
Performance Estimation of First-Order Methods:
Extensions and Recent results

François Glineur
Université catholique de Louvain (UCLouvain)

Center for Operations Research and Econometrics and Information and
Communication Technologies, Electronics and Applied Mathematics Institute

joint work with many collaborators, including
Nizar Bousselmi, Julien M. Hendrickx, Yassine Kamri,

Panos Patrinos (KU Leuven), Teodor Rotaru
and Adrien B. Taylor (INRIA, Paris)

Funding: FNRS/FRIA, KUL GlobalParternship, EU MSCA

LNMB conference on the Mathematics of Operations Research

Jan. 17, 2023
1

Performance estimation of an optimization method

Recall goal of a PEP (Performance Estimation Problem):
compute the worst-case behaviour

▶ of a given optimization method
(considering a fixed number of iterations)

▶ applied to any function belonging to a given class
(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example:

after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗ from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R, what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Performance estimation of an optimization method

Recall goal of a PEP (Performance Estimation Problem):
compute the worst-case behaviour
▶ of a given optimization method

(considering a fixed number of iterations)

▶ applied to any function belonging to a given class
(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example: after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L

applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗ from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R, what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Performance estimation of an optimization method

Recall goal of a PEP (Performance Estimation Problem):
compute the worst-case behaviour
▶ of a given optimization method

(considering a fixed number of iterations)
▶ applied to any function belonging to a given class

(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example: after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗

from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R, what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Performance estimation of an optimization method

Recall goal of a PEP (Performance Estimation Problem):
compute the worst-case behaviour
▶ of a given optimization method

(considering a fixed number of iterations)
▶ applied to any function belonging to a given class

(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example: after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗ from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R,

what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Performance estimation of an optimization method

Recall goal of a PEP (Performance Estimation Problem):
compute the worst-case behaviour
▶ of a given optimization method

(considering a fixed number of iterations)
▶ applied to any function belonging to a given class

(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example: after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗ from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R, what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Two ingredients to formulate PEP as convex/SDP prob.

1. explicit interpolation inequalities for studied class of functions.

For example, smooth convex interpolation:

Set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ F0,L

⇔ there exists a convex function f with L-Lipschitz gradient
such that f (xi) = fi and ∇f (xi) = gi for all i ∈ S

⇔ fj ≥ fi + gT
i (xj − xi) +

1
2L ||gi − gj ||22 for all i , j ∈ S

2. optimization method defined as constraint over {(xi , gi , fi)}i∈S
For example, gradient step with constant stepsize :

xk+1 = xk − h
L∇f (xk) ⇔ xk+1 = xk − h

Lgk
⇔ ∥xk+1 − (xk − h

Lgk)∥
2 = 0

3. All conditions above must be convex in variables fi and
products between xi and gi (elements of their Gram matrix)
Ideally they must also be SDP-representable

4

Two ingredients to formulate PEP as convex/SDP prob.

1. explicit interpolation inequalities for studied class of functions.

For example, smooth convex interpolation:

Set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ F0,L

⇔ there exists a convex function f with L-Lipschitz gradient
such that f (xi) = fi and ∇f (xi) = gi for all i ∈ S

⇔ fj ≥ fi + gT
i (xj − xi) +

1
2L ||gi − gj ||22 for all i , j ∈ S

2. optimization method defined as constraint over {(xi , gi , fi)}i∈S
For example, gradient step with constant stepsize :

xk+1 = xk − h
L∇f (xk) ⇔ xk+1 = xk − h

Lgk
⇔ ∥xk+1 − (xk − h

Lgk)∥
2 = 0

3. All conditions above must be convex in variables fi and
products between xi and gi (elements of their Gram matrix)
Ideally they must also be SDP-representable

4

Two ingredients to formulate PEP as convex/SDP prob.

1. explicit interpolation inequalities for studied class of functions.

For example, smooth convex interpolation:

Set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ F0,L

⇔ there exists a convex function f with L-Lipschitz gradient
such that f (xi) = fi and ∇f (xi) = gi for all i ∈ S

⇔ fj ≥ fi + gT
i (xj − xi) +

1
2L ||gi − gj ||22 for all i , j ∈ S

2. optimization method defined as constraint over {(xi , gi , fi)}i∈S
For example, gradient step with constant stepsize :

xk+1 = xk − h
L∇f (xk) ⇔ xk+1 = xk − h

Lgk
⇔ ∥xk+1 − (xk − h

Lgk)∥
2 = 0

3. All conditions above must be convex in variables fi and
products between xi and gi (elements of their Gram matrix)
Ideally they must also be SDP-representable

4

Two ingredients to formulate PEP as convex/SDP prob.

1. explicit interpolation inequalities for studied class of functions.

