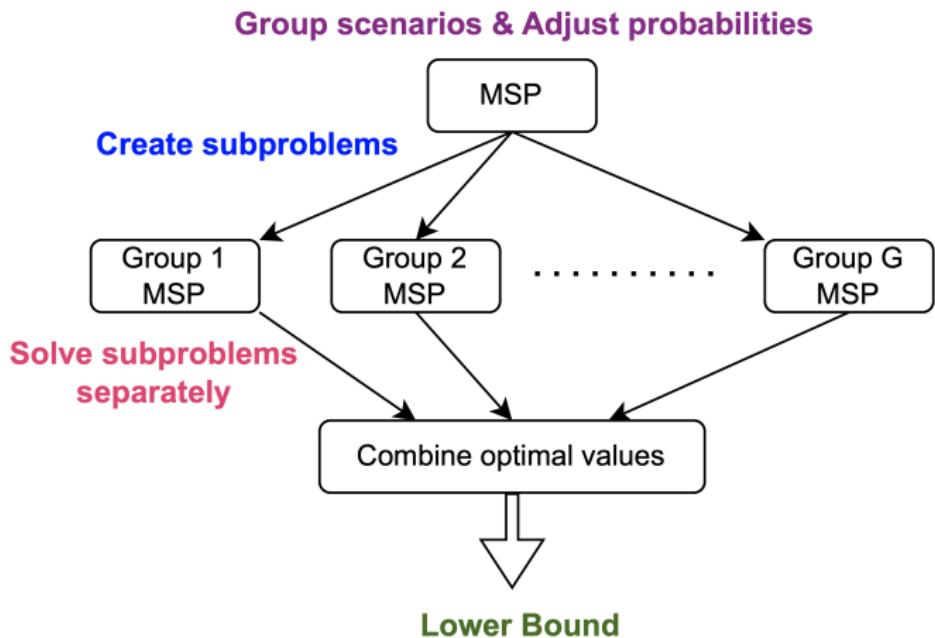
$$\begin{aligned}
 h_n &= h_{a(n)} + \xi_n - p_n + u_n - v_n \\
 \alpha p_n + q_n &= d_n \\
 0 \leq h_n &\leq h^{\max} \\
 p_n, q_n, u_n, v_n &\geq 0
 \end{aligned}$$

Tree Decomposition based Bounds

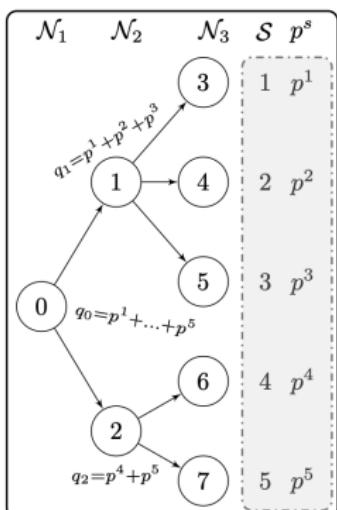
Bounds based on Scenario Tree Decomposition

Derive bounds on the MSP optimal value

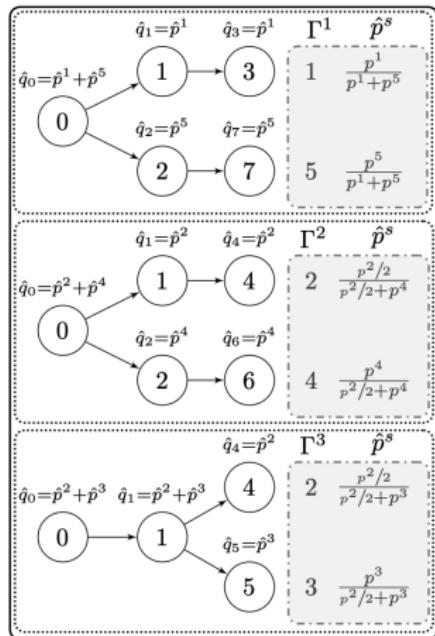
E.g.: [Maggioni et al., 2014, 2016], [Sandıkçı and Özaltın, 2017], [Bakır et al., 2019]



By Sandıkçı and Özaltın (2017)



(a) Scenario tree for the original problem



(b) Scenario trees for group subproblems *without* a reference scenario

Exact Approaches

Dynamic Programming Formulation

- ▶ For nodes at the last stage, define **value functions**:

$$Q_n(x_{a(n)}) := \min \{ f_n(x_n, y_n) : (x_n, y_n) \in \mathcal{X}_n(x_{a(n)}) \}$$

