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Statistical Learning

Learning problem: min E[L(h(X)

P
penalizes dissimilarity Y € R output
of h(X) and Y

hypothesis X € RY input
(predictor)

Classification Regression



Weapons of Math Destruction

Learning problem: qumyr{] EIL(h(X),Y)]
S

» X = web browsing history , Y = consumer behavior
» X = credit history, Y = creditworthiness
» X = crime history, Y = recidivism

= it .
2 > X =resume, Y = skills




Weapons of Math Destruction

Amazon ditched Al recruiting tool that
favored men for technical jobs

ECONOMICS
Specialists had been building computer programs since 2014 to

review résumés in an effort to automate the search process DiSSECting I‘aCia| biaS ill dan algorithm used tO manage
the health of populations
Ziad Obermeyer™-?*, Brian Powers3, Christine Vogeli*, Sendhil Mullainathan®*+

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional

help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
iliness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health

by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

@O Amazon's automated hiring tool was found to be inadequate after penalizing the résumés of female
candidates. Photograph: Brian Snyder/Reuters

The data on which the Al hiring Industry-wide approach affecting
algorithm was trained created a millions of patients exhibits

preference for male candidates.”) |  significant racial bias.?) |

1) Dastin, Reuters, 2018.
2) Obermayer et al., Science, 2019.



Sensitive Attributes

X contains a sensitive attribute A € {0, 1} such as:
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Fairness Through Unawareness

Idea: Remove A from X



Fairness Through Unawareness

Idea: Remove A from X

Problem:") Can use other features X, X», X5, ... to predict A

) Barocas, Hardt & Narayanan, fairmlbook.org, 2019.



Fairness Through Unawareness

Idea: Remove A from X

Problem:") Can use other features X, X», X5, ... to predict A
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) Barocas, Hardt & Narayanan, fairmlbook.org, 2019.



Fairness

Statistical parity:7)
h(X)|[A=0 ~ h(X)|A="1

1) Calders et al., ICDM, 2013.
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Fairness

Statistical parity:7)

h(X) L A

CDF of predictor:

1) Calders et al., ICDM, 2013.



Other Group Fairness Definitions

Statistical parity:"
h(X)|A=0 ~ h(X)|A="1

Equalized odds:?)
hX)|Y=y,A=0 ~ h(X)|Y=y,A=1 VyecR

Risk parity:3)
L(h(X),Y)|A=0 ~ L(h(X),Y)|A=1

) Dwork et al., ITCS, 2012.
2) Hardt et al., NeurlPS, 2016.
3) Donini et al., NeurlPS, 2018.



Conceptual Analysis of
Statistical Parity



Fair Statistical Learning

Fair learning problem:

min  E[L(h(X), Y)
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Fair Statistical Learning

Fair learning problem:

min  E[L(h(X), Y)

heH

T

SP fairness
<— PhX)<T1A=0)=PhX) <1 A=1)VreR
— reminiscent of chance constraint

— Intractable



|dealized Models

Assumptions:

> P 1S kKnown (sample size = o)

> H = L(R?,R) (all measurable hypotheses)
> h*is essentially unique



Automatic Salary Determination

Goal: Predict the skill levels of job candidates.

X1 = GPA
X, = age group
Y = skill level

(normalized to |0, 1))
(0: age > 40, 1: age < 40)
(normalized to |0, 1))
( 0, 1

S = work experience (normalized to [0, 1], unobserved) |
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Automatic Salary Determination

Goal: Predict the skill levels of job candidates.

X1 = GPA
X, = age group
Y = skill level

(normalized to |0, 1))
(0: age > 40, 1: age < 40)
(normalized to |0, 1))
( 0, 1

S = work experience (normalized to [0, 1], unobserved) |

X1,SNU([O,1]), XZNZ/{({071})7 y:X1'X2‘|‘S'(1_X2)

A = X5, = sensitive attribute
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Learning problem with square loss L(y,y) = (y — y)*
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Automatic Salary Determination

Learning problem with square loss L(y,y) = (y — y)*

Original learning problem: Fair learning problem:

in E — Y)? in E[(h(X) — Y)?

min  E[(h(X) — V)2 min  E[(h(X) — V)2
st. h(X) LA

—_— e

1
* _ 2 * 1 1 _ 1
— h(X)_{ X, itxo=1 o MeeX) =24 30X —3)
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Original learning problem: Fair learning problem:
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| st. h(X) LA |

X, = 1 SP 2 T2 2

A = X5 = 1 (junior candidate) : |

— P(X) =Y = h§p(X) =3 +3(Y~3)