For example, smooth convex interpolation:

Set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ F0,L

⇔ there exists a convex function f with L-Lipschitz gradient
such that f (xi) = fi and ∇f (xi) = gi for all i ∈ S

⇔ fj ≥ fi + gT
i (xj − xi) +

1
2L ||gi − gj ||22 for all i , j ∈ S

2. optimization method defined as constraint over {(xi , gi , fi)}i∈S
For example, gradient step with constant stepsize :

xk+1 = xk − h
L∇f (xk) ⇔ xk+1 = xk − h

Lgk
⇔ ∥xk+1 − (xk − h

Lgk)∥
2 = 0

3. All conditions above must be convex in variables fi and
products between xi and gi (elements of their Gram matrix)
Ideally they must also be SDP-representable

4

What you obtain when you solve a PEP

1. In all cases:
numerical value for worst-case performance
numerical description of worst-case function (interpolate primal)

numerical proof of worst-case performance (dual multipliers)

2. If you are lucky/clever: explicit formulas for some/all of above
→ this requires fitting/guessing algebraic expressions

3. In the best case: a rigorous mathematical proof
→ this requires a proof with (often tedious) reformulation of
worst-case rate as inequality involing sums-of-squares

Note: by theorem, all valid proofs must be writable as
sum-of-squares inequalities based on combinations of
necessary and sufficient interpolation inequalities

5

What you obtain when you solve a PEP

1. In all cases:
numerical value for worst-case performance
numerical description of worst-case function (interpolate primal)

numerical proof of worst-case performance (dual multipliers)

2. If you are lucky/clever: explicit formulas for some/all of above
→ this requires fitting/guessing algebraic expressions

3. In the best case: a rigorous mathematical proof
→ this requires a proof with (often tedious) reformulation of
worst-case rate as inequality involing sums-of-squares

Note: by theorem, all valid proofs must be writable as
sum-of-squares inequalities based on combinations of
necessary and sufficient interpolation inequalities

5

What you obtain when you solve a PEP

1. In all cases:
numerical value for worst-case performance
numerical description of worst-case function (interpolate primal)

numerical proof of worst-case performance (dual multipliers)

2. If you are lucky/clever: explicit formulas for some/all of above
→ this requires fitting/guessing algebraic expressions

3. In the best case: a rigorous mathematical proof
→ this requires a proof with (often tedious) reformulation of
worst-case rate as inequality involing sums-of-squares

Note: by theorem, all valid proofs must be writable as
sum-of-squares inequalities based on combinations of
necessary and sufficient interpolation inequalities

5

Gradient method, L-smooth function, constant step-size h
L

Worst-case rate for final iterate accuracy, for any h ∈ [0, 2]

max f (xN)− f ∗ =
LR2

2
max

(
1

2Nh + 1
, (1− h)2N

)
We actually know

▶ analytical expression for worst-case performance

▶ analytical expression of worst-case function (Huber/quadratic)

▶ analytical expression of dual multipliers

but rigorous sum-of-squares proof currently known only for h ≤ 1.5

6

Extra step: constants in analytical rates

Our performance estimation problem is parameterized by

▶ Lipschitz constant L of gradient (smoothness constant)

▶ Distance R between starting point x0 and minimizer x∗

and worst-case final iterate accuracy appears to be always of type

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

expr(N)

To avoid having to solve for every value of L and R
we use homogeneity properties

7

Extra step: constants in analytical rates

Our performance estimation problem is parameterized by

▶ Lipschitz constant L of gradient (smoothness constant)

▶ Distance R between starting point x0 and minimizer x∗

and worst-case final iterate accuracy appears to be always of type

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

expr(N)

To avoid having to solve for every value of L and R
we use homogeneity properties

7

Extra step: exploiting homogeneity
Theorem: worst-case final iterate accuracy is always of type

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

expr(N)

▶ if L → λL with λ > 0, worst-case is also multiplied by λ
(proof: scale f → λf)

▶ if R → λR with λ > 0, worst-case is also multiplied by λ
(proof: right-scaling f → λf (·/λ))

hence worst-case w∗(L,R,N) is proportional to B and R

→ hence only solve problem for L = R = 1, find worst-case value
w∗(1, 1,N) so that for general L and R we will have

f (xN)− f (x∗) ≤ w∗(L,R,N) = LR · w∗(1, 1,N)

Only remaining parameter is number of steps N (plus possibly
other algorithmic/function class parameters)

8

Extra step: exploiting homogeneity
Theorem: worst-case final iterate accuracy is always of type

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

expr(N)

▶ if L → λL with λ > 0, worst-case is also multiplied by λ
(proof: scale f → λf)