- ▶ For the others, recursively define **(expected) value functions**:

$$Q_n(x_{a(n)}) := \min f_n(x_n, y_n) + \overbrace{\sum_{m \in \mathcal{C}(n)} \bar{p}_{nm} Q_m(x_n)}^{\text{expected cost-to-go}}$$

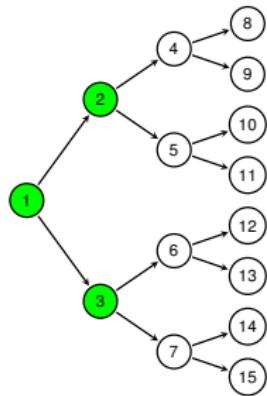
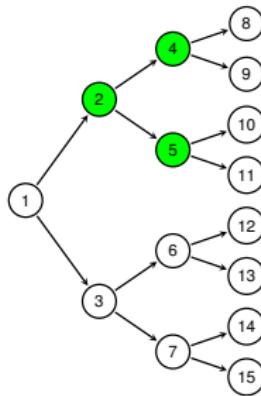
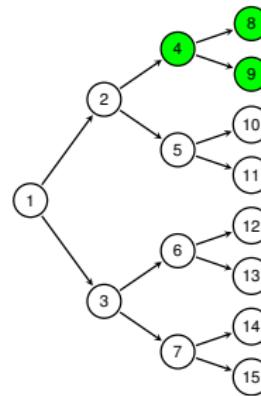
s.t. $(x_n, y_n) \in \mathcal{X}_n(x_{a(n)})$

- ▶ MSP optimal value is given by $Q_1(x_0)$

Exact Approach: Purely continuous case

- General case: Nested Benders decomposition

[Birge, 1985]



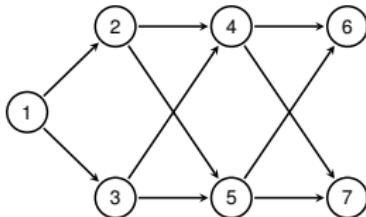
Via Benders cuts, approximate the **expected cost-to-go functions**:

$$Q_n(x_{a(n)}) = \min_{(x_n, y_n)} f_n(x_n, y_n) + \sum_{m \in \mathcal{C}(n)} \bar{p}_{nm} Q_m(x_n)$$

Exact Approach: Purely continuous case

- Stage-wise independent case: SDDP [Pereira and Pinto, 1991]

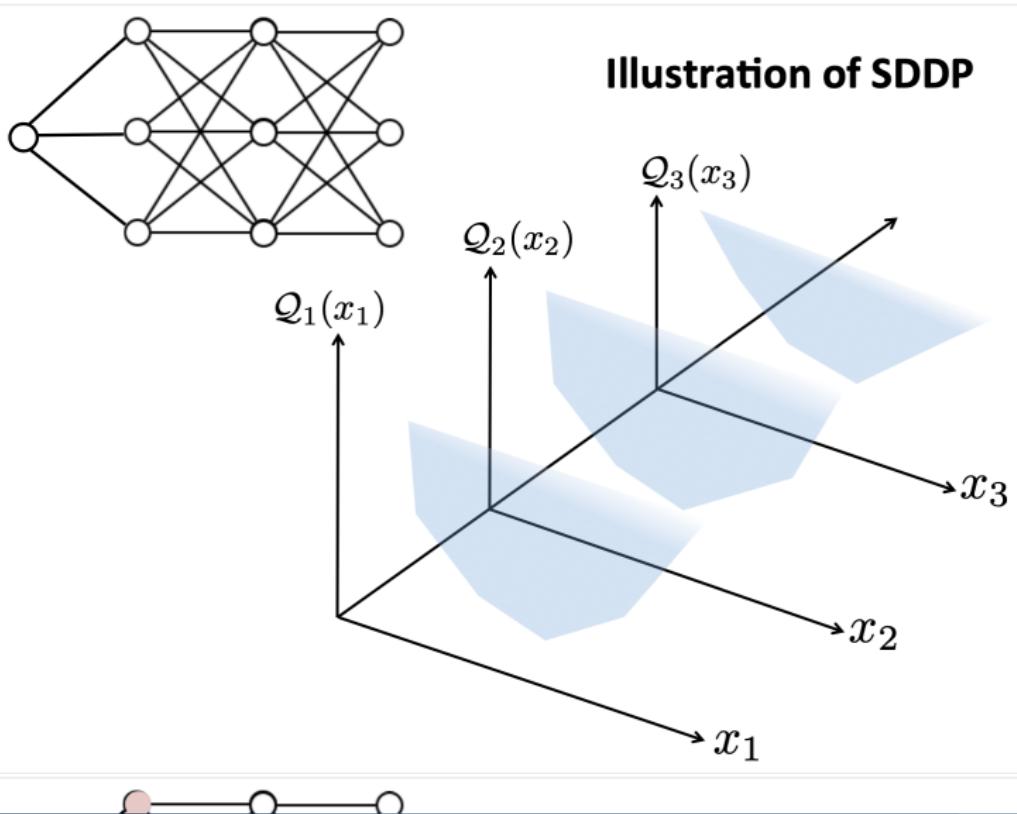
- Each stage has its own independent set of realizations
- Can recombine the scenario tree:



- One expected cost-to-go function per stage instead!
- Many fewer nodes!

