

Methodological Advances in Two-stage Stochastic Programming

Merve Bodur

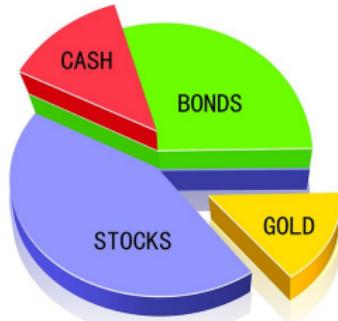
University of Edinburgh
School of Mathematics

Optimization Under Uncertainty

"The only certainty is that nothing is certain."

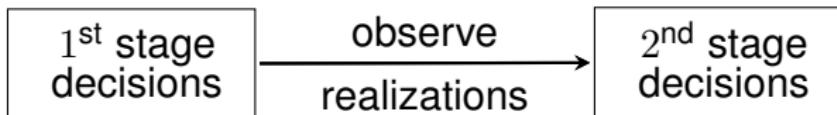
- ▶ Making decisions under uncertainty
- ▶ Integer/discrete decisions

⇒ **Stochastic programming**



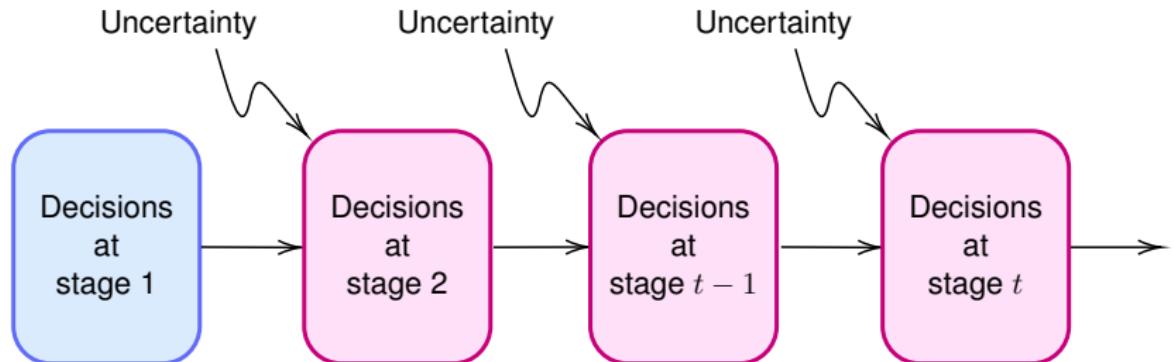
Two-Stage Stochastic Programs with Recourse

- ▶ There are uncertainties in some parameters (they are modeled as random variables)
- ▶ There are two decision stages



- ▶ Objective: $\min (1^{\text{st}} \text{ stage cost}) + (\text{Expected } 2^{\text{nd}} \text{ stage cost})$
- ▶ They have very wide range of applications

Sequential Decision-making Under Uncertainty



- ▶ Uncertainty is **gradually** observed
- ▶ Decisions are dynamically adapted

Can be approximated via **two-stage** models

General Two-Stage Stochastic Program

$$\begin{aligned}
 & \min_x c^\top x + \mathbb{E}_\omega [Q(x, \omega)] \\
 \text{s.t. } & x \in \mathcal{X}
 \end{aligned}$$

Example recourse/value function:

$$Q(x, \omega) =$$

$$\begin{aligned}
 & \min_y q(\omega)^\top y \\
 \text{s.t. } & T(\omega)x + W(\omega)y \geq h(\omega) \\
 & y \geq 0
 \end{aligned}$$

Challenges:

- ▶ Difficult to evaluate the expected value
⇒ Use **sample average approximation (SAA)**
- ▶ **SAA problem** → Deterministic, but still difficult to solve

Assumption: Finitely many scenarios (\mathcal{K} with $K = |\mathcal{K}|$)

Assumption: Relatively complete recourse

Extensive Form

A (very) large-scale (e.g., mixed-integer) program.

$$\min c^\top x + \sum_{k \in \mathcal{K}} p_k q_k^\top \textcolor{red}{y_k}$$

$$\text{s.t. } T_k x + W_k \textcolor{red}{y_k} \geq h_k \quad \forall k \in \mathcal{K}$$

$$x \in \mathcal{X}$$

$$\textcolor{red}{y_k} \geq 0 \quad \forall k \in \mathcal{K}$$

⇒ First classical approach: Try our favourite solver!
 (Be prepared for some disappointment)

Extensive form does not scale well with K

Call center staffing and scheduling instances:

[B. & Luedtke, 2016]

$(I = 5, J = 5, T = 34, S = 333, \text{Time Limit} = 1 \text{ hour})$

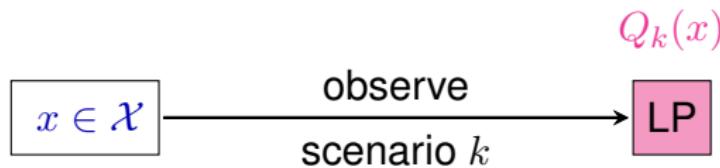
1835 integer variables + $30K$ continuous variables

K	Gap(%)	Nodes
100	2.8	1840
500	10.6	28
1000	16.6	0
1500	28.9	0
2000	32.8	0

- ▶ Usually solved via decomposition
- ▶ **This talk: Primal approach**
(There are also dual approaches)

Continuous Recourse

(Recall: Finitely many scenarios, $k \in \mathcal{K}$)



- ▶ **Benders decomposition**
- ▶ Dual decomposition

Exploit the structure!