▶ if R → λR with λ > 0, worst-case is also multiplied by λ
(proof: right-scaling f → λf (·/λ))

hence worst-case w∗(L,R,N) is proportional to B and R

→ hence only solve problem for L = R = 1, find worst-case value
w∗(1, 1,N) so that for general L and R we will have

f (xN)− f (x∗) ≤ w∗(L,R,N) = LR · w∗(1, 1,N)

Only remaining parameter is number of steps N (plus possibly
other algorithmic/function class parameters)

8

Extra step: exploiting homogeneity
Theorem: worst-case final iterate accuracy is always of type

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

expr(N)

▶ if L → λL with λ > 0, worst-case is also multiplied by λ
(proof: scale f → λf)

▶ if R → λR with λ > 0, worst-case is also multiplied by λ
(proof: right-scaling f → λf (·/λ))

hence worst-case w∗(L,R,N) is proportional to B and R

→ hence only solve problem for L = R = 1, find worst-case value
w∗(1, 1,N) so that for general L and R we will have

f (xN)− f (x∗) ≤ w∗(L,R,N) = LR · w∗(1, 1,N)

Only remaining parameter is number of steps N (plus possibly
other algorithmic/function class parameters)

8

Outline

Performance estimation
Recap from yesterday
Gradient method for smooth convex functions

Beyond smooth convex functions
Nonsmooth functions: subgradient method
Strongly convex, non-convex/hypoconvex

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

9

Nonsmooth optimization: subgradient method

First-order methods can deal with nonsmooth convex functions
using the concept of subgradient

g ∈ ∂f (x) ⇔ f (y) ≥ f (x) + gT (y − x) for all y

Sugradient method is then simply

xi+1 = xi − hgi for some gi ∈ ∂f (xi)

Worst-case rates on objective accuracy require

▶ Distance R from initial iterate x0 to minimizer x∗

▶ Bound B on maximum norm of any subgradient g ∈ ∂f (x)

10

Interpolation conditions for nonsmooth convex functions

We need explicit conditions for the following

there exists proper and convex f with B-bounded subgradients
such that f (xi) = fi and gi ∈ ∂f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

i.e. given values of xi , fi and gi we need to guarantee existence of f

We use the well-known (and easy to show) equivalence

there exists proper and convex f satisfying

f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gi (xj − xi) for every i , j ∈ I

which can be extended to deal with B-bounded subgradients

11

Interpolation conditions for nonsmooth convex functions

We need explicit conditions for the following

there exists proper and convex f with B-bounded subgradients
such that f (xi) = fi and gi ∈ ∂f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

i.e. given values of xi , fi and gi we need to guarantee existence of f

We use the well-known (and easy to show) equivalence

there exists proper and convex f satisfying

f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gi (xj − xi) for every i , j ∈ I

which can be extended to deal with B-bounded subgradients

11

Interpolation conditions for nonsmooth convex functions

We need explicit conditions for the following

there exists proper and convex f with B-bounded subgradients
such that f (xi) = fi and gi ∈ ∂f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

i.e. given values of xi , fi and gi we need to guarantee existence of f

We use the well-known (and easy to show) equivalence

there exists proper and convex f with B-bounded subgradients s.t.

f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gT

i (xj − xi) for every i , j ∈ I

∥gi∥ ≤ B for every i ∈ I

Leads to a convex formulation (using gT
i gi ≤ B2)

11

Illustration: nonsmooth convex interpolation problem

Consider a set S , and its associated values {(xi , gi , fi)}i∈S with
coordinates xi , subgradients gi and function values fi .

▶ Is there f ∈ F0,∞ (proper, closed, convex) s.t.

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S .

x

f

•
x0 •

x2

•
x1

▶ We want necessary and sufficient conditions for existence of f

▶ These conditions will appear as a constraints in our PEP formulation

12

Illustration: nonsmooth convex interpolation problem

Consider a set S , and its associated values {(xi , gi , fi)}i∈S with
coordinates xi , subgradients gi and function values fi .

▶ Is there f ∈ F0,∞ (proper, closed, convex) s.t.

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S .

x

f

•
x0 •

x2

•
x1

▶ We want necessary and sufficient conditions for existence of f

▶ These conditions will appear as a constraints in our PEP formulation

12

Illustration: nonsmooth convex interpolation problem

Consider a set S , and its associated values {(xi , gi , fi)}i∈S with
coordinates xi , subgradients gi and function values fi .

▶ Is there f ∈ F0,∞ (proper, closed, convex) s.t.

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S .

x

f

•
x0 •

x2

•
x1

▶ We want necessary and sufficient conditions for existence of f

▶ These conditions will appear as a constraints in our PEP formulation

12

Convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞
(proper, closed and convex function) ?

x

f

•
•

•
•

Conditions fi ≥ fj + gT
j (xi − xj) is necessary

Explicit construction of a (piecewise linear) interpolating function:

f (x) = max
j

{
fj + gT

j (x − xj)
}
,

Not unique.