(SDDP Review Paper: [Füllner and Rebennack, 2023])

Shabbir's SDDP Illustration



Exact Methods

- ▶ Purely continuous:
 - General: Nested Benders [Birge, 1985]
 - Stage-wise independence: SDDP [Pereira and Pinto, 1991]
- ▶ Pure binary state variables: SDDiP [Zou et al., 2019]
→ Lagrangian cuts tight at binary points
- ▶ General integer state variables: Binarization + SDDiP
→ Large # of binary state variables
- ▶ Improved Lagrangian cut generation [Füllner, Sun, and Rebennack, 2024]
→ Lagrangian dual is normalized
→ Can get deep, facet-defining, or Pareto-optimal cuts
- ▶ Mixed-integer generalization [Deng and Xie, 2024]
→ ReLU Lagrangian cuts

Exact Methods

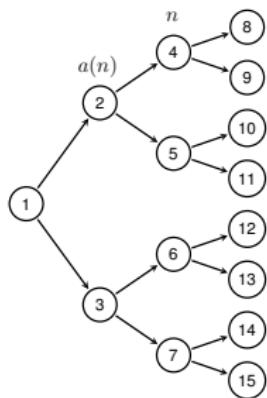
- ▶ Lipschitz continuous exp. cost-to-go functions: [Ahmed et al., 2020]
 - Nonlinear cuts + augmented Lagrangian
- ▶ General nonconvex mixed-integer nonlinear:
 - SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
 - Approximate *regularized* exp. cost-to-go functions
 - Nonconvex nested Benders [Füllner and Rebennack, 2022]
 - Extends binarization and regularization procedures
 - Successful implementation for deterministic multi-stage
- ▶ Scaled-cut decomposition [Romeijnders and van der Laan, 2024]
 - Construct nonlinear cuts for the subproblems
 - Transform them into an affine cut for the master problem

Partially Extended Formulations

Continuous Recourse Case

[Castro, B., & Song, 2025]

Uncertainty model:



MSILP model:

$$\min \sum_{n \in \mathcal{N}} p_n f_n(x_n, z_n, y_n)$$

s.t. $\forall n \in \mathcal{N} :$

$$(x_n, z_n, y_n) \in \mathcal{X}_n(x_{a(n)}, z_{a(n)})$$

 $y_n \in \mathbb{R}^m \rightarrow$ cont. local variables

 $x_n \in \mathbb{R}^r \rightarrow$ cont. state variables

 $z_n \in \mathbb{Z}^\ell \rightarrow$ int. state variables

- ▶ Partially extended DP formulation (\rightarrow B&C + SDDP)
- ▶ Aggregation framework (\rightarrow a range of policies)
(leverage the stochastic process, e.g., Markov chain)

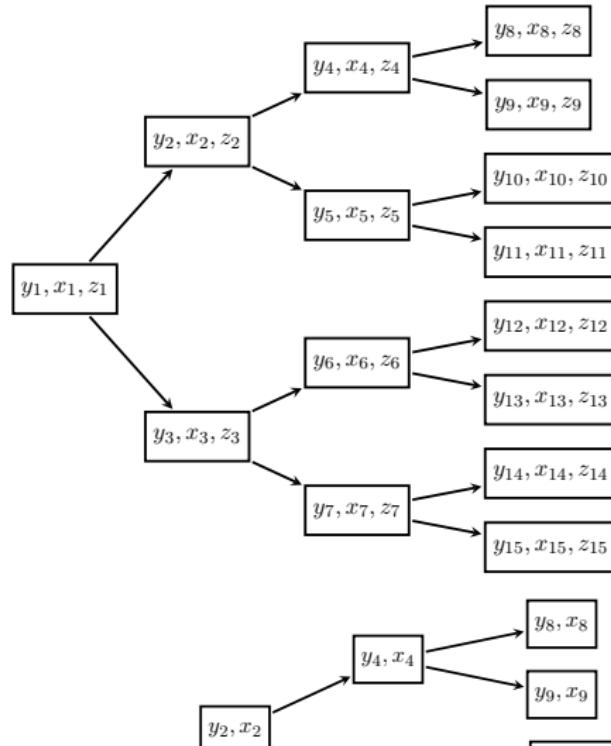
Our Idea

Challenge: Approximating **nonconvex** expected cost-to-go functions
(due to integer state variables)

