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Why I work at
- Frontier AI company 

- Takes risks (technical and societal) more seriously than the others 

- Little drama



- Generative models: 
- Score Matching

- Variational Autoencoders (VAEs)

- Flow-based models

- Diffusion models 

- Optimization

- Adam optimizer

- Distributed training


- Misc

- Sparse NN training

- Nonlinear ICA theory

Research topics



• How AI is trained

• Including some of my own work


• Current capabilities

• Trends

Talk Contents



Artificial Intelligence (AI)

Deep Learning

Machine Learning (ML)

- Neural Networks 
- Scales to: 

- Very large models (trillions of parameters) 
- Very large datasets (trillions of datapoints)



Predict

Lots of Data: 

(input, output) 
examples

Train model

“Cat”

Machine Learning (ML)



“Cat”

Neural networks

Neural network

Input

Output:



Generative models: produces high-dimensional output

Neural network

Input

“Please create 
a picture of a 

cat”

Output:



How neural networks are optimized?  
Collect a large dataset of (input, output) examples.

Dataset

Input Output

Input Output

Input Output

Input Output

Input Output

…

LLMs: Predicting the next token 
 
token = 1-10 characters 
 



How neural networks are optimized? 
Hill climbing.

Random initial model parameters

Trillion-dimensional 
parameter space



Hill climbing: Stochastic Gradient Ascent.

Compute error

Get batch of  
(input, output) examples

Updated parameters

Repeat  
(until converged)

Make predictions with model: 
Given inputs, compute network outputs

Backpropagation: 
Get first derivative of error w.r.t. weights

Gradients

Optimizer  (e.g. Adam): 
Preconditions gradients

Random initial model parameters



Large language model training

“Pre-training” 
 
Maximizing log-likelihood 
 
Trillions of tokens

RL Fine-Tuning 
 
(e.g. Policy Gradient / GRPO) 
 
Virtual agentic environments

Pretrained 
Model Final 

Model



My own research



Variational Autoencoders (VAEs) 
 

Slides adopted from ICLR 2024 Test of Time Award talk. 
 

Key ideas were “invented” while at at UvA



• The conditionals are parameterized by neural networks 
 
 
 

Most models today are fully observed directed 
graphical models

x

y

Classification models Autoregressive models 
(including contemporary LLMs)

x0 x1 x2 x3

can scale to high dimensions



• Synthesis requires going through the dimensions one by one 
• OK for relatively low-res data (e.g. language) 
• Too slow for large-resolution data (e.g. images)

Limitations of autoregressive models

x0 x1 x2 x3 … xN



• x: observed data 
z: unobserved (latent) variables 
p(x,z): probabilistic model, often factorized 

• Advantages: 

• Sampling is fast

• Potentially interpretable z  
• controllable generation


• Can map discrete x-space to continuous z-space

• z has smooth manifold, gradients, etc. 

• Challenges:  
• p(x) is intractable

• p(z|x) is intractable

• Exact Maximum likelihood is intractable

• MCMC / Classical VI are too slow

Deep Latent-Variable Models

x

z p(z)

p(x|z)

Neural network



Variational Auto-Encoder (VAE)

- Fast inference, fast training, towards a proper bound

x

z1

Q: Inference model P: Generative model

Latent (explanatory) variables

Observed

p(z) p(x|z)

“Auto-Encoding Variational Bayes", Kingma and Welling, 2014



Reparameterization (inspired by dropout)

Original form Reparameterized form

BackpropBackprop?

[Kingma and Welling, 2013] [Rezende et al, 2014]



Hierarchical extensions

x

z3

z2

z1

x

z3

z2

z1

Hierarchical VAEs

x

z

x

z

y

Class-conditional VAEs

y

Kingma et al (2014, 2016), Burda et al. (2015), Sønderby et al (2016) 



• MCMC-enhanced posteriors


• Flow-based posteriors (e.g. IAF) 

More expressive posteriors



ML applications including:

• Semi-Supervised Learning [Kingma et al, 2014]

• Lossy compression [Balle et al., 2018; Minnen et al., 2018] 
• Lossless compression [Kingma et al, 2019] 
• Recommender systems [Liang et al, 2018]

• Nonlinear ICA 
• Latent Diffusion Models 
• … 

Scientific applications including

• Neuroscience [Pandarinath et al, 2019]

• Astronomy (e.g. galaxy modeling) [Ravanbakhsh et al, 2016]

• Genetics [Frazer et al, 2021]

• Healthcare [Rampášek et al, 2019] 
• Microbiology [Thadani et al, 2023]

• Molecular design / Protein design [Gómez-Bombarelli et al, 2018] 
• …

Applications of VAEs



• Open question: how to train competitive latent-variable LLMs?