13

Convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞
(proper, closed and convex function) ?

x

f

•
•

•
•

Conditions fi ≥ fj + gT
j (xi − xj) is necessary

Explicit construction of a (piecewise linear) interpolating function:

f (x) = max
j

{
fj + gT

j (x − xj)
}
,

Not unique.

13

Convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞
(proper, closed and convex function) ?

x

f

•
•

•
•

Conditions fi ≥ fj + gT
j (xi − xj) is necessary

Explicit construction of a (piecewise linear) interpolating function:

f (x) = max
j

{
fj + gT

j (x − xj)
}
,

Not unique.

13

Convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞
(proper, closed and convex function) ?

x

f

•
•

•
•

Conditions fi ≥ fj + gT
j (xi − xj) is necessary and sufficient

Explicit construction of a (piecewise linear) interpolating function:

f (x) = max
j

{
fj + gT

j (x − xj)
}
,

Not unique.

13

Results: average iterate
Worst-case for fixed-step subgradient method

xi+1 = xi − h(RB)gi

applied to convex function with B-bounded sugradients

▶ For average value of iterates f̂N = f (x0)+f (x1)+...+f (xN)
N+1 , tight

worst-case is

f̂N − f (x∗) ≤

{
BR

(
1− N

2 h
)

when h ≤ 1
N+1

BR
(
1
2h + 1

2N+2
1
h

)
when h ≥ 1

N+1

(recovers a well-known result for large h)

▶ Optimal constant step-size is then h∗ = 1√
N+1

(always in the

second case) leading to tight worst-case

f̂N − f (x∗) ≤
BR√
N + 1

14

Results: last iterate

▶ Define sequence {sN}N≥0 with s0 = 1, si+1 = si +
1
si
∀i ≥ 0

(→ s1 = 2, s2 =
5
2 = 2.5, s3 =

29
10 = 2.9, etc.)

▶ Sequence sN grows like
√

2N + 1
2 log(N) + 2 (no closed form)

▶ For value of last iterate f (xN), tight worst-case is

f (xN)− f (x∗) ≤ BR
(
(12s

2
N − N)h + (2s2N)

−1 1

h

)
when h ≥ 1

sN

(another less interesting regime holds for smaller h)

▶ Optimal step is then h∗ = 1/
√
s2N(s

2
N − 2N) and

corresponding worst-case value is

f (xN)− f (x∗) ≤ BR ·Θ
(√ log(N + 1)

N + 1

)
apparently new (previous results only on average/best iterate)

15

Results: last iterate

▶ Define sequence {sN}N≥0 with s0 = 1, si+1 = si +
1
si
∀i ≥ 0

(→ s1 = 2, s2 =
5
2 = 2.5, s3 =

29
10 = 2.9, etc.)

▶ Sequence sN grows like
√

2N + 1
2 log(N) + 2 (no closed form)

▶ For value of last iterate f (xN), tight worst-case is

f (xN)− f (x∗) ≤ BR
(
(12s

2
N − N)h + (2s2N)

−1 1

h

)
when h ≥ 1

sN

(another less interesting regime holds for smaller h)

▶ Optimal step is then h∗ = 1/
√
s2N(s

2
N − 2N) and

corresponding worst-case value is

f (xN)− f (x∗) ≤ BR ·Θ
(√ log(N + 1)

N + 1

)
apparently new (previous results only on average/best iterate)

15

Results: last iterate

▶ Define sequence {sN}N≥0 with s0 = 1, si+1 = si +
1
si
∀i ≥ 0

(→ s1 = 2, s2 =
5
2 = 2.5, s3 =

29
10 = 2.9, etc.)

▶ Sequence sN grows like
√

2N + 1
2 log(N) + 2 (no closed form)

▶ For value of last iterate f (xN), tight worst-case is

f (xN)− f (x∗) ≤ BR
(
(12s

2
N − N)h + (2s2N)

−1 1

h

)
when h ≥ 1

sN

(another less interesting regime holds for smaller h)

▶ Optimal step is then h∗ = 1/
√
s2N(s

2
N − 2N) and

corresponding worst-case value is

f (xN)− f (x∗) ≤ BR ·Θ
(√ log(N + 1)

N + 1

)
apparently new (previous results only on average/best iterate)

15

Dealing with smooth strongly convex functions

Strongly convex functions ⇔ lower bound µ > 0 on curvature

To tackle smooth strongly convex functions (class Fµ,L) we only
need one new ingredient: suitable interpolation conditions