- ▶ Existing works: Develop exact lower-bounding techniques for the **nonconvex** expected cost-to-go functions
- ▶ Our work: **Relocate all integer state variables to the first stage**
 - ⇒ the resulting expected cost-to-go functions are **convex**
 - ⇒ can be approximated (exactly) by a decomposition scheme (e.g., nested Benders or SDDP)

Exact Method

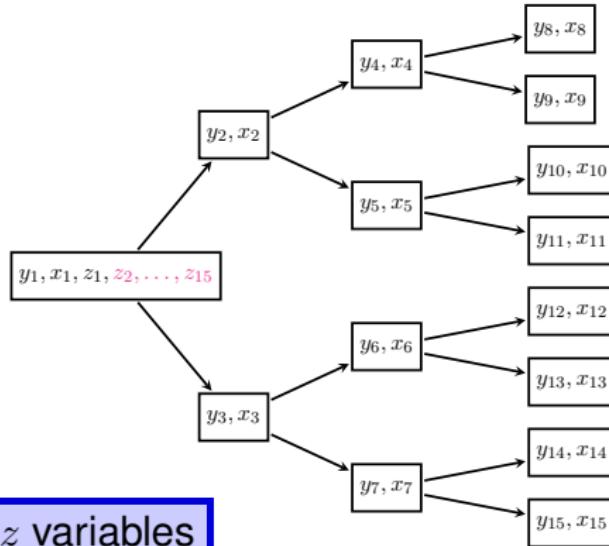
Our idea: Relocate all integer state variables to the first stage



Develop High-quality Policies

Aggregate

Too many first-stage (integer) variables!



Impose additional structure to z variables

To obtain high-quality policies:

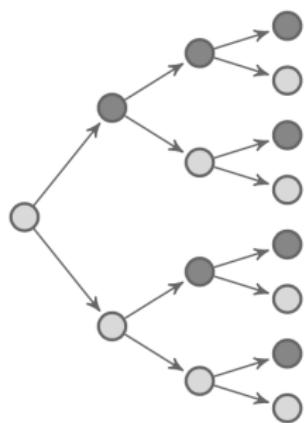
Leverage the structure of the underlying stochastic process

E.g.: Markov Chain

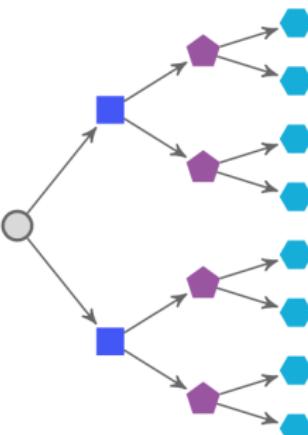
Aggregation Framework → Various Policies

Idea: Simply enforce $z_n = z_{n'}$ for some pairs of nodes **based on MC**

Scenario Tree

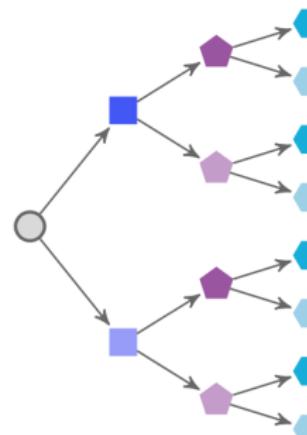


HN



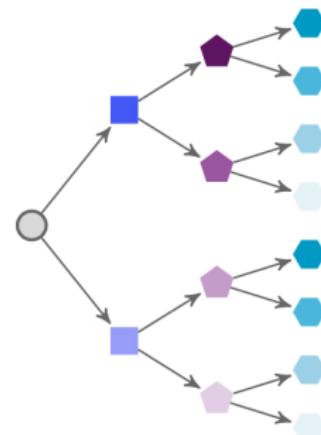
Here-and-now
(current stage)

MA



Markov-based
(current MC state)