L salary grows with skill level AT




Automatic Salary Determination

Original learning problem: Fair learning problem:
in E — Y)? in E[(h(X) — Y)?
min  E[(h(X) - V)?| min  E[(h(X) - V)?|

| st. h(X) LA |

— meg={ 2 BX=0 L hp=3+306-D)
X, = 1 SP 2 T 3 7
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— () =} — hgp() =5+ 306 - )



Automatic Salary Determination

Original learning problem: Fair learning problem:
. {: . 2 . 4: . 2
min  E[(h(X) - V)?| min  E[(h(X) - V)?|

st. h(X) LA

h* _ % if X =0 h* 1 1 X 1
= M= % ifx, =1 = hgp(X) = 3 +3(X1 = 3)
A = X, = 0 (senior candidate) : |

uniform salary random salary




Automatic Salary Determination

Original learning problem: Fair learning problem:
in E —Y)? in E[(h(X) — Y)?
min  E[(h(X) - V)?| min  E[(h(X) - V)?|

st. h(X) LA

1 |fX2:1 SP 2 2 2

A = X, = 0 (senior candidate) : |

random salary
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Optimality Implies Statistical Parity

min E[L(A(X), Y)]

heH

Theorem. Pyx L A = h*(X) LA

—> SP Is a necessary optimality condition!



Training with Biased Data

True learning problem: Biased learning problem:

min E[L(h(X), Yo)] min E{L(h(X), Ys)]




True learning problem:

min
heH

U[L(h(X), Yo)]

|

true target

Training with Biased Data

Biased learning problem:

min
heH

(no data available)

C[L(A(X), Y5)]

T

biased target
(data available)



The Geometry of Statistical Parity

Hypothesis space # = £(R?, R)
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The Geometry of Statistical Parity
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A
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The Geometry of Statistical Parity

Prediction loss = f(h) = E[L(h(X, Yj)]
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The Geometry of Statistical Parity

Biased prediction loss = f5(h) = E[L(h(X, Y5)]

Hypothesis space H
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The Geometry of Statistical Parity

—— Contours of = fy(h), Contours of = f5(h)

Hypothesis space H



The Geometry of Statistical Parity

Theorem: If Py |x L A and o is small, then h5,(0) is prefe-
rable to h*(d) w.r.t. the true objective fy(h) = E|[L(h(X, Yo)].




The Geometry of Statistical Parity

Theorem: If Py x L A and ¢ is small, then h5,(0) is prefe-
rable to h*(0) w.r.t. the true objective fo(h) = E[L(h(X, Yp)].




Unfairness Measures and
Integral Probability Metrics
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Relaxing Statistical Parity

Statistical parity at level ¢:

D (Pn(x)ja=0; Prixja=1) < €

Kolmogorov distance

CDF of predictor:




Integral Probability Metrics (IPMs)
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Integral Probability Metrics (IPMs)

Dy(Q1,Q2) = sup /R w(y) Qq(dy) — /R w(y) Qz2(dy)

weW

Examples:

IPM )

Kolmogorov distance {w:dre Rwith y(y) = £1,<;}
\Wasserstein distance {w: Lip(y) <1}

LP-distance (1 +1=1) {w: | <1}

Kernel distance {y: | @|m, <1}

Total variation distance  {y : ||@||z < 1}

-—_—




Relaxing Statistical Parity

Statistical parity at level ¢:

Dy (Phija=0, Prpojaz1) < €



Relaxing Statistical Parity

Statistical parity at level ¢:

Dy (Ph(X) A:OaIP)h(X)|A:1) < €

any |PM



Fair Statistical Learning

Fair learning problem:

min E[L(h(X), Y)] + o(Dw P40, Paa=r))




Fair Statistical Learning

Fair learning problem:

l:r;iqu LIL(h(X), V)] + p(Dw(Phx)a=0s Phix)ja=1))
S——————

|

unfairness penalty




Numerical Solution
of Fair Learning Problems
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Fair Statistical Learning

Fair learning problem:

min E[L(h(X), Y)] + o(Dw P40, Paa=r))
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Fair Statistical Learning

Fair learning problem:

min E[L(h(X), Y)] + o(Dw P40, Paa=r))

|

HZ{hgt@E@}

> all linear hypotheses
> all neural networks with a fixed architecture



Fair Statistical Learning

Fair learning problem:
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Fair Statistical Learning

Fair learning problem:

min E[L(he(X), V)] + P(Dw (Phy(x)a=0, Pro))a=1))

Data: (X, Y;,A)), i € N, i.i.d. samples

SGD: 9k+1 = Gk — V- gk(ek)



Fair Statistical Learning

Fair learning problem:

min E[L(he(X), V)] + P(Dw (Phy(x)a=0, Pro))a=1))

