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Introduction

Sequential Decision-making Under Uncertainty

Decisions
at

stage 1

Decisions
at

stage 2

Decisions
at

stage t− 1

Decisions
at

stage t

Uncertainty Uncertainty Uncertainty

I Uncertainty is gradually observed

I Decisions are dynamically adapted to:
• Observed uncertainty
• Previous decisions
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Introduction

Example: Production Planning

Item 1

Item I

Setup

Lot size

Setup

Inventory

Backlog

Inventory

Backlog

Demand

Demand

Multi-item multi-period multi-stage lot-sizing problem under uncertainty

t = 1 t = T

Observe
uncertain

demands at tStage t− 1
decisions

Stage t
decisions

production levels

setups

inventory levels

backlogs

production levelst−1
setupst−1
inventory levelst−1
backlogst−1

production levelst
setupst
inventory levelst
backlogst

production levelsT
setupsT
inventory levelsT
backlogsT
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Introduction

Multi-stage Stochastic Programs

Finite-horizon sequential decision making problems under uncertainty
I T ≥ 2 decision stages [T ] := {1, 2, . . . , T}
I Stochastic process: {ξt}Tt=1

I History of the process: ξt := (ξ1, . . . , ξt)
I Dynamics:

Stage t− 1
decisions

Stage t
decisions

observe

ξt
· · · · · ·t = 1 t = T

yt−1, xt−1 yt, xt

(ξt−1) (ξt)

y1, x1

I Decision variables: (nonanticipative)
� State variables: xt(ξt)
� Recourse (stage) variables: yt(ξt)

I For convenience: ξ1 is constant (i.e., deterministic first stage)
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Introduction

MS(I)LP Formulation

I Uncertainty: {ξt}t∈[T ] has probability distribution P and support Ξ

I Decision variables: yt(ξt)∈ Rnt , xt(ξ
t)∈ Rdt

I Objective:

min EξT
[ ∑
t∈[T ]

ct(ξ
t)>yt(ξ

t) + ht(ξ
t)>xt(ξ

t)
]

I Constraints: For all t ∈ [T ], P-a.s.,

• State equations

At(ξ
t)xt(ξ

t) +Bt(ξ
t)xt−1(ξ

t−1) + Ct(ξ
t)yt(ξ

t) = bt(ξ
t)

• Recourse constraints (+ integrality)

Dt(ξ
t)xt(ξ

t) + Et(ξ
t)yt(ξ

t) ≥ dt(ξt)

Infinite-dimensional problem!
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Introduction

Common Approaches

Approximate!

I Restrict the functional form of the policy Decision rules(
xt(ξt), yt(ξt)

)
∈ Ft

(
xt−1(ξ

t−1), ξt
)

I Model the underlying stochastic process in a structured way

Scenario trees

• Further assumptions⇒ Exact methods

• Otherwise⇒ Bounding techniques
� Policy development
� Dual bounding
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Deterministic Equivalent

Scenario-tree Setting

Usually an exponentially large tree

Uncertainty model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n

a(n)

MSP model

Extensive Form (node-based):

min
∑
n∈N

pnfn(xn, yn)

s.t. (xn, yn) ∈ Xn(xa(n)) ∀n ∈ N

yn → local variables
xn → state variables

I Suppose fully linear

⇒ Large-scale MILP
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Deterministic Equivalent

Example: Hydropower planning [Ahmed, 2016]

How much hydro
power to generate
in each period to
satisfy demand?

min
∑
t∈[T ]

(btqt + ctut + gtvt)

s.t. ht = ht−1 + ξt − pt + ut − vt t ∈ [T ]

αpt + qt = dt t ∈ [T ]

0 ≤ ht ≤ hmax t ∈ [T ]

pt, qt, ut, vt ≥ 0 t ∈ [T ]
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Deterministic Equivalent

