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Two-Stage Stochastic Programs

Optimization Under Uncertainty
“The only certainty is that nothing is certain.”

I Making decisions under uncertainty

I Integer/discrete decisions

=) Stochastic programming

M. Bodur Methodological Advances in 2SP 2 / 46



Two-Stage Stochastic Programs

Two-Stage Stochastic Programs with Recourse

I There are uncertainties in some parameters
(they are modeled as random variables)

I There are two decision stages

2nd stage
decisions

1st stage
decisions

observe
realizations

I Objective: min (1st stage cost) + (Expected 2nd stage cost)

I They have very wide range of applications
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Two-Stage Stochastic Programs

Sequential Decision-making Under Uncertainty

Decisions
at

stage 1

Decisions
at

stage 2

Decisions
at

stage t� 1

Decisions
at

stage t

Uncertainty Uncertainty Uncertainty

I Uncertainty is gradually observed
I Decisions are dynamically adapted

Can be approximated via two-stage models
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Two-Stage Stochastic Programs

General Two-Stage Stochastic Program

min
x

c
>
x+ E![Q(x,!)]

s.t. x 2 X

Example recourse/value function:

Q(x,!) =
min
y

q(!)>y

s.t. T (!)x+W (!)y � h(!)

y � 0

Challenges:

I Difficult to evaluate the expected value
) Use sample average approximation (SAA)

I SAA problem ! Deterministic, but still difficult to solve
Assumption: Finitely many scenarios (K with K = |K|)
Assumption: Relatively complete recourse
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Two-Stage Stochastic Programs

Extensive Form

A (very) large-scale (e.g., mixed-integer) program.

min c
>
x+

X

k2K
pkq

>
k yk

s.t. Tkx+Wkyk � hk 8k 2 K
x 2 X
yk � 0 8k 2 K

) First classical approach: Try our favourite solver!
(Be prepared for some disappointment)
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Two-Stage Stochastic Programs

Extensive form does not scale well with K

Call center staffing and scheduling instances: [B. & Luedtke, 2016]

(I = 5, J = 5, T = 34, S = 333, Time Limit = 1 hour)

1835 integer variables + 30K continuous variables

K Gap(%) Nodes
100 2.8 1840
500 10.6 28

1000 16.6 0
1500 28.9 0
2000 32.8 0

I Usually solved via decomposition
I This talk: Primal approach

(There are also dual approaches)
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Continuous Recourse

Continuous Recourse

(Recall: Finitely many scenarios, k 2 K)

x 2 X LP
observe

scenario k

Qk(x)

I Benders decomposition
I Dual decomposition
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Continuous Recourse Benders Decomposition

Exploit the structure!
I Fix the first-stage variables ) the rest decomposes by scenario

min c
>
x + p1q

>
1 y1 + p2q

>
2 y2 + · · · + pKq

>
KyK

s.t. T1x + W1y1 � h1

T2x + W2y2 � h2
... . . . ...

TKx + WKyK � hK

x 2 X y1 � 0 y2 � 0 yK � 0

Key Idea
Benders Decomposition: Characterize the optimal value of
scenario LPs as a function of first-stage variables x, i.e., Qk(x)

min{c>x+
X

k2K
pkQk(x) : x 2 X}

Key Observation: Qk(·) is a piecewise-linear convex function
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Continuous Recourse Benders Decomposition

Benders Decomposition (L-shaped Method)

(MP) : min
⌘,x

c
>
x+

X

k2K
pk⌘k

s.t. x 2 X

Benders Cuts for ⌘k � Qk(x) ⌘k � ⇡̂
>(hk � Tkx) 8k 2 K

⌘ 2 RK

(SP)k : Qk(x̂) = min
yk

q
>
k yk

s.t. Wkyk � hk � Tkx̂ (⇡̂)

yk 2 RJ
+

I Subproblem decomposes by scenario ! LPs

Single-cut version:
X

k2K
pk⌘k �

X

k2K
pkQk(x)

(MP)

(SP)k, k 2 K

LB

UB

B
en

de
rs

C
ut

s

(
⌘̂
,
x̂
)
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Continuous Recourse Benders Decomposition

Some Strengthening Ideas

x 2 X ✓ Zn ⇥ Rm LP
observe

scenario k

Qk(x)

Benders decomposition:
I Fast solution of LP subproblems :)
I Potentially weak bounds :(

Idea
Strengthen Benders with first-stage integrality-based cuts

I Add MIR cuts to MP [B. & Luedtke, 2016]