Data: (X, Y;,A)), i € N, i.i.d. samples

SGD: Gk_|_1 = 9k —V- gk(ek)

T

unbiased stochastic gradient
constructed from batch of N samples



Empirical Risk Minimization

A A

Data: (X, ,-,,2\,-), i€ N, i.i.d. samples

1 o
Y L(he(Xp),Y:) unbiased estimator for

I=1

L(A(X), V)]



Empirical Risk Minimization

A A

Data: (X, ,-,,2\,-), i€ N, i.i.d. samples

N
V) NE L(hg(Xi), Y;) unbiased estimator for E|L(h(X),Y)
j=1

® difficult to find unbiased estimator for unfairness penalty



Towards an Unbiased Estimator

Fair learning problem:

géig CIL(he(X), V)| + p(Dy(Phryx)14=0, Phyx14=1))
Qo Q1




Unfairness Penalty: Squared Kernel Distance

P(Dyw(Qo, Q1))



Unfairness Penalty: Squared Kernel Distance

D‘-P (QO) Q1 )2



Unfairness Penalty: Squared Kernel Distance

2
Dy(Qo,Q1)* = ( sup /R w(y) Qo(dy) — /R w(y) Q (dy))

W<t



Unfairness Penalty: Squared Kernel Distance

Theorem:!) Dy (Qq, Q1)? :/R RK(y,)/) Qo(dy) Qo(dy)
+/R RK(y,}/)Q1(dY)Q1(d}/)
2 K0, (@) ()

~—~ ————(—

admits unbiased
estimator!

1) Sriperumbudur et al., Electron. J. Stat., 2012.



Unfairness Penalty: Squared Kernel Distance

Theorem:!) Dy (Qq, Q1)? :/R RK(y,)/) Qo(dy) Qo(dy)
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2 K0, (@) ()

Data: Y?,..., Y% ~Qoiid., Y,..., Y ~Qqi.id.



Unfairness Penalty: Squared Kernel Distance

Theorem:!) Dy (Qq, Q1)? :/R RK(y,)/) Qo(dy) Qo(dy)
+/R RK(y,}/)Q1(dY)Q1(d}/)
2 K0, (@) ()

Data: Y?,..., Y% ~Qoiid., Y,..., Y ~Qqi.id.

Unbiased estimator for Dy(Qg, Q1)?:

N N
2. NN _1 > K(7,7) N1LLKY?,Y)
ac{0,1} l,j— i=1 j=1

I#]
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Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)

Batch: At least 2 samples from each class and N samples in total

Example: N=5

4, Ye) (X, Ya)



Random Batches

Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)

Batch: At least 2 samples from each class and N samples in total

Example: N=5

(5(27 S\/2)

@




Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)
Batch: At least 2 samples from each class and N samples in total

Example: N =5

‘ (XZ, Y2) . ‘




Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)

Batch: At least 2 samples from each class and N samples in total

Example: N=5

. (5(2,?2) . . .
&>

first 5 samples contain only
one sample from class 1

— estimator for unfairness penalty undefined!



Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)
Batch: At least 2 samples from each class and N samples in total

Example: N =5

complete batch with 6 samples
(4 from class 0, 2 from class 1)




Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)
Batch: At least 2 samples from each class and N samples in total

Example: N =5

complete batch with 6 samples
(4 from class 0, 2 from class 1)




Random Batches
Data: (X;,Y,,A), i€ N, i.i.d. samples (@: A =0, : A =1)

Batch: At least 2 samples from each class and N samples in total

Example: N =5
. (X27 Y2) . ‘ . X67 YG) (X77 Y7)
H/—
complete batch with 6 samples next batch

(4 from class 0, 2 from class 1)



Unbiased Estimators: Unfairness Penalty

Notation: » 7, C N b-th batch

T; = class a samples in 7, a € {0,1}



Unbiased Estimators: Unfairness Penalty

Notation: » 7, C N b-th batch

» 77 = class a samples in 7, a € {0,1}

Lemma: The following estimator of the unfairness penalty
IS unbiased for every batch b.

1 . .
| ae%;} G ,%,a'( I
Up(6) =

> > K(he(Xi), ho(X)))

O 1
|I |Z i€1) je1]

—_—




Unbiased Estimators: Unfairness Penalty

Notation: » 7, C N b-th batch

» 77 = class a samples in 7, a € {0,1}

Lemma: The following estimator of the unfairness penalty
IS unbiased for every batch b.

1 . .
| ae%;} G ,%,aK I
Up(6) =

> > K(he(Xi), ho(X)))

O 1
|I |Z i€1) je1]

—_—

Note: All index sets are random!



Unbiased Estimators: Unfairness Penalty

Notation: » 7, C N b-th batch

» 77 = class a samples in 7, a € {0,1}

Lemma: The following estimator of the unfairness penalty
IS unbiased for every batch b.