Correct necessary and sufficient conditions are given by following
Theorem [Taylor, Hendrickx, G. 2016]

Set {(xi , gi , fi)}i∈S is Fµ,L-interpolable if and only

fi − fj − g⊤j (xi − xj) ≥
1

2(1− µ/L)

(
1

L
∥gi − gj∥22 · · ·

+µ∥xi − xj∥22 − 2
µ

L
(gj − gi)

⊤(xj − xi)
)

holds for every pair of indices i ∈ I and j ∈ S

(generalizes conditions for smooth convex interpolation)

16

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor, Hendrickx, G, 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Only previously known in some special cases

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2

▶ Worst-case functions are 1D quadratics µ
2 x

2 and L
2x

2

▶ When µ = 0 we obtain ρ = 1, i.e. no convergence, which is
tight (!) → other convergence results needed

17

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor, Hendrickx, G, 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Only previously known in some special cases

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2

▶ Worst-case functions are 1D quadratics µ
2 x

2 and L
2x

2

▶ When µ = 0 we obtain ρ = 1, i.e. no convergence, which is
tight (!) → other convergence results needed

17

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor, Hendrickx, G, 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Only previously known in some special cases

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2

▶ Worst-case functions are 1D quadratics µ
2 x

2 and L
2x

2

▶ When µ = 0 we obtain ρ = 1, i.e. no convergence, which is
tight (!) → other convergence results needed

17

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor, Hendrickx, G, 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Only previously known in some special cases

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2

▶ Worst-case functions are 1D quadratics µ
2 x

2 and L
2x

2

▶ When µ = 0 we obtain ρ = 1, i.e. no convergence, which is
tight (!) → other convergence results needed

17

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor, Hendrickx, G, 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Only previously known in some special cases

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2

▶ Worst-case functions are 1D quadratics µ
2 x

2 and L
2x

2

▶ When µ = 0 we obtain ρ = 1, i.e. no convergence, which is
tight (!) → other convergence results needed

17

Further results: mixed performance criteria
▶ Smooth strongly convex case, with condition number κ = µ/L

[Taylor, Hendrickx, G, 2018]

max f (xN)−f∗ =
LR2

2
max

(
κ

(κ− 1) + (1− κh)−2N
, (1− h)2N

)

▶ Residual gradient norm, strongly convex case

max ∥∇f (xN)∥2 = LR max

(
κ

(κ− 1) + (1− κh)−N
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes

▶ Smooth convex case is recovered exactly as the limit µ → 0
(expression for worst-case is continuous in µ)

18

Further results: mixed performance criteria
▶ Smooth strongly convex case, with condition number κ = µ/L

[Taylor, Hendrickx, G, 2018]

max f (xN)−f∗ =
LR2

2
max

(
κ

(κ− 1) + (1− κh)−2N
, (1− h)2N

)
▶ Residual gradient norm, strongly convex case

max ∥∇f (xN)∥2 = LR max

(
κ

(κ− 1) + (1− κh)−N
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes

▶ Smooth convex case is recovered exactly as the limit µ → 0
(expression for worst-case is continuous in µ)

18

Further results: mixed performance criteria
▶ Smooth strongly convex case, with condition number κ = µ/L

[Taylor, Hendrickx, G, 2018]

max f (xN)−f∗ =
LR2

2
max

(
κ

(κ− 1) + (1− κh)−2N
, (1− h)2N

)
▶ Residual gradient norm, strongly convex case

max ∥∇f (xN)∥2 = LR max

(
κ

(κ− 1) + (1− κh)−N
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes

▶ Smooth convex case is recovered exactly as the limit µ → 0
(expression for worst-case is continuous in µ)

18

Further results: mixed performance criteria
▶ Smooth strongly convex case, with condition number κ = µ/L

[Taylor, Hendrickx, G, 2018]

max f (xN)−f∗ =
LR2

2
max

(
κ

(κ− 1) + (1− κh)−2N
, (1− h)2N

)
▶ Residual gradient norm, strongly convex case

max ∥∇f (xN)∥2 = LR max

(
κ

(κ− 1) + (1− κh)−N
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes

▶ Smooth convex case is recovered exactly as the limit µ → 0
(expression for worst-case is continuous in µ)

18

Further results: mixed performance criteria
▶ Smooth strongly convex case, with condition number κ = µ/L

[Taylor, Hendrickx, G, 2018]

max f (xN)−f∗ =
LR2

2
max

(
κ

(κ− 1) + (1− κh)−2N
, (1− h)2N

)
▶ Residual gradient norm, strongly convex case

max ∥∇f (xN)∥2 = LR max

(
κ

(κ− 1) + (1− κh)−N
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes

▶ Smooth convex case is recovered exactly as the limit µ → 0
(expression for worst-case is continuous in µ)

18

Dealing with smooth nonconvex functions

Smooth nonconvex actually quite similar to smooth convex:

smooth nonconvex functions ⇔ curvature must belong to [−L, L]

To tackle smooth nonconvex functions (class F−L,L) we only need
one new ingredient: suitable interpolation conditions

It turns out that interpolation conditions for smooth strongly
convex functions in class Fµ,L also work, with exactly the same
expressions, when µ is negative !