I Also add cuts to SPs [B., Dash, Günlük & Luedtke, 2016]
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Continuous Recourse MIR Strengthening

The basic mixed integer rounding inequality

x

⌘

1 2 3 4

1

2

3

b

b

H = {(⌘, x) 2 R+⇥Z+ | ⌘ + x � b}

f = b� bbc > 0

⌘ � f(dbe � x) is valid for H
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Continuous Recourse MIR Strengthening

Mixed integer rounding (MIR)

Exact form of Benders cuts

H := {(⌘, x) 2 R+ ⇥ ZI
+ : ⌘ � d

1
0 �

X

i2I
d
1
ixi, ⌘ � d

2
0 �

X

i2I
d
2
ixi}

MIR Cut [B. & Luedtke, 2016]
For any constant � > 0 with f̄0 > 0,

⌘ � d
1
0 +

f̄0d�(d20 � d
1
0)e

�
�

X

i2I

min{f̄0d�(d2i � d
1
i )e, f̄i + f̄0b�(d2i � d

1
i )c}+ �d

1
i

�
xi

is valid for H where
f̄0 := �(d20 � d

1
0)� b�(d20 � d

1
0)c

f̄i := �(d2i � d
1
i )� b�(d2i � d

1
i )c, 8i 2 I.
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Continuous Recourse MIR Strengthening

Applying MIR

How we obtain MIR inequalities:

I Keep a pool of previously found Benders cuts
I Pair the current Benders cut with each previously found Benders

cut and apply MIR

Can apply MIR in two different places:

1. Scenario level
2. Aggregated level
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Continuous Recourse MIR Strengthening

Benders single cut generation

(MP)

(SP)k, k 2 K

B
en

de
rs

C
ut

s

(
⌘̂
,
x̂
)
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Continuous Recourse MIR Strengthening

Cut generation using MIR
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Continuous Recourse MIR Strengthening

Call Center Staffing and Scheduling Instances
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# variables in Extensive Form:
534 + 42 · (# scenarios)

Average # nodes
in Benders+MIR = 750

M. Bodur Methodological Advances in 2SP 20 / 46



Continuous Recourse Strengthening Subproblems

Two Options for Using Integrality-based Cuts

Strengthen Benders decomposition algorithm by:

I Project-and-cut: Add cuts to the master problem

I Cut-and-project: Add cuts to the subproblems
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Continuous Recourse Strengthening Subproblems

Project-and-cut

(MP) : min
⌘,x

c
>
x+

X

k2K
pk⌘k

s.t. x 2 X
Benders cuts

C⌘ +Dx � g

⌘ 2 RK

(SP)k : Qk(x̂) := min
yk

q
>
k yk

s.t. Wkyk � hk � Tkx̂

yk 2 RJ
+

(MP)

(SP)k, k 2 K

B
en

de
rs

C
ut

s

(
⌘̂
k
,
x̂
)

Separate cuts
Z-

ba
se

d
C

ut
s

(
⌘̂
,
x̂
)
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Continuous Recourse Strengthening Subproblems

Cut-and-project
(MP) : min

⌘,x
c
>
x+

X

k2K
pk⌘k

s.t. x 2 X
Benders cuts

⌘ 2 RK

(SP)k : Qk(x̂) := min
yk

q
>
k yk

s.t. Wkyk � hk � Tkx̂

Ckyk � gk �Dkx̂

yk 2 RJ
+

Add integrality-based cuts to (SP)k,
even though it is an LP

(MP)

(SP)k, k 2 K

B
en

de
rs

C
ut

s

(
⌘̂
k
,
x̂
)

Separate cuts
Z-

ba
se

d
C

ut
s

(x̂
,
ŷ
k )
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Continuous Recourse Strengthening Subproblems

Capacitated Facility Location Instances
I K = 500, Time limit = 4 hours

Avg Time (# unsolved)
CAP # EXT BEN MP SP

101-104 1171 - (4) - (4) 149
111-114 10787(3) - (4) - (4) 957
121-124 10935(3) - (4) - (4) 4738(1)
131-134 9512(3) - (4) - (4) 1527

Mean Time 6020 - - 1008
Avg Opt Gap 1.64% 14.87% 15.53% 0.02%

) Cut-and-project has far more impact

I App on last-mile delivery with crowd-shipping and mobile depots:
Also for the risk-averse (CVaR) case [Mousavi, B., & Roorda, 2022]
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Continuous Recourse Strengthening Subproblems

