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Introduction

Sequential Decision-making Under Uncertainty

Uncertainty Uncertainty Uncertainty

W N W

Decisions Decisions Decisions Decisions
at at Foe at at >
stage 1 stage 2 staget — 1 stage ¢

» Uncertainty is gradually observed

» Decisions are dynamically adapted to:
o Observed uncertainty
« Previous decisions
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Introduction

Example: Production Planning

Demand
__ Lotsize Backlog
ltem 1 =see XXXy @
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Multi-item multi-period multi-stage lot-sizing problem under uncertainty

Observe
uncertain
Stage¢—1 | _demandsat! [ Staget | . . .. .
decisions decisions
production levels production levels;_; production levels; production levelsy
setups setups;_1 setups; setupsr
inventory levels inventory levels;_; inventory levels, inventory levelsy
backlogs backlogs; 1 backlogs; backlogsr
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Introduction

Multi-stage Stochastic Programs

Finite-horizon sequential decision making problems under uncertainty
» T > 2 decision stages T):={1,2,...,T}
» Stochastic process: {¢,}1,
> History of the process: & := (¢1,...,&,)

» Dynamics:

— 4] | Staget-—1 observe Staget | . [, _
t=1 decisions £, decisions =T
Y1, 11 U1, Tt—=1 == ======= == === == 3 > Y, Tt

& (3]

» Decision variables:  (nonanticipative)
o State variables: z;(¢")
o Recourse (stage) variables: y;(¢")
» For convenience: &; is constant (i.e., deterministic first stage)
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MS(I)LP Formulation

» Uncertainty: {&, },c[r) has probability distribution P and support =

» Decision variables: y;(£") € R, z,(¢") € R
» Objective:

min }EgT |: Z (jf(gl)Tyt(gt) + ht(fl')—rﬂft(st)

te(T)

» Constraints: For all ¢ € [T], P-a.s.,
» State equations
A (EN2e(€1) + Bi(€N w1 (E71) + Ci(€N)ye(€") = ba(€)
« Recourse constraints (+ integrality)
Di(&")24(8") + Er(&")yi(€") > di(€')

Infinite-dimensional problem!
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Introduction

Common Approaches

Approximate!

» Restrict the functional form of the policy | Decision rulesl

(-’Et(ft)ayt(ft)) € ]'—t(” (& £t)

» Model the underlying stochastic process in a structured way

| Scenario trees |

o—°
o \o
« Further assumptions = Exact methods / \o
« Otherwise = Bounding techniques \ o/’o
o Policy development /

o Dual bounding
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Deterministic Equivalent

Scenario-tree Setting

Usually an exponentially large tree

Uncertainty model MSP model

Extensive Form (node-based):
n /
~

min Z Pnfn(Tn; Yn)

neN
S.t. (Zn, yn) € Xn(To(n)) VnEN

yn — local variables

®
@
9
@/ o Y
\ @/@ r, — state variables
o O
<@

» Suppose fully linear

= | Large-scale MILP
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Deterministic Equivalent

Example: Hydropower planning [Ahmed, 2016]

How much hydro
power to generate
in each period to
satisfy demand?

) ‘?”‘ii‘x"‘“ d

ower Lines i

min Z (begr + crus + grvr)

te[T)
sthi=h1+&—pr+u —v te[T)
ap: + q = dy t e [T
0 < hy <P t € [T
Pts Qe U v = 0 te[T]
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Hydropower Example

Suppose inflows ¢ are stochastic min 1.0 - (biq1 + c1uy + gi1v1)+
with the following scenario tree 0.4 - (baqa + coug + gav2)+

0.6 - (b2gs + cous + govs)+

0.4 - (b3qr + caur + gavr)
st.Vn=1,...,7:

hn = ha(n) +£n_pn+un_vn

0 < h, < hmax

D> Qs Un, U 2> 0
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Tree Decomposition based Bounds