Hence smooth nonconvex interpolations conditions are obtained
simply by taking µ = −L

19

Dealing with nonconvex and hypoconvex functions
We can even interpolate smoothly between smooth convex (F0,L)
and smooth nonconvex (F−L,L) with all values of µ ∈]−L, 0[

This leads to the class of hypoconvex functions Fµ,L for any µ < 0

Necessary and sufficient interpolation conditions are:
[Taylor, 2017] [Rotaru, Glineur, Patrinos, 2022] [Abbaszadehpeivasti, de

Klerk, Zamani, 2022]
Set {(xi , gi , fi)}i∈S is Fµ,L-interpolable if and only

fi − fj − g⊤j (xi − xj) ≥
1

2(1− µ/L)

(
1

L
∥gi − gj∥22 · · ·

+µ∥xi − xj∥22 − 2
µ

L
(gj − gi)

⊤(xj − xi)
)

holds for every pair of indices i ∈ I and j ∈ S

(again generalizes conditions for smooth convex and smooth
strongly convex interpolation)

20

Gradient method for smooth nonconvex/hypoconvex

Example of (fully analytical) worst-case rate [Abbaszadehpeivasti, de

Klerk, Zamani, 2022], [Rotaru, Glineur, Patrinos, 2022]

Let f ∈ Fµ,L(Rd) be a smooth hypoconvex function, with L > 0
and µ ≤ 0, and let κ := µ

L .

Consider N iterations of the gradient method xi+1 = xi − hi
L ∇f (xi)

where stepsizes hi are less than h̄(κ) := 3
1+κ+

√
1−κ+κ2

∈ [32 , 2)

(hence non-constant step-sizes are allowed)

Then we have

min
0≤i≤N

{
∥∇f (xi)∥2

}
≤

2L
[
f (x0)− f (xN)

]
N−1∑
i=0

p(hi , κ)

21

Gradient method for smooth nonconvex/hypoconvex

min
0≤i≤N

{
∥∇f (xi)∥2

}
≤

2L
[
f (x0)− f (xN)

]
N−1∑
i=0

p(hi , κ)

where each of the N terms in denominator is given by

p(hi , κ) =


2hi − h2i

−κ
1−κ if hi ∈

(
0, 1

]
hi (2−hi)(2−κhi)

2−(1+κ)hi
if hi ∈

[
1, h̄(κ)

]
Additionally, if f is bounded from below

min
0≤i≤N

{
∥∇f (xi)∥2

}
≤

2L
[
f (x0)− f∗

]
1 +

N−1∑
i=0

p(hi , κ)

(even covers the smooth convex case in the limit µ → 0)
22

Terms p(hi , κ) in the denominator vs. stepsize hi

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

23

Example of a worst-case function

-0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

N = 3, f0 − f∗ = 2, L = 2, κ = −2, h0 = 1, h1 = 0.5, h2 = 0.75
24

Outline

Performance estimation
Recap from yesterday
Gradient method for smooth convex functions

Beyond smooth convex functions
Nonsmooth functions: subgradient method
Strongly convex, non-convex/hypoconvex

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

25

Toolboxes
[Hendrickx, G, Goujaud, Moucer, Taylor]

Please visit https://github.com/PerformanceEstimation

26

https://github.com/PerformanceEstimation

Example: subgradient method with hk =
1√
N+1

1 P = pep();

2

3 param.R = 1;

4 F = P.DeclareFunction(

5 ’ConvexBoundedGradient ’,param);

6 [xstar ,fstar] = F.OptimalPoint ();

7

8 x0 = P.StartingPoint ();

9 P.InitialCondition ((x0 -xstar)^2 <=1);

10

11 N=5;

12 x=x0;

13 for i=1:N

14 [g,f] = F.oracle(x);

15 x = x - 1/sqrt(N+1)*g;

16 end

17

18 xN = x;

19 fN=F.value(xN);

20 P.PerformanceMetric(fN -fstar);

21

22 P.solve()

23 disp(double(fN - fstar))

27

Contains numerous introductory examples
(tries to keep up with litterature)

28

Contains numerous introductory examples
(tries to keep up with litterature)

28

Contains numerous introductory examples
(tries to keep up with litterature)