Network Interdiction Instances

I K = 456, Time limit = 4 hours

Budget EXT BEN SP MP MP+SP
30 - (5) 639 442 183 415
40 - (5) 7915(3) 2253 784 830
50 - (5) 8626(3) 2328 512 867
60 - (5) 10599(4) 2425(1) 906 1121
70 - (5) - (5) 4435(1) 1402 1389
80 - (5) - (5) 10096(4) 1938 1579
90 - (5) - (5) 13283(4) 4794 4050

Mean Time - 7536 3188 980 1169
Avg Opt Gap 25.7% 2.6% 0.4% - -

) Project-and-cut is very effective
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Continuous Recourse Aggregation Cuts

Aggregation Cuts

x 2 X LP
observe

scenario k

Qk(x)

Add Benders cuts to represent ⌘k � Qk(x)

Aggregate second-stage constraints ! change of variables: x to �

x 2 X
� = A(x) Agg-LPobserve

scenario k

Q
Agg
k (�)

First add Benders cuts to represent ⌘k � Q
Agg
k (�)
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Continuous Recourse Aggregation Cuts

Telecommunications Application

Stochastic RWA and Lightpath Rerouting [Daryalal & B., 2022]

x
(s,d)
`,w y

(s,d)
`,w

observe
future

Which wavelinks are used
to serve existing requests

Which wavelinks are used
to serve future requests

Substitute
X

(s,d)2SD2
k

y
(s,d)
`,w  1�

X

(s,d)2SD1

x
(s,d)
`,w 8w 2 W, ` 2 L

via aggregation over wavelengths, with
X

w2W

X

(s,d)2SD2
k

y
(s,d)
`,w  (|W|� �`) 8` 2 L
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Continuous Recourse Aggregation Cuts

Optical Network Instances

Time limit = 10 minustes

K EXTENSIVE BENDERS-x BENDERS-x�
time (s) gap (%) time (s) gap (%) #x�cuts time (s) gap (%) #��cuts #x�cuts

10 200 0 187 3 1124 17 0 8 15
20 TL NA 465 2 1370 42 0 19 61
30 TL NA 536 3 1538 157 0 31 204
40 TL NA TL 3 1785 164 0 34 203
50 TL NA TL 3 1980 206 0 58 209

100 TL NA TL 3 2164 305 0 99 400
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Binary First Stage Integer L-shaped

Integer L-shaped Method [Laporte & Louveaux, 1993]

Binary x Any Form
observe

scenario k

Qk(x)

I MP provides a candidate: (x̂, ⌘̂)
I (SP)k evaluates Qk(x̂)

I Integer L-shaped cut:

x = x̂ ) ⌘k � Qk(x̂)

x 6= x̂ ) ⌘k � Q
LB
k (i.e., redundant)

⌘k � Qk(x̂) +
�
Qk(x̂)�Q

LB
k

�⇣ X

i:x̂i=1

(xi � 1)�
X

i:x̂i=0

xi

⌘

I Cuts might be strengthened using problem-specific structure
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Binary First Stage LBBD

Logic-based Benders Decomposition

Any Form Any Form
observe

scenario k

Qk(x)

I LBBD cuts from the inference dual [Hooker & Ottosson, 2003]

I Very successful applications in IP
I Few applications in SP
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Binary First Stage LBBD

Distributed Operating Room Scheduling [Guo et al., 2021]

2nd stage
Cancel patients if
there is overtime

1st stage
Assign patients to

(hospital, room, day)

observe
surgery durations

Objective: min (Operational cost) + (Expected cancellation cost)

Q
k
hdr(x̂) = min

z

X

p2P
c

cancel
p (x̂hdpr � z

k
hdpr)

s.t. z
k
hdpr  x̂hdpr p 2 P
X

p2P
T

k
p z

k
hdpr  Bhd

z
k
hdpr 2 {0, 1} p 2 P

LBBD cut: ⌘
k
hdr � Q

k
hdr(x̂)�

X

p2P̂hdr

c
cancel
p

⇣
1� xhdpr

⌘

where P̂hdr = {p 2 P|x̂hdpr = 1}
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Binary Recourse DD incorporation

Convexification via Binary Decision Diagrams

Binary x Binary
observe

scenario k

Qk(x)

I Represent the second-stage problem via BDDs

Binary x LP via BDD
observe

scenario k

Qk(x)

) amenable to Benders decomposition
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Binary Recourse DD incorporation