Bounds based on Scenario Tree Decomposition

Derive bounds on the MSP optimal value

E.g.: [Maggioni et al., 2014, 2016], [Sandikgi and Ozaltin, 2017, [Bakir et al., 2019]

Group scenarios & Adjust probabilities

MSP
Create subproblems

Group 1 Group2 | | . .......
MSP MSP

Group G
MSP

Solve subproblems
separately

Combine optimal values ]

v

Lower Bound
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By Sandik¢i and Ozaltin (2017)

M N Nz §p°
olrs
> 1 1
2 x% ! i
4 xP i H .
2 i 1 i
v i2 pz 1 p2/2+p? !
L Ly
i3 p3 H i 4 p?/2+pt :
O=pl4. 4ps : : R
‘ . e o
o T
. ]
a2=p"+p° '5 pb ! : R :

(a) Scenario tree for the  (b) Scenario trees for group subproblems
original problem without a reference scenario
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Exact Approaches

Dynamic Programming Formulation

» For nodes at the last stage, define value functions:

Qn (ﬁa(n)) = min {fn(ﬁnayn) (T, yn) € Xn(ﬁa(n))}

» For the others, recursively define (expected) value functions:

expected cost-to-go
Qn (xa(n)) := min fn(wn’ yn) + Z ﬁanm($n)
meC(n)
st (T, yn) € Xn(Tan))

» MSP optimal value is given by Q1 (zo)
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Exact Approach: Purely continuous case

» General case: Nested Benders decomposition [Birge, 1985]
_® _® ®
Q)
‘/ @\% / @ @/ @<%
\‘ o \@ o \@ o=
\@/ \@/ \@<
~® ~® ®

Via Benders cuts, approximate the expected cost-to-go functions:

Qn(xa(n))_ min_ fy,(Tn, yn) + Z PrmQm (Tn)

(@n,yn) meC(n)
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Exact Approaches

Exact Approach: Purely continuous case

» Stage-wise independent case: SDDP [Pereira and Pinto, 1991]

« Each stage has its own independent set of realizations

« Can recombine the scenario tree:

Q—EOQ—®

®<@>—<>@>—<@

One expected cost-to-go function per stage instead!

Many fewer nodes!

(SDDP Review Paper: [Fiillner and Rebennack, 2023])
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Shabbir's SDDP lllustration

Illustration of SDDP

Q3(3)
Qy (112)
Q1 (x1)

I3

T2
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Exact Methods

» Purely continuous:

o General: Nested Benders [Birge, 1985]
» Stage-wise independence: SDDP [Pereira and Pinto, 1991]
» Pure binary state variables: SDDiP [Zou et al., 2019]

— Lagrangian cuts tight at binary points

» General integer state variables: Binarization + SDDiP
— Large # of binary state variables

» Improved Lagrangian cut generation [Fallner, Sun, and Rebennack, 2024]
— Lagrangian dual is normalized
— Can get deep, facet-defining, or Pareto-optimal cuts

» Mixed-integer generalization [Deng and Xie, 2024]
— ReLU Lagrangian cuts
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Exact Methods

» Lipschitz continuous exp. cost-to-go functions: [Ahmed et al., 2020]
— Nonlinear cuts + augmented Lagrangian

» General nonconvex mixed-integer nonlinear:

« SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
— Approximate regularized exp. cost-to-go functions

« Nonconvex nested Benders [Fuliner and Rebennack, 2022]
— Extends binarization and regularization procedures
— Successful implementation for deterministic multi-stage

» Scaled-cut decomposition [Romeijnders and van der Laan, 2024]
— Construct nonlinear cuts for the subproblems
— Transform them into an affine cut for the master problem
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Partially Extended Formulations

Continuous Recourse Case [Castro, B., & Song, 2025]
Uncertainty model: [ MSILP model: |
O] min Z pnfn(xna Zn; yn)

@ 0 neN

/ O st.VneN:

@ % (xn,zn,yn) S ( La(n) a(n))

\ i@ yn € R™ — cont. local variables

@ @ PO z, € R — cont. state variables
~® 2z, € Z¢ — int. state variables

» Partially extended DP formulation (— B&C + SDDP)

» Aggregation framework (— a range of policies)
(leverage the stochastic process, e.g., Markov chain)
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Our Idea

Challenge: | Approximating nonconvex expected cost-to-go functions
(due to integer state variables)

» Existing works: Develop exact lower-bounding techniques for the
nonconvex expected cost-to-go functions

» Our work: Relocate all integer state variables to the first stage
= the resulting expected cost-to-go functions are convex

= can be approximated (exactly) by a decomposition scheme
(e.g., nested Benders or SDDP)

or
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Exact Method

Our idea: Relocate all integer state variables to the first stage

Y2,%2, 22

/

Y1, 21,21

Y15, 15, 215
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Develop High-quality Policies




Aggregate

-

]

Too many first-stage \ N T
(integer) variables! / \,-/

S e
A

Y14, %14
\/
Y7, 27

g . \ 5,215
Impose additional structure to z variables

To obtain high-quality policies:

Leverage the structure of the underlying stochastic process

E.g.: Markov Chain
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Policy Development Aggregation Policies

Aggregation Framework — Various Policies

Idea: Simply enforce z,, = z,. for some pairs of nodes based on MC

Scenario Tree HN MA MM
<o<:; _<-<: _<-<' _<-<:
< g < - S o«
O<.<g ol N\ e
o<l <-<: Set®
Here-and-now Markov-based Previous and
(current stage) (current MC state) current MC state
#:Mst 15 4 7 11
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Solving the Aggregated Problem

» Exactly: B&C + SDDP
(Employing the MC variant of SDDP)

» Approximately:

o Exact method + an early stop in the SDDP sub-routine

*

UB, i.e., policy

M. Bodur

Decision-rule restriction
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Policy Development Decision Rules

Multi-stage — Two-stage
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Policy Development Decision Rules

Two-stage Linear Decision Rules [B. and Lueditke, 2022]
Stage 1| --- |Staget—1 Staget| --- |Stage T
y1, 21, 20 Yn> T
T = Hy(n) En (3 variants)
Stage 1 Stage 2
Y1, 21, ZA, {yn}ne/\/\{l}
{/u}tzz,...,T
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Policy Development

Decision Rules

Our Scenario-tree Version

Y.
/
Y4, Ty —
/
]
Y11, 11
/
—
Y13, 13
/

Y2, T2

/ N\

!

/N
H

—

Candidate solution

M. Bodur

A
Y1,T1, 2

M2y 43, [a

Solution Methods for MSMIPs

Y15




More Decision Rules




Policy Development Decision Rules

Benefit from Duality

/() 7=
When we embrace duality, we
create room for ourselves to
a(\%) = f(z*) a(\*) < f(z*)
T A x A
q(\) a(\)
strong duality weak duality
[From the website of Duc M. Nguyen] [From the Trellis Society website]

MSLP: Consider its LP dual MSMIP: Consider a Lagrangian dual
[B. and Luedtke, 2022] [Daryalal, B., and Luedtke, 2024]

Apply LDRs on the dual variables = two-stage dual problem
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Policy Development Decision Rules

Dual-driven Policies

General policy application scheme: Rolling the horizon

Solve an optimization problem at each stage

b1 Make decision £i1(671) Make decision f—T
=1 ...... — T T =
at staget — 1 ¢ at stage t
t

Dual-driven: Provide guidance by the dual LDR solution
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Policy Development Decision Rules

Desirable Properties

» Dynamic, complex decision-making under uncertainty = v
» But, 3 major drawbacks

Curses of dimensionality Black box policies

Decision Outcome  Decision  Outcome  Decision

Operators find it difficult to
understand the connection
between states and actions