- Fix the first-stage variables \Rightarrow the rest **decomposes by scenario**

$$\begin{array}{llllllllll}
 \min & c^\top x & + & p_1 q_1^\top y_1 & + & p_2 q_2^\top y_2 & + & \cdots & + & p_K q_K^\top y_K \\
 \text{s.t.} & T_1 x & + & W_1 y_1 & & & & & & \geq h_1 \\
 & T_2 x & & & + & W_2 y_2 & & & & \geq h_2 \\
 & \vdots & & & & & \ddots & & & \vdots \\
 & T_K x & & & & & & + & W_K y_K & \geq h_K \\
 x \in \mathcal{X} & y_1 \geq 0 & & y_2 \geq 0 & & & & & y_K \geq 0
 \end{array}$$

Key Idea

Benders Decomposition: Characterize the optimal value of scenario LPs as a function of first-stage variables x , i.e., $Q_k(x)$

$$\min \{c^\top x + \sum_{k \in \mathcal{K}} p_k Q_k(x) : x \in \mathcal{X}\}$$

Key Observation: $Q_k(\cdot)$ is a piecewise-linear convex function

Benders Decomposition (L-shaped Method)

$$(\text{MP}) : \min_{\eta, x} c^\top x + \sum_{k \in \mathcal{K}} p_k \eta_k$$

s.t. $x \in \mathcal{X}$

Benders Cuts for $\eta_k \geq Q_k(x)$ $\eta_k \geq \hat{\pi}^\top (h_k - T_k x)$ $\forall k \in \mathcal{K}$

$$\eta \in \mathbb{R}^K$$

$$(\text{SP})^k : Q_k(\hat{x}) = \min_{y_k} q_k^\top y_k$$

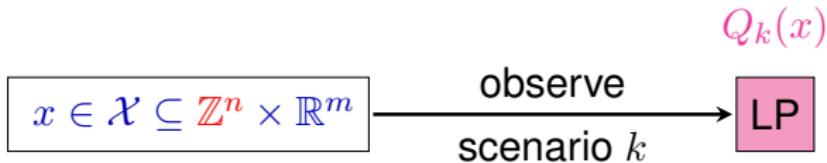
s.t. $W_k y_k \geq h_k - T_k \hat{x}$ $(\hat{\pi})$

$$y_k \in \mathbb{R}_+^J$$

- Subproblem decomposes by scenario \rightarrow LPs

Single-cut version: $\sum_{k \in \mathcal{K}} p_k \eta_k \geq \sum_{k \in \mathcal{K}} p_k Q_k(x)$

Some Strengthening Ideas



Benders decomposition:

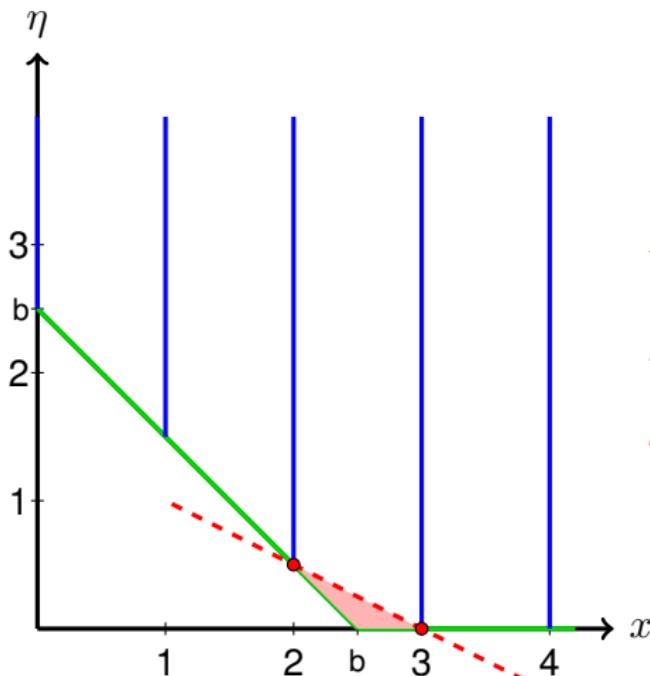
- ▶ Fast solution of LP subproblems :)
- ▶ Potentially weak bounds :(

Idea

Strengthen Benders with **first-stage integrality-based** cuts

- ▶ Add MIR cuts to MP [B. & Luedtke, 2016]
- ▶ Also add cuts to SPs [B., Dash, Günlük & Luedtke, 2016]

The basic mixed integer rounding inequality



$$H = \{(\eta, x) \in \mathbb{R}_+ \times \mathbb{Z}_+ \mid \eta + x \geq b\}$$

$$f = b - \lfloor b \rfloor > 0$$

$\eta \geq f(\lceil b \rceil - x)$ is valid for H

Mixed integer rounding (MIR)

Exact form of Benders cuts

$$H := \{(\eta, \mathbf{x}) \in \mathbb{R}_+ \times \mathbb{Z}_+^I : \eta \geq d_0^1 - \sum_{i \in \mathcal{I}} d_i^1 x_i, \eta \geq d_0^2 - \sum_{i \in \mathcal{I}} d_i^2 x_i\}$$

MIR Cut

[B. & Luedtke, 2016]