Hydropower Example

Suppose inflows ξ are stochastic
with the following scenario tree

min 1.0 · (b1q1 + c1u1 + g1v1)+

0.4 · (b2q2 + c2u2 + g2v2)+

0.6 · (b2q3 + c2u3 + g2v3)+

· · ·
0.4 · (b3q7 + c3u7 + g3v7)

s.t. ∀ n = 1, . . . , 7 :

hn = ha(n) + ξn − pn + un − vn
αpn + qn = dn

0 ≤ hn ≤ hmax

pn, qn, un, vn ≥ 0
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Tree Decomposition based Bounds

Bounds based on Scenario Tree Decomposition

Derive bounds on the MSP optimal value

E.g.: [Maggioni et al., 2014, 2016], [Sandıkçı and Özaltın, 2017], [Bakır et al., 2019]
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Tree Decomposition based Bounds

By Sandıkçı and Özaltın (2017)
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Exact Approaches

Dynamic Programming Formulation

I For nodes at the last stage, define value functions:

Qn
(
xa(n)

)
:= min

{
fn(xn, yn) : (xn, yn) ∈ Xn(xa(n))

}
I For the others, recursively define (expected) value functions:

Qn
(
xa(n)

)
:= min fn(xn, yn) +

expected cost-to-go︷ ︸︸ ︷∑
m∈C(n)

p̄nmQm(xn)

s.t. (xn, yn) ∈ Xn(xa(n))

I MSP optimal value is given by Q1(x0)
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Exact Approaches

Exact Approach: Purely continuous case

I General case: Nested Benders decomposition [Birge, 1985]
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Via Benders cuts, approximate the expected cost-to-go functions:

Qn(xa(n)) = min
(xn,yn)

fn(xn, yn) +
∑

m∈C(n)

p̄nmQm(xn)
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Exact Approaches

Exact Approach: Purely continuous case

I Stage-wise independent case: SDDP [Pereira and Pinto, 1991]

• Each stage has its own independent set of realizations

• Can recombine the scenario tree:

1

2

3

4

5

6

7

• One expected cost-to-go function per stage instead!

• Many fewer nodes!

(SDDP Review Paper: [Füllner and Rebennack, 2023])
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Exact Approaches

Shabbir’s SDDP Illustration
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Exact Approaches

Exact Methods
I Purely continuous:

• General: Nested Benders [Birge, 1985]
• Stage-wise independence: SDDP [Pereira and Pinto, 1991]

I Pure binary state variables: SDDiP [Zou et al., 2019]
→ Lagrangian cuts tight at binary points

I General integer state variables: Binarization + SDDiP
→ Large # of binary state variables

I Improved Lagrangian cut generation [Füllner, Sun, and Rebennack, 2024]
→ Lagrangian dual is normalized
→ Can get deep, facet-defining, or Pareto-optimal cuts

I Mixed-integer generalization [Deng and Xie, 2024]
→ ReLU Lagrangian cuts
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Exact Approaches

Exact Methods

I Lipschitz continuous exp. cost-to-go functions: [Ahmed et al., 2020]
→ Nonlinear cuts + augmented Lagrangian

I General nonconvex mixed-integer nonlinear:

• SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
→ Approximate regularized exp. cost-to-go functions

• Nonconvex nested Benders [Füllner and Rebennack, 2022]
→ Extends binarization and regularization procedures
→ Successful implementation for deterministic multi-stage

I Scaled-cut decomposition [Romeijnders and van der Laan, 2024]
→ Construct nonlinear cuts for the subproblems
→ Transform them into an affine cut for the master problem
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Partially Extended Formulations

Continuous Recourse Case [Castro, B., & Song, 2025]

Uncertainty model:

1

2

3

4

5

6

7

8

9
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11
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13

14

15

n

a(n)

MSILP model:

min
∑
n∈N

pnfn(xn, zn, yn)

s.t. ∀n ∈ N :