28

Contains numerous introductory examples

(tries to keep up with litterature)

28

Outline

Performance estimation
Recap from yesterday
Gradient method for smooth convex functions

Beyond smooth convex functions
Nonsmooth functions: subgradient method
Strongly convex, non-convex/hypoconvex

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

29

Projected gradient and proximal methods

We can actually handle with little extra effort

▶ first-order methods for smooth constrained convex
optimization i.e. express projection steps in our formulation

xk+1 = PC

[
xk −

1

L
∇f (xk)

]
▶ proximal algorithms i.e. express proximal steps

xk+1 = proxLf (xk) = argmin
u

(
f (u) +

1

2L
∥u − xk∥2

)
▶ composite minimization: min f (x) + h(x) where f is smooth

and h is proximable, using proximal gradient method

xk+1 = proxLh(xk − 1
L∇f (xk))

30

Projected gradient and proximal methods

x+ = proxLf (x) = argmin
u

(
f (u) +

1

2L
∥u − x∥2

)
▶ Key idea: proximal steps can be formulated as

x+ = proxLf (x) ⇔ x+ − 1
Lg+ = x and g+ ∈ ∂f (x+)

which is a linear condition involving iterates and oracle outputs

▶ Proximal gradient for composite optimization min f (x) + h(x)
can be decomposed in two successive, independent steps:
x+ = proxLh(x − 1

L∇f (x)) is equivalent

y = x − 1
L∇f (x) then x+ = proxLh(y)

▶ Projected gradient = proximal gradient using indicator
function of set C for nonsmooth term h

▶ Requires corresponding interpolation conditions
(e.g. for indicator function IC (x) of a convex set)

▶ Linear rates unchanged in smooth strongly convex case!
31

Methods using inexact gradient
Instead of computing xk+1 = xk − 1

L∇f (xk) with exact gradient
assume gradient is computed inexactly with bounded error

g̃k ≈ ∇f (xk) such that ∥g̃k −∇f (xk)∥ ≤ ∆

Key technique: rewrite step with inexact gradient

xk+1 = xk − g̃k

as
xk+1 = xk −∇f (xk)−

(
g̃k −∇f (xk)

)
and then observe it is equivalent to

L(xk −∇f (xk)− xk+1) = g̃k −∇f (xk)

which can be written using the assumption on the error as

L∥xk −∇f (xk)− xk+1∥ ≤ ∆

Leads to a convex SDP formulation (after squaring both sides)
32

Methods involving linear mappings
[Bousselmi, Hendrickx, Glineur, 2023]

We want to minimize g(Mx) (alone/in composite objective)
where M is a linear mapping with some characteritcs

▶ M symmetric and constraints on minimum/maximum
eigenvalues [µ, L]

▶ M non-symmetric (possibly rectangular) with maximum
singular value S

A gradient step on F (x) = g(Mx) requires gradient

∇F (x) = MT∇g(Mx)

which can be decomposed as three successive operations:

y = Mx

u = ∇g(y),

v = MTu = ∇F (x).

33

Gradient of function composed with linear mapping

In order to compute worst-case for methods involving

y = Mx

u = ∇g(y),

v = MTu = ∇F (x).

we need to interpolate the following

yi = Mxi ,

ui = ∇g(yi),

vi = MTui = ∇F (xi).

New expressions: yi = Mxi and vi = MTui

Requires interpolability of two sequences {xi , yi} and {ui , vi}
by a linear mapping M and its transpose MT

34

Interpolation theorem for linear mappings

For simplicity of notation we represent sequence {xi} as a matrix
X (columns are xi), same for {yi}, {ui}, {vi}

Let X ∈ Rm×N1 , Y ∈ Rn×N1 , U ∈ Rm×N2 and V ∈ Rn×N2 .
(X ,Y ,U,V) is Rm×n

S -matrix-interpolable if, and only if,
XTV = Y TU,

Y TY ⪯ S2XTX ,

V TV ⪯ S2UTU.

(where ⪯ denotes the Lowner = positive semidefinite order)

Moreover, if U = X and V = Y (resp. V = −Y), the interpolant
matrix can be chosen symmetric (resp. skew-symmetric).

[Bousselmi, Hendrickx, Glineur, 2023]

35

Example result

36

Outline

Performance estimation
Recap from yesterday
Gradient method for smooth convex functions

Beyond smooth convex functions
Nonsmooth functions: subgradient method
Strongly convex, non-convex/hypoconvex

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

37

Reflections

▶ Automated procedure to compute worst-case rates

▶ But: is a PEP proof the final goal?