For any constant $\beta > 0$ with $\bar{f}_0 > 0$,

$$\eta \geq d_0^1 + \frac{\bar{f}_0 \lceil \beta(d_0^2 - d_0^1) \rceil}{\beta} - \sum_{i \in \mathcal{I}} \frac{\min\{\bar{f}_0 \lceil \beta(d_i^2 - d_i^1) \rceil, \bar{f}_i + \bar{f}_0 \lfloor \beta(d_i^2 - d_i^1) \rfloor\} + \beta d_i^1}{\beta} x_i$$

is valid for H where

$$\bar{f}_0 := \beta(d_0^2 - d_0^1) - \lfloor \beta(d_0^2 - d_0^1) \rfloor$$

$$\bar{f}_i := \beta(d_i^2 - d_i^1) - \lfloor \beta(d_i^2 - d_i^1) \rfloor, \forall i \in \mathcal{I}.$$

Applying MIR

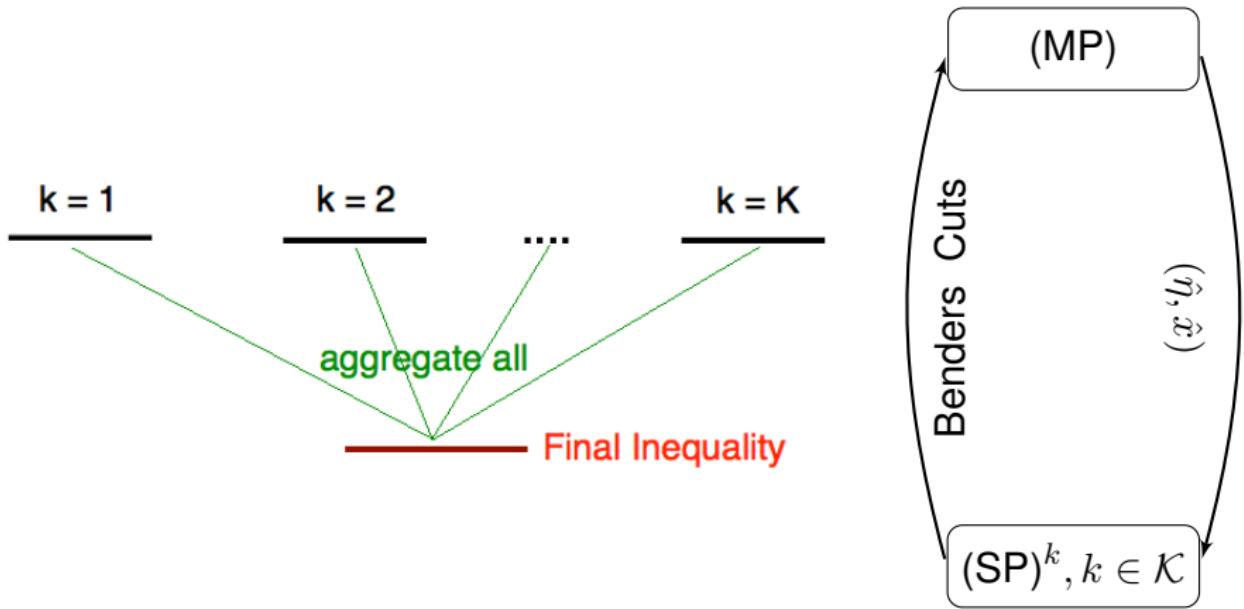
How we obtain MIR inequalities:

- ▶ Keep a pool of previously found Benders cuts
- ▶ Pair the **current Benders cut** with each **previously found Benders cut** and apply MIR

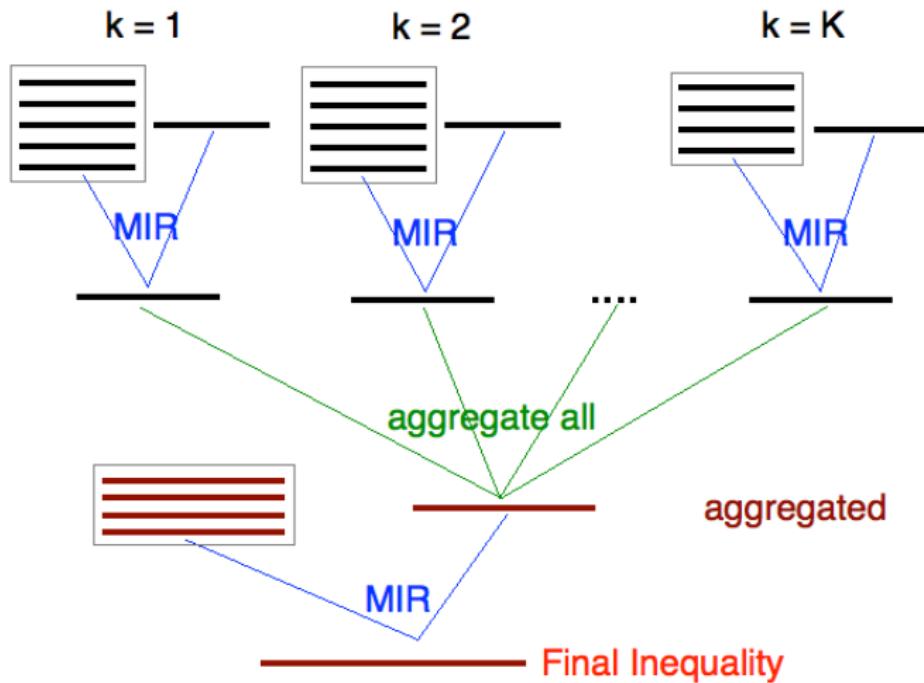
Can apply MIR in two different places:

1. Scenario level
2. Aggregated level

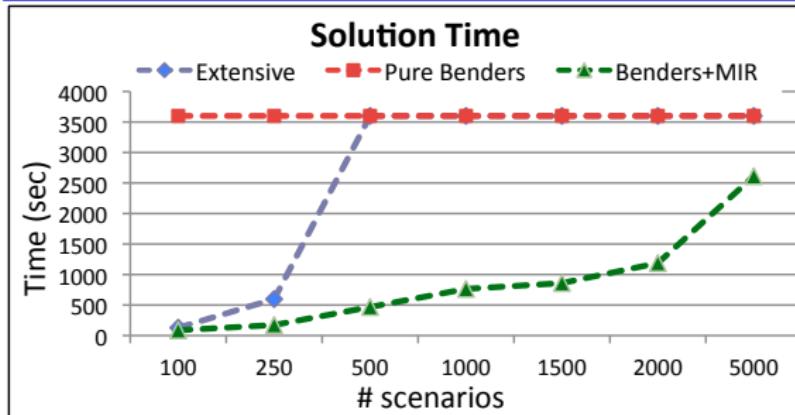
Benders single cut generation



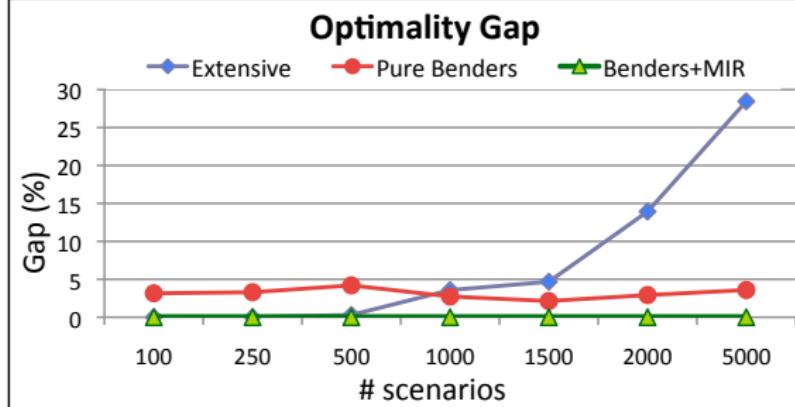
Cut generation using MIR



Call Center Staffing and Scheduling Instances



variables in Extensive Form:
 $534 + 42 \cdot (\# \text{ scenarios})$



Average # nodes
in Benders+MIR = 750

Two Options for Using Integrality-based Cuts

Strengthen Benders decomposition algorithm by:

- ▶ **Project-and-cut:** Add cuts to the master problem
- ▶ **Cut-and-project:** Add cuts to the subproblems

Project-and-cut

$$(\text{MP}) : \min_{\eta, x} c^\top x + \sum_{k \in \mathcal{K}} p_k \eta_k$$

s.t. $x \in \mathcal{X}$

Benders cuts

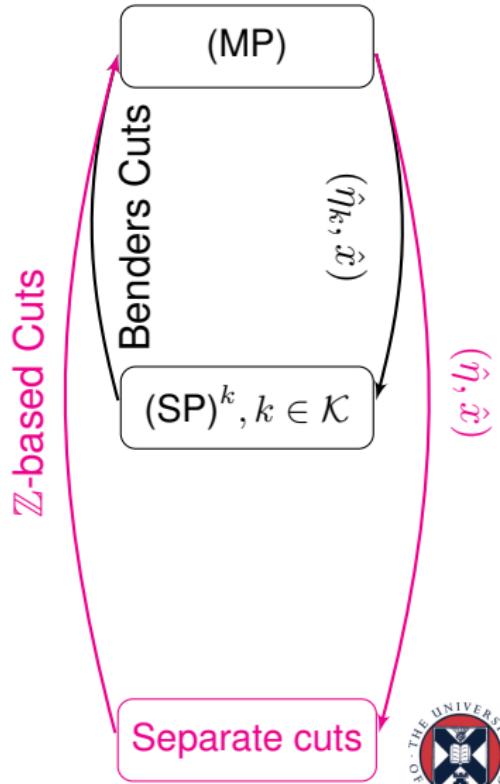
$$C\eta + Dx \geq g$$

$$\eta \in \mathbb{R}^K$$

$$(\text{SP})^k : Q_k(\hat{x}) := \min_{y_k} q_k^\top y_k$$

s.t. $W_k y_k \geq h_k - T_k \hat{x}$

$$y_k \in \mathbb{R}_+^J$$



Cut-and-project

$$(\text{MP}) : \min_{\eta, x} c^\top x + \sum_{k \in \mathcal{K}} p_k \eta_k$$

s.t. $x \in \mathcal{X}$

Benders cuts

$$\eta \in \mathbb{R}^K$$

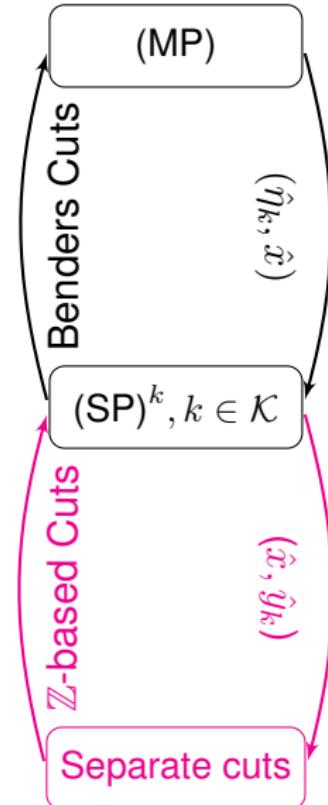
$$(\text{SP})^k : Q_k(\hat{x}) := \min_{y_k} q_k^\top y_k$$