(xn, zn, yn) ∈ Xn(xa(n), za(n))

yn ∈ Rm → cont. local variables
xn ∈ Rr → cont. state variables

zn ∈ Z` → int. state variables

I Partially extended DP formulation (→ B&C + SDDP)

I Aggregation framework (→ a range of policies)
(leverage the stochastic process, e.g., Markov chain)
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Partially Extended Formulations

Our Idea

Challenge: Approximating nonconvex expected cost-to-go functions
(due to integer state variables)

I Existing works: Develop exact lower-bounding techniques for the
nonconvex expected cost-to-go functions

I Our work: Relocate all integer state variables to the first stage
⇒ the resulting expected cost-to-go functions are convex
⇒ can be approximated (exactly) by a decomposition scheme
(e.g., nested Benders or SDDP)
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Partially Extended Formulations

Exact Method

Our idea: Relocate all integer state variables to the first stage

y1, x1, z1

y2, x2, z2

y3, x3, z3

y4, x4, z4

y5, x5, z5

y6, x6, z6

y7, x7, z7

y8, x8, z8

y9, x9, z9

y10, x10, z10

y11, x11, z11

y12, x12, z12

y13, x13, z13

y14, x14, z14

y15, x15, z15

y1, x1, z1, z2, . . . , z15

y2, x2

y3, x3

y4, x4

y5, x5

y6, x6

y7, x7

y8, x8

y9, x9

y10, x10

y11, x11

y12, x12

y13, x13

y14, x14

y15, x15

QRef
n (xa(n), z) = min

(xn,yn)
fn(xn, zn, yn) +

∑
m∈C(n)

p̄nmQ
Ref
m (xn, z)

y1, x1, z1, z2, . . . , z15

y2, x2

y3, x3

y4, x4

y5, x5

y6, x6

y7, x7

y8, x8

y9, x9

y10, x10

y11, x11

y12, x12

y13, x13

y14, x14

y15, x15

y1, x1, z {(yn, xn)}n∈N\{1}
(SDDP)

Benders cuts

Candidate solution

Too many first-stage (integer) variables!
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Policy Development Aggregation Policies

Aggregate

Too many first-stage
(integer) variables!

y1, x1, z1, z2, . . . , z15

y2, x2

y3, x3

y4, x4

y5, x5

y6, x6

y7, x7

y8, x8

y9, x9

y10, x10

y11, x11

y12, x12

y13, x13

y14, x14

y15, x15Impose additional structure to z variables

To obtain high-quality policies:

Leverage the structure of the underlying stochastic process

E.g.: Markov Chain
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Policy Development Aggregation Policies

Aggregation Framework→ Various Policies

Idea: Simply enforce zn = zn′ for some pairs of nodes based on MC

Here-and-now
(current stage)

Markov-based
(current MC state)

Previous and
current MC state

# zA’s: 15 4 7 11
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Policy Development Aggregation Policies

Solving the Aggregated Problem

I Exactly: B&C + SDDP
(Employing the MC variant of SDDP)

I Approximately:

• LB Exact method + an early stop in the SDDP sub-routine

? UB, i.e., policy Decision-rule restriction
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Policy Development Decision Rules

Multi-stage −→ Two-stage
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Policy Development Decision Rules

Two-stage Linear Decision Rules [B. and Luedtke, 2022]

Stage t− 1 Stage t· · · · · ·Stage 1 Stage T

yn, xny1, x1, z
A

xn = µ>t(n) ξn

Stage 1

y1, x1, z
A,

{µt}t=2,...,T

Stage 2

{yn}n∈N\{1}

(∃ variants)
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Policy Development Decision Rules

Our Scenario-tree Version

y1, x1, z
A

y2, x2

y3, x3

y4, x4

y5, x5

y6, x6

y7, x7

y8, x8

y9, x9

y10, x10

y11, x11

y12, x12

y13, x13

y14, x14

y15, x15

y1, x1, z
A

µ2, µ3, µ4

y2

y3

...