MM



Previous and
current MC state

z^A 's: 15

4

7

11

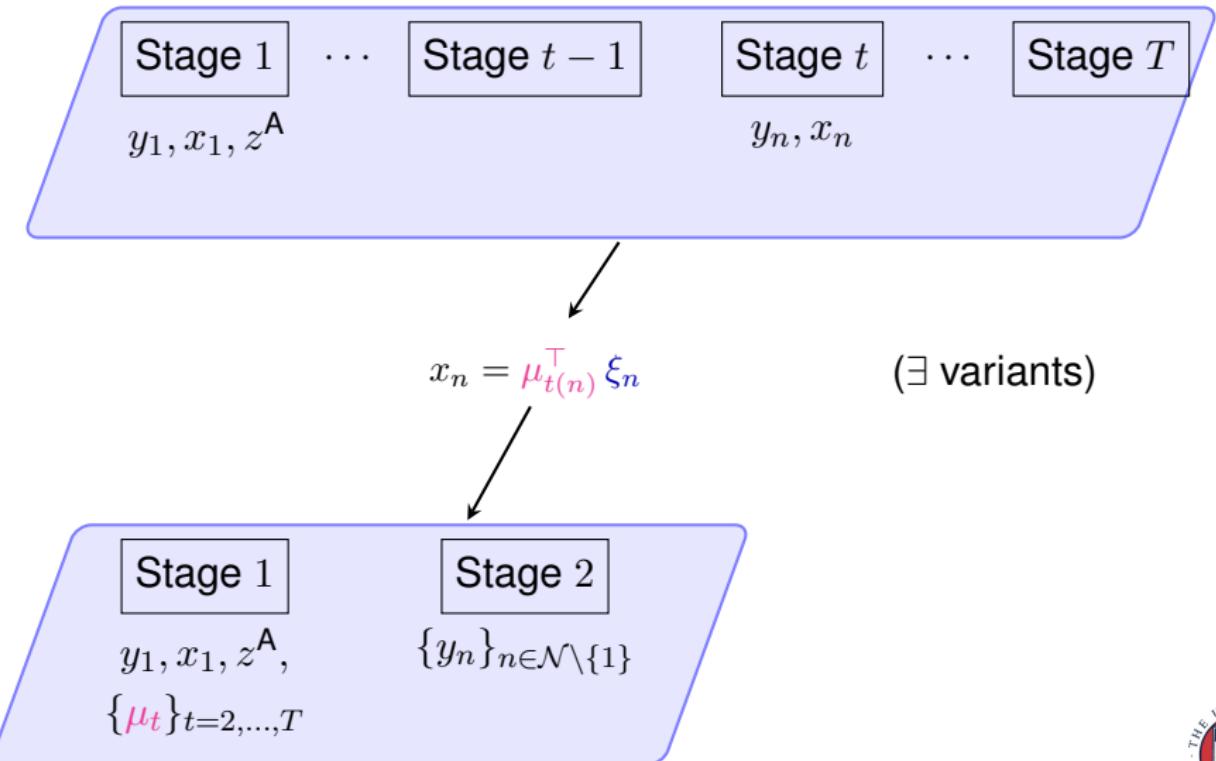
Solving the Aggregated Problem

- ▶ **Exactly:** B&C + SDDP
(Employing the MC variant of SDDP)
- ▶ **Approximately:**
 - **LB** Exact method + an early stop in the SDDP sub-routine
 - ★ **UB, i.e., policy** Decision-rule restriction

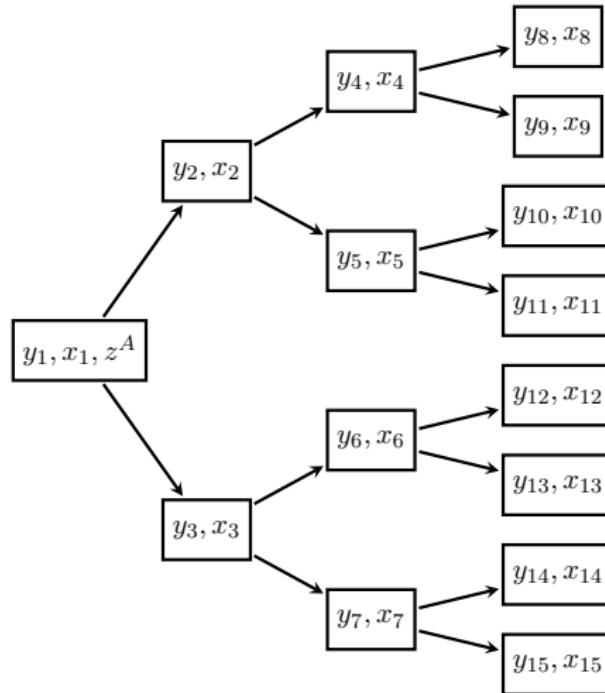
Multi-stage → Two-stage

Two-stage Linear Decision Rules

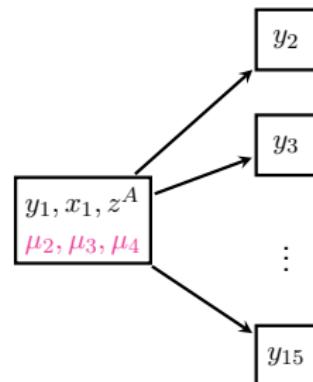
[B. and Luedtke, 2022]



