Methodological Advances in
Two-stage Stochastic Programming

The only
certainty is that
nothing is

certain.
Itis precisely the
There is nothing uncertainty of
certain, bu.t the this world that
uncertain. makes life worth
living.

Uncertainty is an
uncomfortable
position. But
certainty is an
absurd one.
The worst is not

always certain

but it's very
likely.

Mistrust is the
mother of
certainty.

To believe in

certainty, we
must begin by
doubting.
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University of Edinburgh
School of Mathematics
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Two-Stage Stochastic Programs

Optimization Under Uncertainty

“The only certainty is that nothing is certain.”

» Making decisions under uncertainty

» Integer/discrete decisions

= Stochastic programming
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Two-Stage Stochastic Programs

Two-Stage Stochastic Programs with Recourse

» There are uncertainties in some parameters
(they are modeled as random variables)

» There are two decision stages

15t stage observe 2nd stage
decisions realizations decisions

» Objective: min (15! stage cost) + (Expected 2" stage cost)

» They have very wide range of applications

or
M. Bodur Methodological Advances in 2SP 3/46



Two-Stage Stochastic Programs

Sequential Decision-making Under Uncertainty

Uncertainty Uncertainty Uncertainty

Decisions
at
stage ¢

Decisions
at
stage t — 1

Decisions
at
stage 2

Decisions
at
stage 1

» Uncertainty is gradually observed
» Decisions are dynamically adapted

Can be approximated via two-stage models
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Two-Stage Stochastic Programs

General Two-Stage Stochastic Program

min ¢’z + E,[Q(z, )]

stxe X
Example recourse/value function:
min q(w)Ty
Qz,w) = !
st T(w)z + W(w)y > h(w)
y=>0

Challenges:
» Difficult to evaluate the expected value
= Use sample average approximation (SAA)
» SAA problem — Deterministic, but still difficult to solve
Assumption: Finitely many scenarios (K with K = |K|)
Assumption: Relatively complete recourse

or
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Two-Stage Stochastic Programs

Extensive Form

A (very) large-scale (e.g., mixed-integer) program.

min ¢’z + Z pkq,;ryk

ke
st. Tpx + Wiy > hee VEeK
re kX
yr >0 Vk e K

= First classical approach: Try our favourite solver!
(Be prepared for some disappointment)
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Two-Stage Stochastic Programs

Extensive form does not scale well with K

Call center staffing and scheduling instances: [B. & Luedtke, 2016]
(I =5, J=5,T=234, S =333, Time Limit = 1 hour)
1835 integer variables + 30K continuous variables

K | Gap(%) Nodes

100 2.8 1840

500 10.6 28

1000 16.6 0

1500 28.9 0

2000 32.8 0

» Usually solved via decomposition

» This talk: Primal approach
(There are also dual approaches)

or
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Continuous Recourse

(Recall: Finitely many scenarios, k € K)

Qr(x)

observe
reX ; LP
scenario k

» Benders decomposition
» Dual decomposition

OIN
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Continuous Recourse Benders Decomposition

Exploit the structure!

> Fix the first-stage variables = the rest decomposes by scenario

min c¢'x + PlfJI?h + pZ(I;yZ + -+ qu;;yK
s.t. Tix + Win >
Tox +  Waoys > hy
Tkx + Wkyxk > hk
rEX y1 >0 y2 >0 yx >0

Key ldea

Benders Decomposition: Characterize the optimal value of
scenario LPs as a function of first-stage variables z, i.e., Qx(z)

min{c' z + Zkak(ﬂs) cx € X}
kEK
Key Observation: Qx(-) is a piecewise-linear convex function
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Continuous Recourse Benders Decomposition

Benders Decomposition (L-shaped Method)

(MP) : I%nxn ¢z + me]k
kel

st.xe X

Benders Cuts for n;, > Qi (z)| ne > &7 (hy — Thx)

neRE

Vk e K

(SP)* : Qu(#) = min o] yy
st Wiy > hy — Ti2 (ﬂ‘)
yr € R

» Subproblem decomposes by scenario — LPs

Single-cut version: Zpkr]k > peQu()
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Continuous Recourse Benders Decomposition