s.t. $W_k y_k \geq h_k - T_k \hat{x}$

$$C_k y_k \geq g_k - D_k \hat{x}$$

$$y_k \in \mathbb{R}_+^J$$

Add **integrality-based** cuts to $(\text{SP})^k$,
even though it is an **LP**



Capacitated Facility Location Instances

- ▶ $K = 500$, Time limit = 4 hours

CAP #	Avg Time (# unsolved)			
	EXT	BEN	MP	SP
101-104	1171	- (4)	- (4)	149
111-114	10787(3)	- (4)	- (4)	957
121-124	10935(3)	- (4)	- (4)	4738(1)
131-134	9512(3)	- (4)	- (4)	1527
Mean Time	6020	-	-	1008
Avg Opt Gap	1.64%	14.87%	15.53%	0.02%

∴ Cut-and-project has far more impact

- ▶ App on last-mile delivery with crowd-shipping and mobile depots:
Also for the risk-averse (CVaR) case [Mousavi, B., & Roorda, 2022]

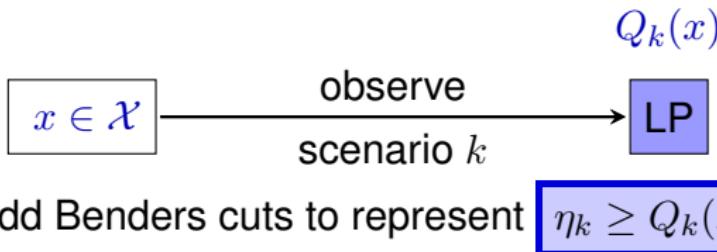
Network Interdiction Instances

- ▶ $K = 456$, Time limit = 4 hours

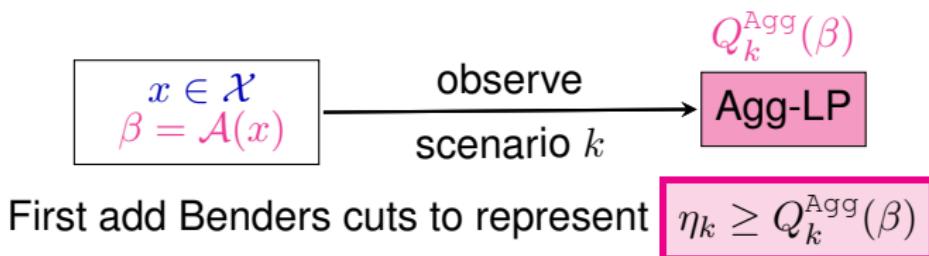
Budget	EXT	BEN	SP	MP	MP+SP
30	- (5)	639	442	183	415
40	- (5)	7915(3)	2253	784	830
50	- (5)	8626(3)	2328	512	867
60	- (5)	10599(4)	2425(1)	906	1121
70	- (5)	- (5)	4435(1)	1402	1389
80	- (5)	- (5)	10096(4)	1938	1579
90	- (5)	- (5)	13283(4)	4794	4050
Mean Time	-	7536	3188	980	1169
Avg Opt Gap	25.7%	2.6%	0.4%	-	-

∴ Project-and-cut is very effective

Aggregation Cuts



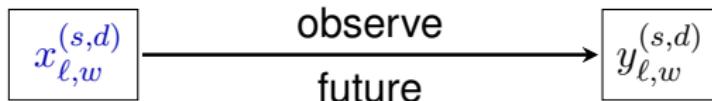
Aggregate second-stage constraints \rightarrow change of variables: x to β



Telecommunications Application

Stochastic RWA and Lightpath Rerouting

[Daryalal & B., 2022]



Which wavelinks are used
to serve existing requests

Which wavelinks are used
to serve future requests

Substitute

$$\sum_{(s,d) \in \mathcal{SD}_k^2} y_{\ell,w}^{(s,d)} \leq 1 - \sum_{(s,d) \in \mathcal{SD}^1} x_{\ell,w}^{(s,d)} \quad \forall w \in \mathcal{W}, \ell \in \mathcal{L}$$

via **aggregation over wavelengths**, with

$$\sum_{w \in \mathcal{W}} \sum_{(s,d) \in \mathcal{SD}_k^2} y_{\ell,w}^{(s,d)} \leq (|\mathcal{W}| - \beta_{\ell}) \quad \forall \ell \in \mathcal{L}$$

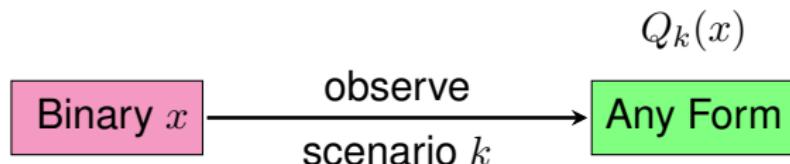
Optical Network Instances

Time limit = 10 minutes

K	EXTENSIVE		BENDERS- x			BENDERS- $x\beta$			
	time (s)	gap (%)	time (s)	gap (%)	# x -cuts	time (s)	gap (%)	# β -cuts	# x -cuts
10	200	0	187	3	1124	17	0	8	15
20	TL	NA	465	2	1370	42	0	19	61
30	TL	NA	536	3	1538	157	0	31	204
40	TL	NA	TL	3	1785	164	0	34	203
50	TL	NA	TL	3	1980	206	0	58	209
100	TL	NA	TL	3	2164	305	0	99	400