▶ More than once, these steps actually happened

1. Numerical rate computed, analytical expression
guessed/identified/confirmed

2. Using insight provided by worst-case/proof, a closer look at
rate/proof provides further intuition and new ideas

3. Result can now be derived in standard way
(and its “PEP” origin becomes unnoticeable!)

▶ Even when such simplifications are not found, shouldn’t the
goal of mathematical optimization theory first and foremost to
increase our understanding?

38

To conlude: a few open questions

▶ Some rates are known explicitly (including multipliers) but no
proof available

max f (xN)− f ∗ = LR2

2 max
(

1
2Nh+1 , (1− h)2N

)
for h > 1.5

(should not underestimate difficulty, even with explicit expressions:

original proof by Drori and Teboulle for gradient method with h ≤ 1

required three dense pages of matrix analysis/algebra)

▶ Can we design first-order methods using PEP?

Main difficulty: considering method coefficients to be variable
(e.g. stepsizes hk) destroys convexity

Attempts try (and succed in) solving resulting nonconvex SDP
[Das Gupta, Van Parys, Ryu, 2022]

Is there a non obvious convex formulation for method design?

39

To conlude: a few open questions

▶ Some classes lack necessary and sufficient interpolation
conditions

Example: convex functions with coordinate smoothness
More generally: intersections of two or more classes
(grouping conditions is necessary, but not always sufficient)

▶ How come worst-case functions are univariate for so many
methods (or in rare cases two-dimensional)?
Is there a fundamental reason for that?

▶ Can we go beyond first-order methods with fixed steps?
Nonlinear stepsize rules: some recent success for nonlinear
conjugate gradient [Das Gupta, Freud, Sun, Taylor, 2023]

What about second-order methods? Interior-point methods?
Higher order/tensor method?

40

Thank you again for your attention!

References (strongly convex + constrained/proximal/composite):

Exact worst-case convergence rates of the proximal gradient method for

composite convex minimization, Adrien B. Taylor, Julien M. Hendrickx,

François Glineur, J. of Optim. Theory and Applic. (2018) vol. 178 (2)

Exact Worst-case Performance of First-order Methods for Composite

Convex Optimization, Adrien B. Taylor, Julien M. Hendrickx, François

Glineur, SIAM Journal on Optimization, 27(3), 1283–1313 (2017)

41

Thank you again for your attention!

References (software toolboxes):

PEPit: computer-assisted worst-case analyses of first-order optimization

methods in Python, Baptiste Goujaud, Céline Moucer, François Glineur,

Julien M. Hendrickx, Adrien B. Taylor and Aymeric Dieuleveut, preprint

arXiv:2201.04040 2022

Performance estimation toolbox (PESTO): Automated worst-case

analysis of first-order optimization methods., Adrien B. Taylor, Julien M.

Hendrickx, François Glineur, 2017 IEEE 56th Annual Conference on

Decision and Control (CDC) (pp. 1278-1283)

https://github.com/PerformanceEstimation

42

https://github.com/PerformanceEstimation

Thank you again for your attention!

References (nonconvex/hypoconvex cases):

Convex Interpolation and Performance Estimation of First-order Methods

for Convex Optimization, Adrien B. Taylor, PhD thesis, Université

catholique de Louvain, 2017

The exact worst-case convergence rate of the gradient method with fixed

step lengths for L-smooth functions, Hadi Abbaszadehpeivasti, Etienne

de Klerk and Moslem Zamani, Optimization Letters 16, no. 6 (2022), pp.

1649-1661.

Tight convergence rates of the gradient method on smooth hypoconvex

functions, Teodor Rotaru, François Glineur, Panagiotis Patrinos, preprint

arxiv 2203.00775

43

Thank you again for your attention!

Reference (linear mappings):

Performance Estimation of First-Order Methods involving Linear

Mappings, Nizar Bousselmi, Julien M. Hendrickx, François Glineur, to

appear soon on arxiv.

References (method design, nonlinear stepsizes):

Branch-and-Bound Performance Estimation Programming: A Unified

Methodology for Constructing Optimal Optimization Methods,

Shuvomoy Das Gupta, Bart P.G. Van Parys, Ernest K. Ryu, preprint arxiv

2203.07305

Nonlinear conjugate gradient methods: worst-case convergence rates via

computer-assisted analyses, Shuvomoy Das Gupta, Robert M. Freund, Xu

Andy Sun, Adrien Taylor, preprint arxiv 2301.01530

44

	Performance estimation
	Recap from yesterday
	Gradient method for smooth convex functions

	Beyond smooth convex functions
	Nonsmooth functions: subgradient method
	Strongly convex, non-convex/hypoconvex

	Software toolboxes: PESTO and PEPit
	Beyond (fixed-step) gradient methods
	Projected gradient method
	Methods using inexact gradient
	Methods involving linear mappings

	A few reflections and open questions