• Potential benefits:

• continuous-valued latent thoughts, 

• fast parallel sampling, 

• get rid of tokenizer, 

• controllability, etc.


• Who’s up to the challenge?

Research opportunity: Latent-variable LLMs



Progress in image/video generation

2014 
 

VAEs

2020 
 

Diffusion models

2025 
 

Video+Audio



[Kingma et al, NeurIPS’21, ‘23]

Diffusion Models



Continuous-time diffusion models

[Song et al 2020, Kingma et al 2021]

z0 z1

Noise schedule:

x

Forward Process



Continuous-time diffusion models

"Score-Based Generative Modeling through Stochastic Differential Equations", Song et al, 2020

z0 z1

z0 z1

Forward Process

Reverse Process
Score function

x

x



Sampling

"Score-Based Generative Modeling through Stochastic Differential Equations", Song et al, 2020

z0 z1

Reverse SDE

x

Plug in learned score network



• Denoising score matching (DSM) objective with multiple noise scales:

SGD

"Generative modeling by estimating gradients of the data distribution", Song and Ermon, 2019

"A connection between score matching and denoising autoencoders", Vincent, 2011

Learning the score network



Score network: U-Net / U-ViT architecture

“Denoising diffusion probabilistic models”, Ho et al, 2020

“Progressive Distillation for Fast Sampling of Diffusion Models”, Salimans and Ho, 2022



• Reparameterize score network as noise prediction: 
 
 

• The loss then simplifies to: 
 
 
 
 
 

• Alternatively, can use:

• x-prediction

• v-prediction

Epsilon-prediction parameterization

“Denoising diffusion probabilistic models”, Ho et al, 2020

“Variational Diffusion Models”, Kingma et al, 2021

“Progressive Distillation for Fast Sampling of Diffusion Models”, Salimans and Ho, 2022



Variational Diffusion Models

z0 z1

z0 z1

x

x

Shows how continuous-time diffusion objectives relate to MLE / ELBO. 
[Kingma et al, 2021, 2023].



• SOTA likelihoods and lossless image compression

"Variational diffusion models", Kingma et al, 2021

Image density estimation benchmarks



• Under mild conditions (holds in many SOTA diffusion objectives), loss can be written as: 
 
 
 
 
 
 
where

• pw(t) is a distribution over noise levels, whose CDF is given by w(λt). 
• L(t;x) is the negative ELBO of the data

Diffusion objective = ELBO + data augmentation

"Understanding Diffusion Models as a Weighted Integral of ELBOs", Kingma and Gao, 2023



Maximum Likelihood: basis for all modern generative models

MLE still the basis of all modern generative models


Coincidence? Maybe not: 

- MLE = Compression: 

- Approximates finding shortest program that explains data

- Requires finding deep explanatory patterns 

- MLE is the only proper local scoring rule



Current state of the art



Language models

“A recipe for boerenkool, please.” Language 
Model

Boerenkool recipe

I'll help you with a recipe for Boerenkool, the traditional Dutch dish of mashed potatoes and 
kale. This hearty comfort food is especially popular during cold weather.
Here's a classic recipe:
Ingredients:
- 2.2 lbs (1 kg) kale, washed and finely chopped
- 2.2 lbs (1 kg) starchy potatoes, peeled and quartered
- 1/2 lb (250g) smoked sausage (rookworst)
- 1 bay leaf
- Salt and pepper to taste
- 1/2 cup (120ml) milk or cream
- 2-3 tablespoons butter
- Optional: diced bacon or smoked bacon bits
Instructions:
1. Place potatoes in a large pot with the bay leaf and cover with water. Add salt and bring to a 

boil.
2. Add the chopped kale on top of the potatoes. Cook together for about 20-25 minutes until 