Integer L-shaped Method

[Laporte & Louveaux, 1993]



- ▶ MP provides a candidate: $(\hat{x}, \hat{\eta})$
- ▶ (SP)^k evaluates $Q_k(\hat{x})$
- ▶ Integer L-shaped cut:

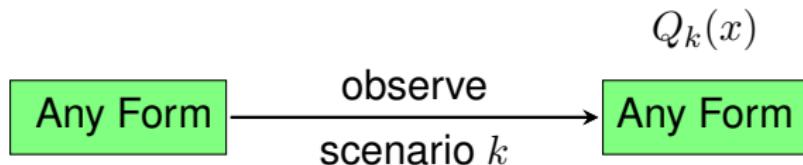
$$x = \hat{x} \Rightarrow \eta_k \geq Q_k(\hat{x})$$

$$x \neq \hat{x} \Rightarrow \eta_k \geq Q_k^{\text{LB}} \quad (\text{i.e., redundant})$$

$$\eta_k \geq Q_k(\hat{x}) + (Q_k(\hat{x}) - Q_k^{\text{LB}}) \left(\sum_{i:\hat{x}_i=1} (x_i - 1) - \sum_{i:\hat{x}_i=0} x_i \right)$$

- ▶ Cuts might be strengthened using problem-specific structure

Logic-based Benders Decomposition

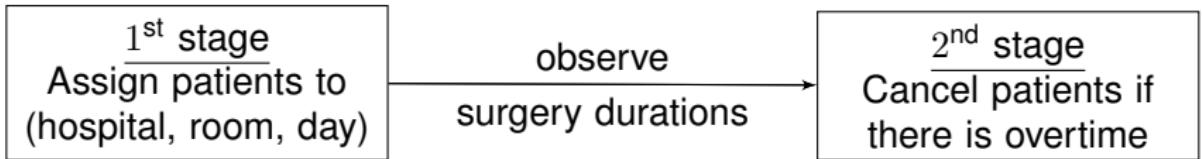


- ▶ LBBD cuts from the inference dual
- ▶ Very successful applications in IP
- ▶ Few applications in SP

[Hooker & Ottosson, 2003]

Distributed Operating Room Scheduling

[Guo et al., 2021]



Objective: $\min (\text{Operational cost}) + (\text{Expected cancellation cost})$

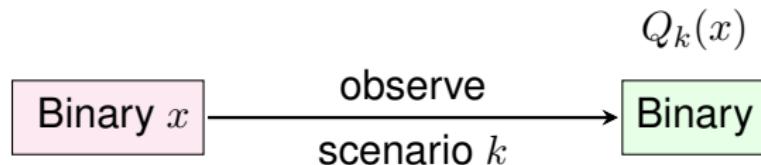
$$\begin{aligned}
 Q_{hdr}^k(\hat{x}) = \min_z \quad & \sum_{p \in \mathcal{P}} c_p^{\text{cancel}} (\hat{x}_{hdpr} - z_{hdpr}^k) \\
 \text{s.t.} \quad & z_{hdpr}^k \leq \hat{x}_{hdpr} \quad p \in \mathcal{P} \\
 & \sum_{p \in \mathcal{P}} T_p^k z_{hdpr}^k \leq B_{hd} \\
 & z_{hdpr}^k \in \{0, 1\} \quad p \in \mathcal{P}
 \end{aligned}$$

LBBD cut:

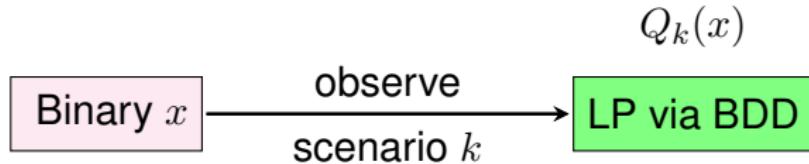
$$\eta_{hdr}^k \geq Q_{hdr}^k(\hat{x}) - \sum_{p \in \hat{\mathcal{P}}_{hdr}} c_p^{\text{cancel}} (1 - x_{hdpr})$$