y15

y1, x1, z
A, µ {(yn)}n∈N\{1}Benders cuts

Candidate solution
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Policy Development Decision Rules

Benefit from Duality

[From the website of Duc M. Nguyen] [From the Trellis Society website]

MSLP: Consider its LP dual
[B. and Luedtke, 2022]

MSMIP: Consider a Lagrangian dual
[Daryalal, B., and Luedtke, 2024]

Apply LDRs on the dual variables⇒ two-stage dual problem

Obtain LBs
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Policy Development Decision Rules

Dual-driven Policies

General policy application scheme: Rolling the horizon

Solve an optimization problem at each stage

Dual-driven: Provide guidance by the dual LDR solution
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Policy Development Decision Rules

Desirable Properties

I Dynamic, complex decision-making under uncertainty⇒ MSP X
I But, ∃ major drawbacks

Curses of dimensionality Black box policies

Operators find it difficult to
understand the connection
between states and actions
⇒ mistrust in the policy

Goal: Efficiently generate interpretable policies
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Policy Development Decision Rules

Interpretability Literature

I Early attempts: Prove and use properties like monotonicity to
generate simple policies

I Decision trees:
• Highly interpretable structure (avoid black box policies)
• Finding an optimal decision tree is difficult, building a tree in a

top-down manner could result in a sub-optimal solution

I Rule lists:
• Hard to find an optimal solution when the search space is large

Our Approach: Smooth-in-expectation decision rules

→ Policy structure: Flowchart
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Policy Development Decision Rules

Overview: Smooth-in-expectation DRs [Hakizimana 2019]

I Key Observation: Due to integer recourse, SAA objective is
discontinuous. Nonetheless, the true expected value objective
might be smooth!

I Idea: Apply certain DRs to all of the recourse decisions
to ensure such smoothness (→ simulation-optimization problem)
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Policy Development Decision Rules

Smoothness Example [Hakizimana 2019]

min
θ∈[0.1,0.8]

2(θ − 0.7)2 + Eω[`(θ, ω)]

where `(θ, ω) =

{
0 if θ ≤ ω
1 o.w.

and ω ∼ U(0, 1)

I SAA with 7 scenarios vs True expected value objective
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Policy Development Decision Rules

Vaccine Administration and Inventory Replenishment
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Policy Development Decision Rules

Our Approach [Sherkat-Masoumi, B., and Luedtke, 2026+]

I A flexible multistage model
I Problem variations, e.g., incorporating queueing, early

termination, unconditional service

I Joint optimization of ordering and administration decisions
I Policies: Efficient-to-compute, near-optimal, and interpretable

I Apply smooth-in-expectation decision rules for
vaccine administration decisions

I Extent the framework to include integer first-stage
vaccine ordering decisions
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Policy Development Decision Rules

Vaccine Administration Policy Design (MSP→ 1SP)

det = 0

Open ≥ 1

vi = 0 ∀i ∈ I

v1 ≥ 1

det + E[Demand till min{e + τ, E}] ≥ Q1 − α1

v|I| ≥ 1

det + E[Demand till min{e + τ, E}] ≥ Q|I| − α|I|

Do nothing

Serve from the open vial
Open − = det

Reject the patient
CTotal + = CLost

Open largest vial and serve
Open = Q1 − det
Exp = τ
v1 − = 1

Open smallest vial and serve
Open = Q|I| − det
Exp = τ
v|I| − = 1

Reject the patient
CTotal + = CLost

Yes

Yes

Yes

Yes

Yes

No (det = 1)

No (Open = 0)

No

No
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Conclusion

Summary

I Extensive form
I Bounds on the optimal value
I SDDP and its variants
I Partially extended formulations
I Aggregation-based policies
I Decision-rule based policies
I Interpretable policies

MSPs with integer decisions→ computationally very challenging

Nice advancements

Still a lot of room for contributions
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