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Revenue Management under High-Variance Demand
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Traditional demand arrival models
use a Poisson process

Variability in number of customer
arrivals under a Poisson process is too
small to be practically useful

How to build revenue management
models with high-variance demand?
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Finding optimal control policies via
dynamic programming is intractable

Fluid approximations are
used to construct
approximate control policies

How to build revenue management How to build “right” fluid approximations
models with high-variance demand? under high-variance demand?
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Traditional Demand Model for Revenue Management

. Set of resources
. Set of products
. Capacity of resource i

o=z

f . Revenue of product j

aj . 1 iff product j uses resource i

T : Number of time periods in selling horizon

Ajt . Request probability for product j at time period t
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. Set of resources
. Set of products
. Capacity of resource i

o=z

f . Revenue of product j

aj 1 iff product j uses resource i

T : Number of time periods in selling horizon

Ajt . Request probability for product j at time period t
Xi . Remaining inventory of resource i

uj 1 iff we accept a request for product |
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Fluid Approximation under Traditional Demand Model

yjt . Probability of accepting a request for product j at time period t

FLD = max » Y fy;

teT jeN

st ZZaijtg ¢, VYieM
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as long as there is enough capacity to accept the request
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yjt . Probability of accepting a request for product j at time period t

FLD = max » Y fy;

teT jJeEN
st ZZaijtgq YieM
teT jeN
O0<yi: <Nt VjeN, teT
FLD > OPT =t =4tV
Approximate Policy

Accept a request for product j at time period t with probability ¥,/
as long as there is enough capacity to accept the request

1 2log C
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C = minjepm ¢, L= maxjen Ziel\/l dij



Traditional Demand Model for Revenue Management

Expected demand Standard deviation of demand
for product | for product |
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Traditional Demand Model for Revenue Management

Expected demand Standard deviation of demand
for product j for product |
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teT teT teT

Large demand volume and large demand variability cannot coexist in
traditional demand model!




Traditional Demand Model for Revenue Management

How to build network revenue management models that
accommodate large demand variability?

How to build fluid approximations with sound footing when
demand has large variability?

Do fluid approximations work because demand variability
vanishes with large demand volume?



Traditional Demand Model for Revenue Management

How to build network revenue management models that
accommodate large demand variability?

How to build fluid approximations with sound footing when
demand has large variability?

APX C—oo OPT C—oo
> s 1
FLD > OPT OPT 1 =

Do fluid approximations work because demand variability
vanishes with large demand volume?



High-variance demand

Calendar-aware demand



High-Variance Demand Model

D . (Random) number of customer arrivals with support 1, ..., T
Ajt . Probability that customer t requests product |
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Fluid Approximation under High-Variance Demand
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yjt . Probability of accepting a request for product j from customer t
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yjt . Probability of accepting a request for product j from customer t
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Fluid Approximation under High-Variance Demand

Single resource with capacity C, single product with revenue of 1,
all customers request the product
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Single resource with capacity C, single product with revenue of 1,
all customers request the product

OPT = E{min{D, C}}
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High-variance demand

Calendar-aware demand



Calendar-Aware Demand Model
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Calendar-Aware Demand Model

12 T 2 T 2 T
K . Set of stages
D% : (Random) number of customer arrivals in stage k
)\J’-‘t . Probability that customer t in stage k requests product j

VA (x) _UE”;?(XX){Z {fuJJr@k t+1( Zelau uj) 1—9k)vk+1(x—ze,au uj)}}
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Dk is sub-Gaussian with variance proxy ¢

gk — P{Dk2t+1\Dk2t}
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yjkt . Probability of accepting a request for product j from customer t in stage k
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selling horizon with K stages, demands in different stages are iid,
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Single resource with capacity C, single product with revenue 1,
selling horizon with K stages, demands in different stages are iid,
all customers request the product
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Calendar-aware and dependent demand
Pricing and assortment decisions
Stronger performance guarantees under calendar-aware demand

Revenue Management with Calendar-Aware and Dependent Demands:
Asymptotically Tight Fluid Approximations
Li, Rusmevichientong, Topaloglu