where $\hat{\mathcal{P}}_{hdr} = \{p \in \mathcal{P} | \hat{x}_{hdpr} = 1\}$

Convexification via Binary Decision Diagrams



- ▶ Represent the second-stage problem via BDDs



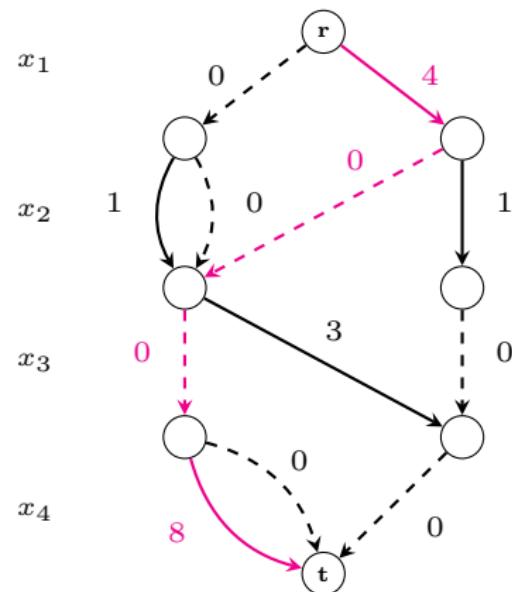
⇒ amenable to **Benders decomposition**

Knapsack BDD Example

$$\max_x 4x_1 + x_2 + 3x_3 + 8x_4$$

$$\text{s.t. } 2x_1 + x_2 + 3x_3 + 3x_4 \leq 5$$

$$x \in \{0, 1\}^4$$



$$\max_f \sum_{a \in \mathcal{A}} w_a f_a$$

$$\text{s.t. } \sum_{a|s(a)=r} f_a = 1$$

$$\sum_{a|s(a)=i} f_a - \sum_{a|d(a)=i} f_a = 0 \quad \forall i \in \mathcal{N} \setminus \{r, t\}$$

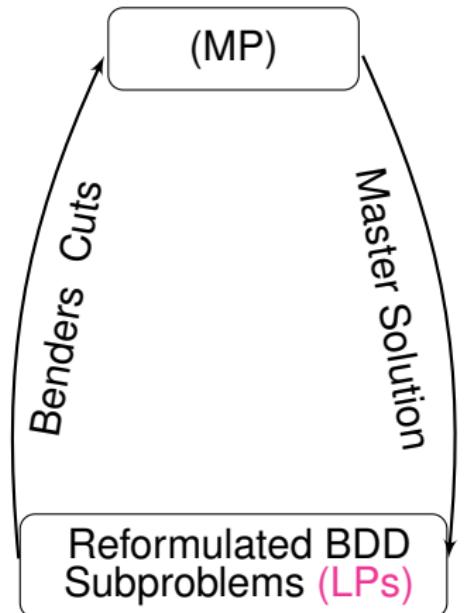
$$\sum_{a|d(a)=t} f_a = -1$$

$$f_a \geq 0 \quad \forall a \in \mathcal{A}$$

BDD-based Approach

[Lozano & Smith, 2018]

- ▶ **Assume special structure:** Each recourse constraint is impacted by at most **one** first-stage **binary** variable
- ▶ Transform recourse problem to a **capacitated shortest path problem**
- ▶ Derive **classical Benders cuts**
(can be easily strengthened)



The Transformed BDD Subproblem

$$\min \sum_{p \in \mathcal{P}} c_p^{\text{cancel}} (\hat{x}_{hdpr} - z_{hdpr}^k)$$

$$\text{s.t. } \sum_{p \in P} T_p^k z_{hdpr}^k \leq B_{hd}$$

$$\begin{aligned} z_{hdpr}^k &\leq \hat{x}_{hdpr} & p \in \mathcal{P} \\ z_{hdpr}^k &\in \{0, 1\} & p \in \mathcal{P} \end{aligned}$$

→ A **knapsack** problem

$$\min \sum_{a \in \mathcal{A}^k} g_a^k f_a$$

$$\text{s.t. } \sum_{a | s(a)=r} f_a = 1$$

$$\sum_{a | s(a)=i} f_a - \sum_{a | d(a)=i} f_a = 0 \quad i \in \mathcal{N}^k \setminus \{r, t\}$$

$$\sum_{a | d(a)=t} f_a = -1$$

$$f_a \leq \hat{x}_{hdpr} \quad a \in \mathcal{A}_1^{sp}$$

$$f_a \geq 0 \quad a \in \mathcal{A}^k$$

→ A **shortest path** problem

Further Leveraging Binary Decision Diagrams

- ▶ Previously:

[Lozano & Smith, 2018]

$$Q_k(x) = \min q_k^\top y$$

s.t. $y \in \mathcal{Y}_k \subseteq \{0, 1\}^{n_y}$, $x_i^B = 0 \implies y \in \mathcal{Y}_i^{\text{logical}, k} \quad \forall i = 1, \dots, n_x^B$

- ▶ More recently:

[MacNeil & B., 2024]

$$Q_k(x) = \min q_k^\top y$$

$y \in \mathcal{Y}_k \subseteq \{0, 1\}^{n_y}$, $\mathbb{I}(L_j^k(x)) = 1 \implies y \in \mathcal{Y}_j^{\text{logical}, k} \quad \forall j = 1, \dots, m$

and

$$Q_k(x) = \min (q_k^1 + q_k^2)^\top y$$

$y \in \mathcal{Y}_k \subseteq \{0, 1\}^{n_y}$, $\mathbb{I}(L_j^k(x)) = 1 \implies q_{k, \sigma(j)=0}^1 \quad \forall j = 1, \dots, m$

New BDD-based Approaches

Model 1:

- ▶ Generalizes the existing BDD-based decomposition approach
- ▶ **Arc capacities** in the BDDs are parametrized by x