Our Scenario-tree Version

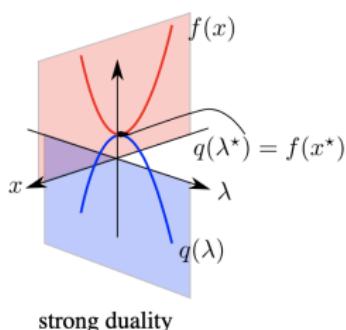
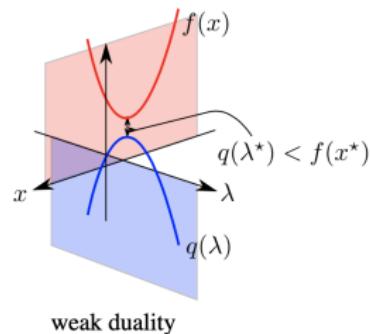


Candidate solution



More Decision Rules

Benefit from Duality



[From the website of Duc M. Nguyen]

When we embrace duality, we create room for ourselves to **grow**.

[From the Trellis Society website]

MSLP: Consider its LP dual

[B. and Luedtke, 2022]

MSMIP: Consider a Lagrangian dual

[Daryalal, B., and Luedtke, 2024]

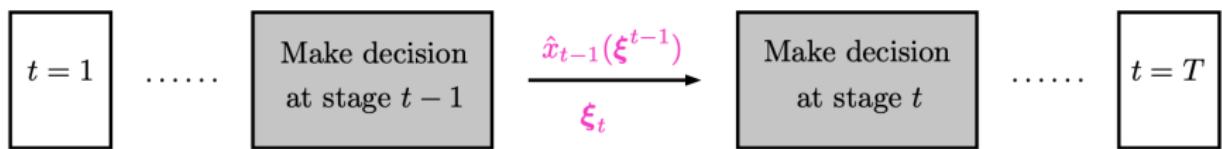
Apply LDRs on the dual variables \Rightarrow **two-stage** dual problem

Obtain LBs

Dual-driven Policies

General policy application scheme: **Rolling the horizon**

Solve an **optimization problem** at each stage



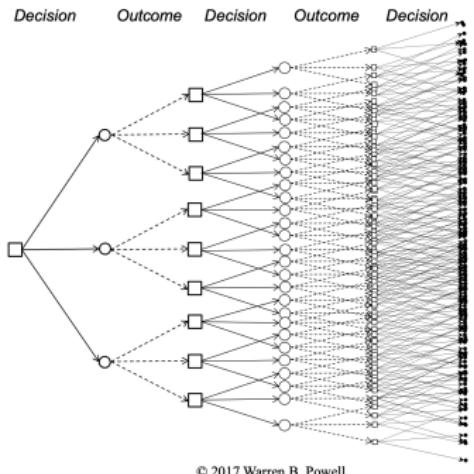
Dual-driven: Provide guidance by the dual LDR solution

Interpretable Policies

Desirable Properties

- ▶ Dynamic, complex decision-making under uncertainty \Rightarrow **MSP** ✓
- ▶ But, \exists **major drawbacks**

Curses of dimensionality



Black box policies

Operators find it difficult to understand the connection between states and actions
 \Rightarrow **mistrust in the policy**

Goal: Efficiently generate **interpretable** policies

Interpretability Literature

- ▶ Early attempts: Prove and use properties like **monotonicity** to generate simple policies
- ▶ **Decision trees:**
 - Highly interpretable structure (avoid black box policies)
 - Finding an optimal decision tree is difficult, building a tree in a top-down manner could result in a sub-optimal solution
- ▶ **Rule lists:**
 - Hard to find an optimal solution when the search space is large

Our Approach: Smooth-in-expectation decision rules

→ Policy structure: Flowchart

Overview: Smooth-in-expectation DRs [Hakizimana 2019]

$$\min_{\theta \in \Theta} C(\theta) + \mathbb{E} \left[\sum_{k=0}^K \ell_S(k, u_k(\omega), x_k(\omega), w_k, \theta) \right]$$

$x_k \in L^\infty(\Omega, \bar{X})$
 $u_k \in L^\infty(\Omega, \bar{U})$

s.t.