Some Strengthening ldeas

Qr(x)

rv
reX CZ"xR™ obse.e LP
scenario k

Benders decomposition:
» Fast solution of LP subproblems :)
» Potentially weak bounds :(

Strengthen Benders with first-stage integrality-based cuts

» Add MIR cuts to MP
» Also add cuts to SPs
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Continuous Recourse MIR Strengthening

The basic mixed integer rounding inequality

S
7

b
2\ F=b—1[b] >0

n > f([b] — x) is valid for H
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o I
1 2 b 3 ~<_4
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Mixed integer rounding (MIR)

Exact form of Benders cuts
H:={(nx) Ry xZL 10y > d} - Zd%wi, n>di— Zd?l‘j}
i€l 1€l
MIR Cut [B. & Lueditke, 2016]

For any constant g > 0 with fo > 0,

fo («5((1?); do)] _ 3 min{ fo[B(d; — di)], fi t folB(di —di)|} + Bdi _

n>do+

7
1€ET
is valid for H where

fj' = 3((](31 - d(‘)) - U(dﬁ - dlIJ)J
fi:=p(di —d}) — |B(d? —d})|, Vi eT.

NIVE
8.
\ &5

&
G@‘\c
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Applying MIR

How we obtain MIR inequalities:

» Keep a pool of previously found Benders cuts

» Pair the current Benders cut with each previously found Benders
cut and apply MIR

Can apply MIR in two different places:

1. Scenario level
2. Aggregated level

or
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Continuous Recourse MIR Strengthening

Benders single cut generation

(MP)

- = = 2
k=1 k=2 k=K =
- e &)
h - \\ // P - @
e \ S [}
~.agg rqg atg aII/ °
"“\.‘. \\ ;,"/_f“ é)
————— Final Inequality
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Continuous Recourse MIR Strengthening

Cut generation using MIR

~ \ / ///
//
\ aggr\egate aII /
\‘ \ / Vs
\,\‘,/
aggregated
MIR

Final Inequality
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Call Center Staffing and Scheduling Instances

Solution Time
=& =Extensive =®=Pyre Benders = =Benders+MIR
4000

3500 - o cofie o - - on coffie oo oo coffie o> o i}

__3000 ,’

$ 2500 # A

£ 2000 ,’ 77 # variables in Extensive Form:

g 1500 7 g 534 + 42 - (# scenarios)
£ 1000 ’ S

500 Y T—
0 .= - -k ‘—
100 250 500 1000 1500 2000 5000
# scenarios
Optimality Gap
—&—Extensive  —@—Pure Benders  =#=Benders+MIR
30 »
25 /
_.20 A d
3 / verage # nodes
S P in Benders+MIR = 750
© 10
o i
100 250 500 1000 1500 2000 5000
# scenarios
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Two Options for Using Integrality-based Cuts

Strengthen Benders decomposition algorithm by:

» Project-and-cut: Add cuts to the master problem

» Cut-and-project: Add cuts to the subproblems

or
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Continuous Recourse Strengthening Subproblems

Project-and-cut

(MP) :min ¢'z + Y prm

n,z [7)]
kek [£
st.xe X (j
Benders cuts o)
e[| 8
Cn+Dx>g Sl \& =
©
neRE 0
©
Q
N

(SP)* : Qu(2) == n;}n Qi
st Wiyr > hy — Ti
Y € R
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Continuous Recourse Strengthening Subproblems

Cut-and-project
(MP) : min ¢' 2 + Z DENk

n,x

kel
)
stzelX 5
(@)
Benders cuts »
" (O]
n € RE e
()
m

(SP)* : Qu(2) := H?}in ar Vi (SP)*. ke K
s.t. Wiyr > hy — Tia -%
= (@) —
Cryr > gr — Di o =
r; & S
Yk € R+ _8 —
N

Add integrality-based cuts to (SP)*,
even though itis an LP

Separate cuts
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Continuous Recourse Strengthening Subproblems

Capacitated Facility Location Instances

» K = 500, Time limit = 4 hours

Avg Time (# unsolved)

CAP # EXT BEN MP SP
101-104 1171 - (4) -(@4) 149
111-114  10787(3) - (4) -(4) 957
121-124  10935(3) - (4) -(4)  4738(1)
131-134 9512(3) - (4) -(4) 1527