1 . .
| ae%;} G ,%,aK I
Up(6) =

> > K(he(Xi), ho(X)))

O 1
|I |Z i€1) je1]

—_—

— VeUb(O) IS an unbiased stochastic gradient



Unbiased Estimators: Prediction Loss

Empirical prediction loss:

12 Liha(%0). ¥)

i€y



Unbiased Estimators: Prediction Loss

Empirical prediction loss:

biased because 7, Is random!



Unbiased Estimators: Prediction Loss

Empirical prediction loss:

T 2 2 L), V)

ac{0,1}ieZ;



Unbiased Estimators: Prediction Loss

Empirical prediction loss:

A(|Zo|, |Z51) - L(he(X), Y))
36{201}4;4/_[)/

T

bias correction term

Definition: For Ne {N,N+1,...}andnec {2,... N— 2}, set

N N
AN, n) =1\_x - 2(N—1) T NsF)A(n=2) 1 N _ 1 T NSy A (n=N—2)




Unbiased Estimators: Prediction Loss

Empirical prediction loss:

A(|Zy], |Z51) - L(he (X)), Vi)
36%21}1621334/—[)/

T

bias correction term

Definition: For Ne {N,N+1,...}andnec {2,... N— 2}, set

N N
AN, n) =1\_x - 2(N—1) T NsF)A(n=2) 1 N _ 1 T NSy A (n=N—2)




Unbiased Estimators: Prediction Loss

Lemma: The following estimator of the prediction loss is
unbiased for every batch b.

Z > A(IZo], 1 Z5)) - L(he (X)), Vi)

aE{O 1}ieZy




Unbiased Estimators: Prediction Loss

Lemma: The following estimator of the prediction loss is
unbiased for every batch b.

Z > A(IZo], 1 Z5)) - L(he (X)), Vi)

aE{O 1}ieZy

—J

— veﬁb(e) is an unbiased stochastic gradient



SGD Convergence

Fair learning problem:

min E[L(hg(X), V)l + o(Dw(Phyx)1a=0: Prox1a=1)) ()




SGD Convergence

Fair learning problem:

min E[L(hg(X), V)l + o(Dw(Phyx)1a=0: Prox1a=1)) ()

Theorem: If Dy is a kernel distance and p(z) = Az* with A > 0, then

VoR,(0) + A - VoUy(0) is an unbiased gradient estimator for ().
S IEE——————




SGD Convergence

Fair learning problem:

min E[L(hg(X), V)l + o(Dw(Phyx)1a=0: Prox1a=1)) ()

Theorem: If Dy is a kernel distance and p(z) = Az? with A > 0, then

VoR,(0) + A - VoUy(0) is an unbiased gradient estimator for ().
R EEE————m—m—m—m—mmmm———.

—> SGD converges (in expectation) to a stationary point of (x)



Numerical Experiments



Regression

Synthetic data:

> Input: X ~ U(]0, 1]9 x {0,1})

> Sensitive attribute: A = Xjg

> Qutput: Y = max{s, X, ...,s: X}

Regression model:

> Square loss: L(Y, y) = (Y — y)?
> Predictor: 3-layer NN with 20 hidden nodes



out-of-sample risk

Batch size N = 4 '
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Batch size N = 50 '
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Regression

Batch size N = 4 | Batch size N = 50 |

1011 | 10! |

out-of-sample risk
'
out-of-sample risk

/

0 500 1000 1500 2090 2500 3000 3500 4000 0 500 1000 1500 20D0 2500 3000 3500 4000

# trainingjsamples # trainingjsamples

regime shift: regime shift:
new output new output



Regression

Batch size N = 4 | Batch size N = 50 |

1007 ) : : 101 - :
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Merits of Unbiased Gradient Estimators
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Classification

Drug dataset:")

> Input: personality type, level of education, age etc.
> Sensitive attribute: race

> Qutput: “used” vs. “never used” for heroin

Classification model:

> Cross-entropy loss: L(y,y) = —[ylog(y) + (1 — y) log(1 — y)]
> Predictor: 3-layer NN with 16 hidden nodes

1) https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified %29
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Conclusions

> Impact of SP constraints
> Y has no bias in training —> SP increases test error

> Y has small bias in training & A is irrelevant for predicting Y
— SP decreases test error

> Good sensitive attribute: Any feature A with Py x L A

> Learning problems with unfairness penalties
> Any IPM provides an unfairness measure
> Empirical estimator of unfairness penalty is biased

» Moore Aronszajn theorem — squared kernel distance
admits unbiased estimator

> Fair learning problems can be solved with SGD
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