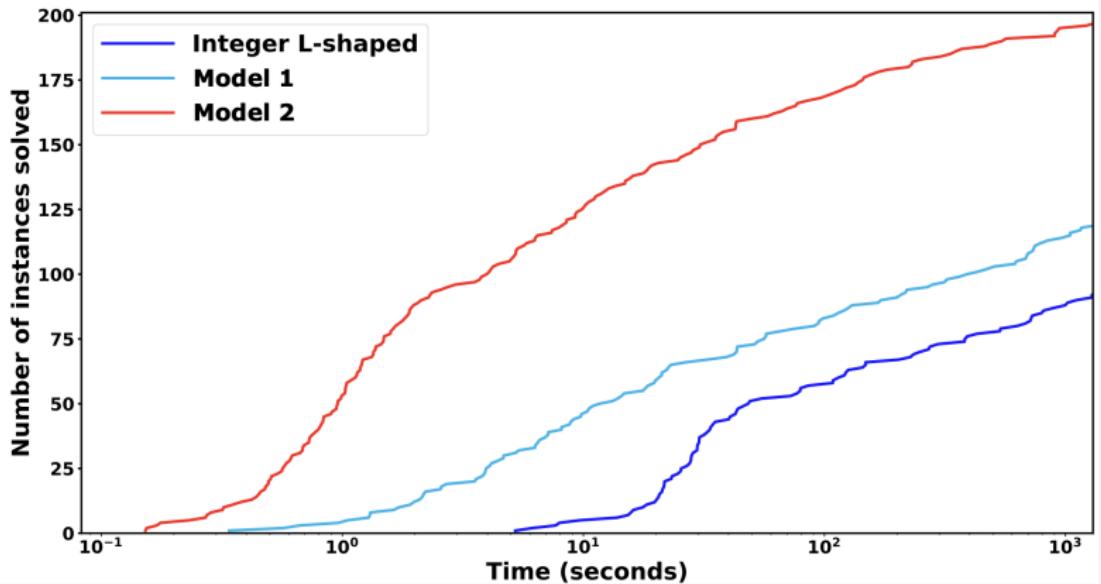
Model 2:

- ▶ Novel; might be more natural for certain applications
- ▶ **Arc costs** in the BDDs are parametrized by x

(They are extended to a risk-averse (CVaR) setting as well)

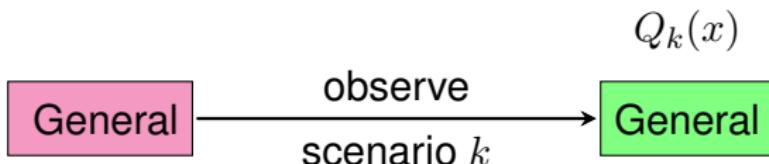
Dominating Set Instances

- ▶ Up to 50 vertices, varying edge densities, 850 scenarios
- ▶ Solution time limit = 1 hour (i.e., after BDD generation)



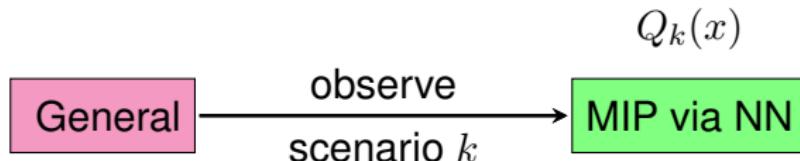
Neur2SP

[Dumouchelle, Patel, Khalil, & B., 2022]



The idea: Learn to get a monolithic formulation

- ▶ Learn $Q_k(x)$ or even better $\mathbb{E}_k[Q_k(x)]$ via supervised learning
- ▶ MIPify the obtained neural network (NN)
- ▶ Solve the combined surrogate model



Scenario Reduction

[Keutschayan, Ortmann, & Rei, 2021]

► Distribution-driven

- Cluster scenario vectors: $\{\xi_1, \xi_2, \dots, \xi_K\}$
- For each cluster, pick a representative

► Problem-driven

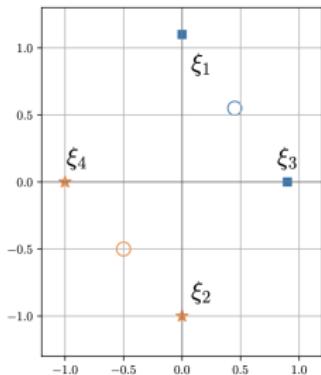
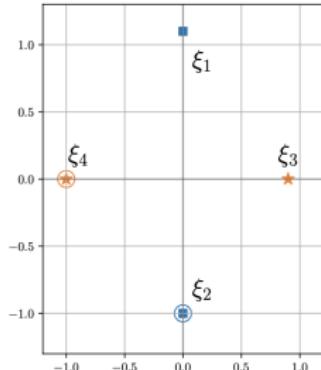
- Solve single-scenario problems

$$x_k^* \in \arg \min_{x \in \mathcal{X}} c^\top x + Q(x, \xi_k)$$

- Evaluate obtained first-stage solutions under the other individual scenarios:

$$V_{k,k'} := c^\top x_k^* + Q(x_k^*, \xi_{k'})$$

- Solve a clustering MIP model, minimizing a discrepancy measure based on the V values



Summary

- ▶ Benders-like decomposition techniques are effective
- ▶ Can be strengthened/leveraged further by incorporating:
 - Some IP technology, e.g.:
 - Integrality-based cuts
 - Logic-based cuts
 - New tools, e.g.:
 - Decision diagrams
 - Machine learning
- ▶ An introduction to two-stage stochastic mixed-integer programming
[Küçükyavuz & Sen, 2017]
- ▶ Stochastic mixed-integer programming: A survey
[Romeijn, Zhang & Sen, 2025]
- ▶ A review on the performance of linear and mixed integer two-stage stochastic programming software
[Torres, Li, Apap & Grossmann, 2022]