Knapsack BDD Example
max
x

4x1 + x2 + 3x3 + 8x4

s.t. 2x1 + x2 + 3x3 + 3x4  5

x 2 {0, 1}4

r

t

x1

x2

x3

x4

0 4

01

0

1

3
0 0

0

0

8

max
f

X

a2A
wafa

s.t.
X

a|s(a)=r

fa = 1

X

a|s(a)=i

fa �
X

a|d(a)=i

fa = 0 8i 2 N \ {r, t}

X

a|d(a)=t

fa = �1

fa � 0 8a 2 A
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Binary Recourse DD incorporation

BDD-based Approach [Lozano & Smith, 2018]

I Assume special structure: Each
recourse constraint is impacted by at
most one first-stage binary variable

I Transform recourse problem to a
capacitated shortest path problem

I Derive classical Benders cuts

(can be easily strengthened)

(MP)

Reformulated BDD
Subproblems (LPs)

B
en

de
rs

C
ut

s

M
aster S

olution
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Binary Recourse DD incorporation

The Transformed BDD Subproblem

min
X

p2P
c

cancel
p (x̂hdpr � z

k
hdpr)

s.t.
X

p2P

T
k
p z

k
hdpr  Bhd

z
k
hdpr  x̂hdpr p 2 P
z
k
hdpr 2 {0, 1} p 2 P

! A knapsack problem

min
X

a2Ak

g
k
afa

s.t.
X

a|s(a)=r

fa = 1

X

a|s(a)=i

fa �
X

a|d(a)=i

fa = 0 i 2 N k \ {r, t}

X

a|d(a)=t

fa = �1

fa  x̂hdpr a 2 Asp
1

fa � 0 a 2 Ak

! A shortest path problem
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Binary Recourse DD incorporation

Further Leveraging Binary Decision Diagrams
I Previously: [Lozano & Smith, 2018]

Qk(x) = min q
>
k y

s.t. y 2 Yk ✓ {0, 1}ny , x
B
i = 0 =) y 2 Ylogical,k

i 8i = 1, . . . , nBx

I More recently: [MacNeil & B., 2024]

Qk(x) = min q
>
k y

y 2 Yk ✓ {0, 1}ny , I(Lk
j (x)) = 1 =) y 2 Ylogical,k

j 8j = 1, . . . ,m

and

Qk(x) = min (q1k + q
2
k)

>
y

y 2 Yk ✓ {0, 1}ny , I(Lk
j (x)) = 1 =) q

1
k,�(j)=0 8j = 1, . . . ,m
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Binary Recourse DD incorporation

New BDD-based Approaches

Model 1:
I Generalizes the existing BDD-based decomposition approach
I Arc capacities in the BDDs are parametrized by x

Model 2:
I Novel; might be more natural for certain applications
I Arc costs in the BDDs are parametrized by x

(They are extended to a risk-averse (CVaR) setting as well)
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Binary Recourse DD incorporation

Dominating Set Instances
I Up to 50 vertices, varying edge densities, 850 scenarios
I Solution time limit = 1 hour (i.e., after BDD generation)
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General 2SP Neur2SP

Neur2SP [Dumouchelle, Patel, Khalil, & B., 2022]

General General
observe

scenario k

Qk(x)

The idea: Learn to get a monolithic formulation

I Learn Qk(x) or even better Ek[Qk(x)] via supervised learning
I MIPify the obtained neural network (NN)
I Solve the combined surrogate model

General MIP via NN
observe

scenario k

Qk(x)

M. Bodur Methodological Advances in 2SP 44 / 46



General 2SP Neur2SP

Scenario Reduction [Keutchayan, Ortmann, & Rei, 2021]

I Distribution-driven
• Cluster scenario vectors: {⇠1, ⇠2, . . . , ⇠K}
• For each cluster, pick a representative

I Problem-driven
• Solve single-scenario problems

x
⇤
k 2 argmin

x2X
c
>
x+Q(x, ⇠k)

• Evaluate obtained first-stage solutions under
the other individual scenarios:

Vk,k0 := c
>
x
⇤
k +Q(x⇤k, ⇠k0)

• Solve a clustering MIP model, minimizing a
discrepancy measure based on the V values
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Conclusions

Summary
I Benders-like decomposition techniques are effective
I Can be strengthened/leveraged further by incorporating:

• Some IP technology, e.g.:
⇤ Integrality-based cuts
⇤ Logic-based cuts

• New tools, e.g.:
⇤ Decision diagrams
⇤ Machine learning

I An introduction to two-stage stochastic mixed-integer programming
[Küçükyavuz & Sen, 2017]

I Stochastic mixed-integer programming: A survey
[Romeijnders, Zhang & Sen, 2025]

I A review on the performance of linear and mixed integer two-stage
stochastic programming software
[Torres, Li, Apap & Grossmann, 2022]
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