= mistrust in the policy

©2017 Warren B. Powell

Goal: Efficiently generate interpretable policies
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Policy Development Decision Rules

Interpretability Literature

» Early attempts: Prove and use properties like monotonicity to
generate simple policies

» Decision trees:
« Highly interpretable structure (avoid black box policies)

« Finding an optimal decision tree is difficult, building a tree in a
top-down manner could result in a sub-optimal solution

» Rule lists:
« Hard to find an optimal solution when the search space is large

Our Approach: Smooth-in-expectation decision rules

|—> Policy structure: Flowchartl
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Policy Development Decision Rules

Overview: Smooth-in-expectation DRS  [Hakizimana 2019]

. W=t T 0o
B c(emaLguzs(k,ukw,u(u).,wk,e)} o TR e
a1 I g I
s Fbuwaomoszi-c )| et | B
zo(w) =by, YweEQ e W)= 1
T (@) = f(k, up(w), ox(w), w, 0), Vw €Q no /,,kj = 0 yes
G) _ () _
w nonanticipative oy =1 ”k% =1
e (0. K} v =0 ot et bscent
— Stochastic gradient descent
Multistage stochastic program Flowchart for SGD algorithm
with mixed-integer recourse
* Interpretable « Differentiability conditions
* Problem specific * Efficient

* Introduce new decision variables

» Key Observation: Due to integer recourse, SAA objective is
discontinuous. Nonetheless, the true expected value objective
might be smooth!

» |dea: Apply certain DRs to all of the recourse decisions
to ensure such smoothness (— simulation-optimization problem)
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Smoothness Example [Hakizimana 2019]

in  2(60 —0.7)% + E,[¢(0,
pelin ( )* + Eu[l(0,w)]

0 ifo<w

1 ow. and w~U(0,1)

where /((0,w) = {

» SAA with 7 scenarios vs True expected value objective

1 0-8 - -
@] (@]
(@] @]
[€1110) o g
0.8 - 0.7 O% o
2 2 ks &
061%% @
> | o6
02 04 06 08 02 04 06 08
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Policy Development Decision Rules

Vaccine Administration and Inventory Replenishment

%%a@ T

S l BEE8
\_ i1 i S

L 2 $ Lost Demand
d=2

. $ End-cycle

. Gain
.

e=1 e=480 | B
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Policy Development Decision Rules

Our Approach [Sherkat-Masoumi, B., and Luedtke, 2026+]

» A flexible multistage model

» Problem variations, e.g., incorporating queueing, early
termination, unconditional service

» Joint optimization of ordering and administration decisions
» Policies: Efficient-to-compute, near-optimal, and interpretable

» Apply smooth-in-expectation decision rules for
vaccine administration decisions

» Extent the framework to include integer first-stage
vaccine ordering decisions
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Vaccine Administration Policy Design (MSP — 1SP)

do = \ i
et 0 Yos ‘ Do nothing ‘

No] (det = 1)

Serve from the open vial
Yes Open — = dg

Open > 1

NoJ (Open =0)

Reject the patient

v, =0 Viel
Yes (QTotal | _ (lost

No

Open largest vial and serve
) >
@z Open = Q1 — du

det + E[Demand till min{e + 7,E}] > Q1 — Yes |Exp = 7

v —=1

Open smallest vial and serve
Open = Q) — det

det + E[Demand ti11l minfe + 7,E}] > Q) — Yes |Exp =1

yy—=1

vy =2 1

Mo
Reject the patient
QTotal | — (lLost
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Conclusion

Summary

Extensive form

Bounds on the optimal value
SDDP and its variants

Partially extended formulations
Aggregation-based policies
Decision-rule based policies
Interpretable policies

vVVvyVvyVvyYVvyYVvyy

MSPs with integer decisions — computationally very challenging

| Nice advancements |
| Still a lot of room for contributions |
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