$$\mathbb{P}[g(k, u_k(\omega), x_k(\omega), w_k, \theta) \leq 0] \geq 1 - \epsilon$$

$$x_0(\omega) = b_0, \quad \forall \omega \in \Omega$$

$$x_{k+1}(\omega) = f(k, u_k(\omega), x_k(\omega), w_k, \theta), \quad \forall \omega \in \Omega$$

$$u_k \text{ nonanticipative}$$

$$\forall k \in \{0, \dots, K\}$$



Multistage stochastic program with mixed-integer recourse

Flowchart for recourse decisions

- Interpretable
- Problem specific
- Introduce new decision variables

SGD algorithm

- Differentiability conditions
- Efficient

- ▶ **Key Observation:** Due to integer recourse, SAA objective is **discontinuous**. Nonetheless, the true expected value objective might be **smooth!**
- ▶ **Idea:** Apply certain DRs to all of the recourse decisions to ensure such smoothness (→ simulation-optimization problem)

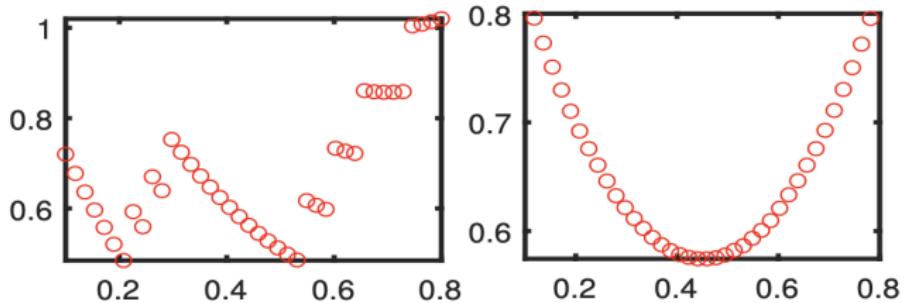
Smoothness Example

[Hakizimana 2019]

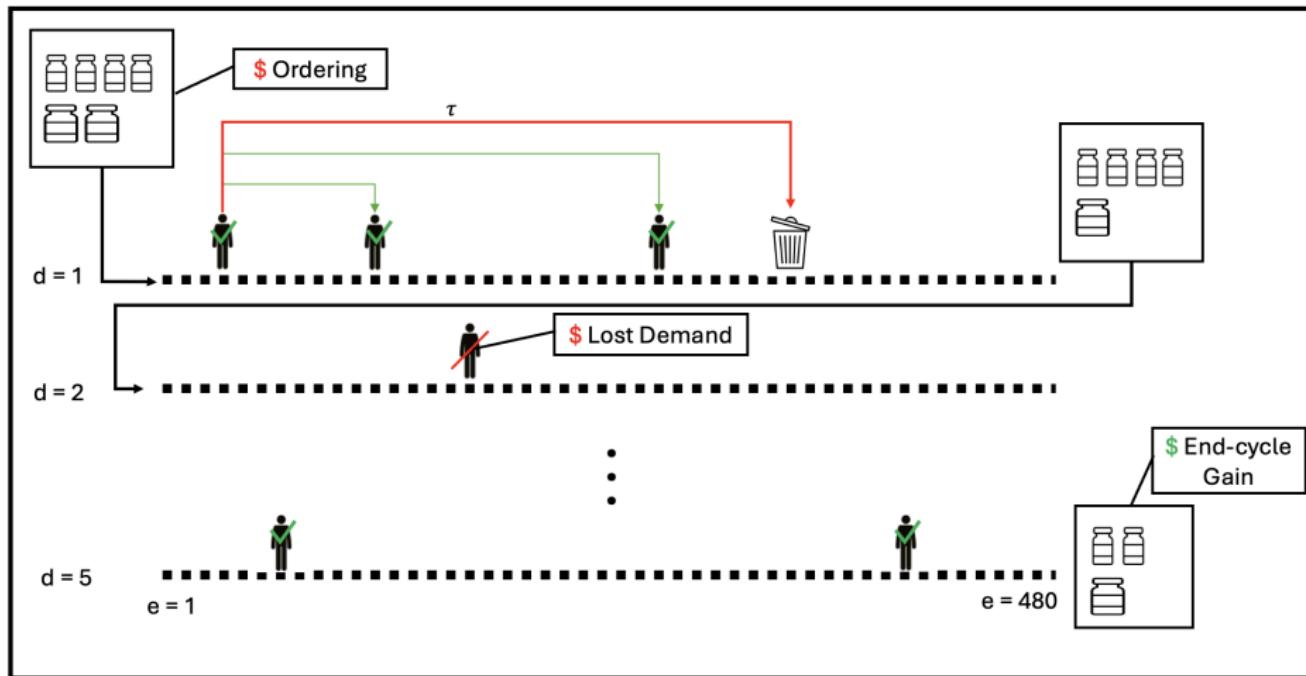
$$\min_{\theta \in [0.1, 0.8]} 2(\theta - 0.7)^2 + \mathbb{E}_{\omega}[\ell(\theta, \omega)]$$

where $\ell(\theta, \omega) = \begin{cases} 0 & \text{if } \theta \leq \omega \\ 1 & \text{o.w.} \end{cases}$ and $\omega \sim U(0, 1)$