Mean Time 6020 - - 1008
Avg Opt Gap 1.64% 14.87% 15.53% 0.02%

.. Cut-and-project has far more impact

» App on last-mile delivery with crowd-shipping and mobile depots:
Also for the risk-averse (CVaR) case [Mousavi, B., & Roorda, 2022]
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Continuous Recourse Strengthening Subproblems

Network Interdiction Instances

> K = 456, Time limit = 4 hours

Budget EXT BEN SP MP MP+SP
30 - (5) 639 442 183 415
40 - (5) 7915(3) 2253 784 830
50 - (5) 8626(3) 2328 512 867
60 -(5) 10599(4)  2425(1) 906 1121
70 - (5) - (5)  4435(1) 1402 1389
80 - (5) - (5) 10096(4) 1938 1579
90 - (5) - (5) 13283(4) 4794 4050
Mean Time - 7536 3188 980 1169
AvgOptGap 25.7% 2.6% 0.4% - -

.. Project-and-cut is very effective
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Aggregation Cuts

Qr(z)

observe
reX - LP
scenario k

Add Benders cuts to represent | np > Qk(x)

Aggregate second-stage constraints — change of variables: x to g

Q7 (9)
Agg-LP

TEX observe
= Alz) scenario k

First add Benders cuts to represent | n, > Qfggg (B)
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Continuous Recourse Aggregation Cuts

Telecommunications Application

Stochastic RWA and Lightpath Rerouting [Daryalal & B., 2022]

(s,d) observe (s,d)

Lw

Lw

future

Which wavelinks are used Which wavelinks are used
to serve existing requests to serve future requests

Substitute
Z yéi’vd) <1- Z méswd) Yw e W, L e L
(s,d)eSD? (s,d)eSD?

via aggregation over wavelengths, with

SN s <(wl-n) veec

weW (s,d)eSD?
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Continuous Recourse Aggregatio

Optical Network Instances

Time limit = 10 minustes

K EXTENSIVE BENDERS-z BENDERS-z 3
time (s) gap (%) time (s) gap (%) #ax—cuts time (s) gap (%) # B —cuts #ax—cuts
10 200 0 187 3 1124 17 0 8 15
20 TL NA 465 2 1370 42 0 19 61
30 TL NA 536 3 1538 157 0 31 204
40 TL NA TL 3 1785 164 0 34 203
50 TL NA TL 3 1980 206 0 58 209
100 TL NA TL 3 2164 305 0 99 400
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Binary First Stage Integer L-shaped

Integer L—shaped Method [Laporte & Louveaux, 1993]
Qr(2)
Binary x obser've Any Form
scenario k

» MP provides a candidate: (Z,17)
> (SP)* evaluates Q ()

» Integer L-shaped cut:
=3 =n > Qk(?)
T#3=n>Qr (e, redundant)

me > Qr(E) + (Qr(2) — QEB)< d@wi-1)- ) $z>

» Cuts might be strengthened using problem-specific structure

or
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Binary First Stage LBBD

Logic-based Benders Decomposition

Qr(z)
Any Form obser've Any Form
scenario k
» LBBD cuts from the inference dual [Hooker & Ottosson, 2003]

» Very successful applications in IP
» Few applications in SP

or
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Distributed Operating Room Scheduling

15t stage observe 2" stage
Assign patients to suraerv durations Cancel patients if
(hospital, room, day) gery there is overtime

Objective: min (Operational cost) + (Expected cancellation cost)

Qder (:i) = leil’l Z C;ancel(ifhdp'r - Zﬁdpr)

pEP
St Zhapr < Bhapr peEP

Z Tkzhdp'r < Bha

peP

ZFape € {0,1} peEP

LBBD cut: | gy = Qhar (@) = - ¢ (1 = @nayr)

PEPhar

where P, = {p € Plnapr = 1}
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Binary Recourse DD incorporation

Convexification via Binary Decision Diagrams

Qk(z)
Binary z obser've Binary
scenario k

» Represent the second-stage problem via BDDs

Qr(v)
; observe -
Binary x - LP via BDD
scenario k

= amenable to Benders decomposition

or
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Binary Recourse DD incorporation