both are tender.
3. Meanwhile, heat the smoked sausage according to package instructions.
4. Drain the potatoes and kale, remove bay leaf.
5. Add butter and warm milk to the pot.
6. Mash everything together until well combined but still slightly chunky.
7. Season with salt and pepper to taste.
Traditional serving suggestions:
- Slice the smoked sausage and serve on top
- Make a small well in the center for gravy (optional)
- Some Dutch families add vinegar or mustard on the side
- Crispy bacon bits can be mixed in or served on top
Tips:
- For authentic texture, don't over-mash; some texture is desirable
- The dish should be quite thick - if too wet, let it steam off for a few minutes
- Traditionally served hot with the sausage juices mixing into the mash
Would you like me to elaborate on any part of the recipe or provide some historical context 
about this traditional Dutch dish?



Language models

“Write a Python program that […]” Language 
Model

import numpy as np 

def mask_below_percentile(arr, percentile=25): 
    """ 
    Masks values below a given percentile in an array by replacing them with np.nan. 
     
    Parameters: 
    ----------- 
    arr : array-like 
        Input array of numerical values 
    percentile : float, optional (default=25) 
        The percentile threshold below which values will be masked 
         
    Returns: 
    -------- 
    masked_arr : numpy.ndarray 
        Array with values below the percentile threshold replaced with np.nan 
         
    Example: 
    -------- 
    >>> data = np.array([1, 2, 3, 4, 5, 6, 7, 8]) 
    >>> mask_below_percentile(data) 
    array([nan, nan, 3., 4., 5., 6., 7., 8.]) 
    """ 
    # Convert input to numpy array if it isn't already 
    arr = np.array(arr, dtype=float) 
     
    # Calculate the percentile threshold 
    threshold = np.percentile(arr, percentile) 
     
    # Create a copy of the array 
    masked_arr = arr.copy() 
     
    # Mask values below threshold 
    masked_arr[masked_arr <= threshold] = np.nan 
     
    return masked_arr



Audio generation models

“‘Electronic, Funky House, 
Electro, Electro house, Deep 
house, Funk, Vocalist, ‘Deep 

Learning’”

Audio 
model



Video generation models

“A lone cowboy rides his 
horse across an open plain at 

beautiful sunset, soft light, 
warm colors”

Video 
Model



Desired 
chemical 
properties

Model

Materials



ATGGTGAAAGTGGGC
ATCAACGGCTTTG…

Model

Alphafold (2018, 2020) 

Nobel prize 2024

3D protein structure

Prediction of protein structure

Sequence of nucleotides



Where did improvements in AI 
come from?



Where did improvements in AI come from?
1. Much better methods 

2. Much better hardware


3. Vast increases in scale



Better methods



Inpouring of talent helps methods improve rapidly

ICLR conference papers: 11,000 submissions in 2025, of which 3000 accepted



Better methods
Better optimizers: (Adam / Shampoo / Soap / Muon) 

Better architectures: 
- Transformers (used for text) 

Better math: 
- Diffusion models (used for images/audio/video)

 
Better RL 

Higher-quality datasets 

Etc.



The Exponential



Compute gets 1.6x cheaper per year



But how did we go from this…

My workhorse in 2013



To this?



100,000,000x in 14 years: much faster than Moore’s law!
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Discovery of log-linear “scalings laws” made improvements more predictable 

Kaplan et al, 2020



2024: Inference-time scaling



• “Plotting Progress in AI”, Douwe Kiela & Tristan Thrush & Kawin Ethayarajh & Amanpreet Singh, July 31, 2023

Progress in language model capabilities





Where is this all going?



?



Automation/augmentation of software development

“Please help me debug […]” LLM

Writing code + using tools

Tools

(Claude Code)



Automation/augmentation of other computer work

(Anthropic computer use)

“Please help me with […] using 
data form […]”

Vision-
language-

action 
Model Actions (keyboard and mouse)

Computer screen



General-purpose robots

(Physical Intelligence, “π0: Our First Generalist Policy“, Nov 2024)

“Fold my laundry”
Vision-

language-
action 
Model

Robot actions

Robot camera



General-purpose humanoid robots



Anthropic
- Claude Code: best model for agentic coding



Questions