- ▶ SAA with 7 scenarios vs True expected value objective



Vaccine Administration and Inventory Replenishment

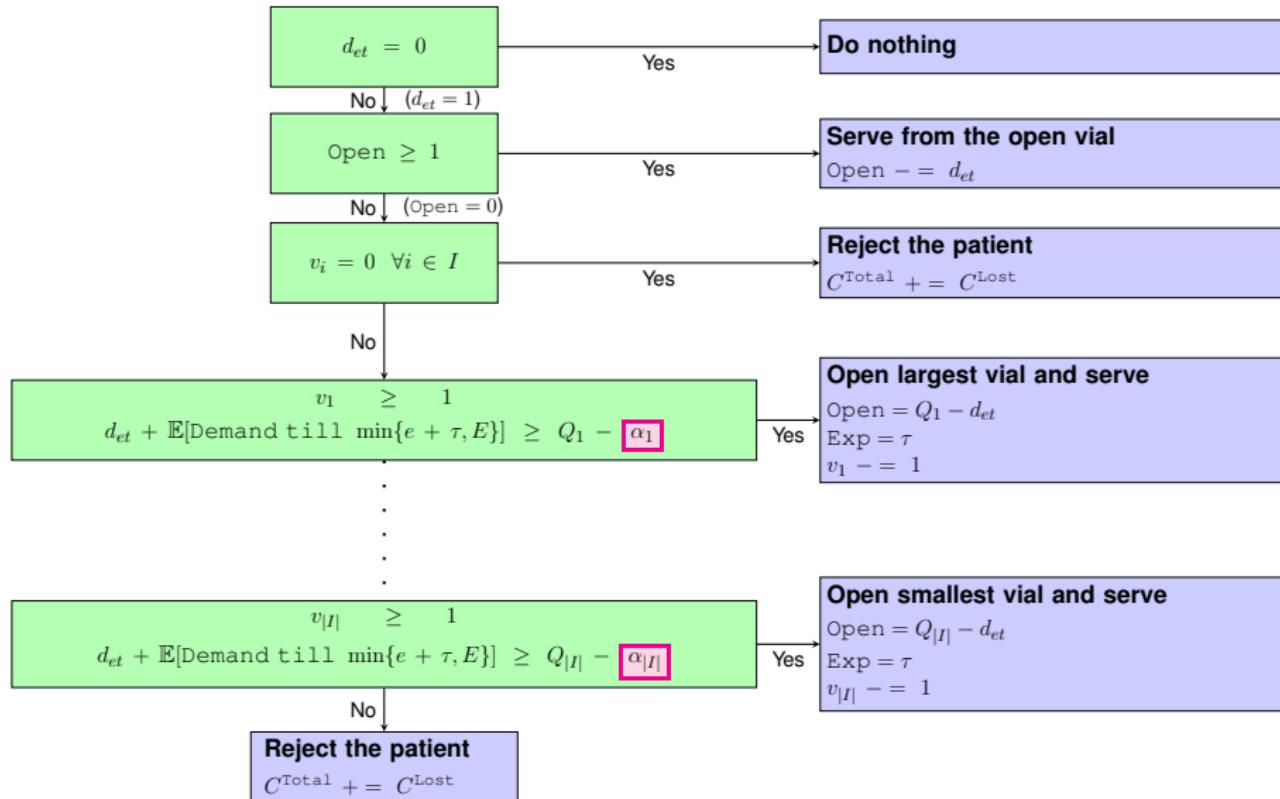


Our Approach

[Sherkat-Masoumi, B., and Luedtke, 2026+]

- ▶ A flexible multistage model
- ▶ Problem variations, e.g., incorporating queueing, early termination, unconditional service
- ▶ Joint optimization of ordering and administration decisions
- ▶ Policies: Efficient-to-compute, near-optimal, and interpretable
- ▶ Apply smooth-in-expectation decision rules for **vaccine administration decisions**
- ▶ Extend the framework to include integer first-stage **vaccine ordering decisions**

Vaccine Administration Policy Design (MSP \rightarrow 1SP)



Summary

- ▶ Extensive form
- ▶ Bounds on the optimal value
- ▶ SDDP and its variants
- ▶ Partially extended formulations
- ▶ Aggregation-based policies
- ▶ Decision-rule based policies
- ▶ Interpretable policies

MSPs with integer decisions → computationally very challenging

Nice advancements

Still a lot of room for contributions