Knapsack BDD Example

max 4x1 + 3 + 3x3 + 814
xr

St 2x1+29o+3x3+324 <5
z e {0,1}*

Z1

2

ST fam Y fa=0VieN\{nt}

als(a)=1 ald(a)=1

Z fa:_l

ald(a)=t
fa=>0 Va e A

3

T4
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BDD-based Approach

[Lozano & Smith, 2018]

» Assume special structure: Each
recourse constraint is impacted by at
most one first-stage binary variable

» Transform recourse problem to a

capacitated shortest path problem

> Derive | classical Benders cuts |

(can be easily strengthened)

Reformulated BDD
Subproblems (LPs)

M. Bodur
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Binary Recourse DD incorporation

The Transformed BDD Subproblem

M. Bodur

min Z C;ance'(i-hdpr — Zilidp'r‘) min Z gsfa
pEP ac Ak
st. > Ty < Bha st. > fa=1
peEP als(a)=r
Zhapr < napr - D ET S fam S fa=0 e N ()
Zflidpr € {0,1} peP als(a)=i ald(a)=i
a — -1
— A knapsack problem ad(;)—t /
fa < '?'}7111)7' a <€ V—H/'
fa=0 ae A
— A shortest path problem
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Binary Recourse DD incorporation

Further Leveraging Binary Decision Diagrams

» Previously: [Lozano & Smith, 2018]

Qu(z) = min ¢y

styeV C{0,1}™, |aB =0 = yeY°ratr vi—1 . nk

» More recently: [MacNeil & B., 2024]

Qr(x) = min q,;ry

y € Ve C{O, 1}, |I(LE(2)) =1 ==y € Y;°9 =M Vji=1,....m

and

Qr(z) =min| (¢ + 1) "y

y € Ve € {0, 13™, [ I(LE(2)) =1 = q; Vi=1,....,m

4)=0
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New BDD-based Approaches

Model 1:
» Generalizes the existing BDD-based decomposition approach
» Arc capacities in the BDDs are parametrized by =

Model 2:
» Novel; might be more natural for certain applications
» Arc costs in the BDDs are parametrized by «

(They are extended to a risk-averse (CVaR) setting as well)
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Binary Recourse DD incorporation

Dominating Set Instances

» Up to 50 vertices, varying edge densities, 850 scenarios
» Solution time limit = 1 hour (i.e., after BDD generation)

200

Integer L-shaped
Model 1
——— Model 2

Number of instances solved
- - - -
u ~ o N w ~
o w o % (=] w

N
u

°
T10t 10° 10t 102 103
Time (seconds)
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Neur2SP

Qr(z)
observe
General : General
scenario k

The idea: Learn to get a monolithic formulation

» Learn Qx(x) or even better E[Qx(x)] via supervised learning
» MIPify the obtained neural network (NN)
» Solve the combined surrogate model

Qr ()
observe -
General - MIP via NN
scenario k
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General 2SP Neur2SP

Scenario Reduction [Keutchayan, Ortmann, & Rei, 2021]
» Distribution-driven . &
« Cluster scenario vectors: {1, &, ..., ¢k} ", ] .
« For each cluster, pick a representative i .
» Problem-driven .

« Solve single-scenario problems

xj, € argmin 'z 4+ Qx, &)
re &
« Evaluate obtained first-stage solutions under

the other individual scenarios: & &
View = ¢z} + Q(x}, &)

« Solve a clustering MIP model, minimizing a
discrepancy measure based on the V values BT R

&
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Conclusions

Summary

» Benders-like decomposition techniques are effective
» Can be strengthened/leveraged further by incorporating:

« Some IP technology, e.g.:
o Integrality-based cuts
o Logic-based cuts

« New tools, e.g.:
o Decision diagrams
o Machine learning

» An introduction to two-stage stochastic mixed-integer programming
[Kiglkyavuz & Sen, 2017]

» Stochastic mixed-integer programming: A survey
[Romeijnders, Zhang & Sen, 2025]

» A review on the performance of linear and mixed integer two-stage
stochastic programming software
[Torres, Li, Apap & Grossmann, 2022] By
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