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What are first-order methods (FOM)?
▶ Continuous optimization methods

min
x∈Rn

f (x) or min
x∈C⊂Rn

f (x)

▶ Only use first-order information = gradient at given point

▶ Gradient method (Cauchy, 1847):

xk+1 = xk − αk∇f (xk)

▶ Information about function given only by first-order oracle
(this is a black-box method)

▶ Able to deal with unstructured problems, convergence rates
require some regularity assumptions on objective f
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Some comments you may have heard

FOM are slow

FOM require differentiability

FOM are really slow to converge

FOM step size is difficult to choose

FOM are unable to find global optima

Computing gradients for a FOM is expensive

FOM are an old concept, much better methods exists now

Are any of these valid ?

3



The seven wonders of first-order methods

Why you should probably
give first-order methods
a try for your problem

Apologies for /simplified/simplistic taglines
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First wonder

FOM have performance guarantees
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Performance guarantees for FOM

First-order methods require (in principle) a differentiable objective

To obtain guarantees, we need to measure how differentiable
(how smooth) it is

Define constant L to measure how fast the gradient can change

∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥ (Lipschitz constant)

Equivalently L is an upper bound on the (absolute value of)
curvature (i.e. largest eigenvalue of hessian/second derivative):

−L ≤ λi{∇2f (x)} ≤ L for all i and x

If L→∞, function becomes nondifferentiable → no guarantee
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Convergence guarantee for gradient method

Stepsize should be chosen as a fixed constant equal to 1
L !

xk+1 = xk −
1

L
∇f (xk)

(in practice: dynamical estimation of L is possible)

In general (nonconvex) case, we get

min
0≤i≤k

∥∇f (xi )∥ ≤
√

2L(f (x0)− f (x∗))

k + 1
= O( 1√

k
)

Only converging to stationary points (including local optima),

Actually no back-blox method can be guaranteed to find a global
optimum efficiently
(theorem: exponential lower bound in n for any black-box method!)
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Convergence guarantee in convex case

Things are even better when function is convex
(which will be assumed for most of the talk)

All local optima are automatically global

Assuming we know an upper bound R on the initial distance to the
solution ∥x0 − x∗∥ ≤ R, gradient method with step 1

L now satisfies

f (xk)− f ∗ ≤ LR2

2k
= O( 1

k
)

Nice explicit rate, sublinear

Relating accuracy to number of oracle calls/gradient evaluations

Only a worst-case rate, still often very useful
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Second wonder

FOM can deal with constraints
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FOM can deal with constraints

To deal with constrained problems

min
x∈C⊂Rn

f (x)

simply project on the (convex) feasible region at each iteration

xk+1 = PC

[
xk −

1

L
∇f (xk)

]
(projection computes closest point in feasible region)

Projection is computationally cheap for many useful sets:
subspaces, simplex, unit balls, separable sets, etc.

Previous convergence guarantees hold unmodified!
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Third wonder

Using FO steps is always cheap
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Computing the gradient is never too expensive

Theorem: For any computable function, the gradient can be
evaluated at a cost that does not exceed a small constant (less
than 5) times the cost of evaluating the function itself

This is obtained for example using automatic differentiation

This is not finite differences (and usually a much better option)
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Fourth wonder

It is easy to accelerate FOM
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A faster method at nearly no extra cost

Adding a momentum term to the method

yk = xk + βk(xk − xk−1)

xk+1 = PC

[
yk −

1

L
∇f (yk)

]
with a well-chosen parameter (βk = k−1

k+2)
does not significantly increase the computational cost
but accelerates i.e. improves the performance guarantee to

f (xk)− f ∗ ≤ 2LR2

(k + 1)2
= O( 1

k2
)

(Nesterov, 1984)

Can make a huge difference in convergence speed
Rate is asymptotically optimal (no FOM can have better order)
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Fifth wonder

FOM like curves
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Flat is bad

FOM become faster when objective function is never flat

If curvature of objective is bounded below by µ

0 < µ ≤ λi{∇2f (x)} ≤ L for all i and x

(i.e. f is a µ-strongly convex function) then

f (xk)− f ∗ ≤
(
1− µ

L

)2k
(f (x0)− f ∗)

Linear convergence, much better than all previous sublinear rates

Accelerated methods also benefit (with better rate: µ/L→
√
µ/L)
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Sixth wonder

FOM can deal with nondifferentiable problems
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Not differentiable? not a problem!

For convex nondifferentiable functions, gradient method can be
easily adapted by replacing the gradient by the concept of
subgradient ∂f (x) (slope of any linear lower bound)

xk+1 = PC

[
xk − hk∂f (xk)

]
Need to adapt stepisze (decreasing sequence)

Drawback: slower than differentiable case

f (xk)− f ∗ ≤ MR√
k

= O( 1√
k
)

(M is maximum size of subgradient)
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Smoothing to the rescue

A nondifferentable can often be approximated by a smooth function

Example

|x | ≈ 1

ρ
log

(
eρx + e−ρx

)
Tradeoff between speed and accuracy of smooth approximation
(error is O(1ρ)) and its Lipschitz constant L = O(ρ)
i.e. either fast convergence to a bad approximation, or slower
convergence to a better approximate solution

Using best compromise for ρ and accelerated method will achieve a
O( 1k ) rate (instead of O( 1√

k
) for subgradient method)
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Truss topology design

Figure 24: Two di�erent instances of the multibridge configuration (with di�erent number of feet, feet size and grid
sizes). These grid sizes are 20 ◊ 20 and 50 ◊ 50.

B Objective value and density evolution
In this appendix, a short study of the evolution of objective value and interior-point solution is provided. The analysis
is made for relatively small problem size (up to 200 ◊ 200), on four configurations: two with naturally very sparse
solutions (wall and ei�el), and two with naturally dense solutions (bridge and hanger (see A for more information on
this configuration)).

B.1 Naturally sparse configurations
Figure 25 below exposes graphics of the objective value and density (as defined by the ratio between nonzero bars and
|E|) for the wall and the ei�el configurations. The objective value grows exactly linearly, while the density evolves
according to O

1
1

nxny

2
. These results are actually natural.

23

(can be solved with 1M potential bars in less than one hour)
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Seventh wonder

FOM can deal with randomness
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Randomness is no big deal for FOM

min
1

|S |
∑
i∈S

fi (x)

Instead of computing full gradient 1
|S |

∑
i∈S ∇fi (x)

pick a random index i ∈ S (uniformly) and
perform a partial gradient step with

xk+1 = xk − hk∇fi (x)

This term ∇fi (x) is an unbiased estimate of the full gradient
This stochastic gradient method will still converge!

Many applications in machine learning
(each fi is the error for a different training sample)
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Of course, not everything can be wonderful with FOM!

▶ High-accuracy solutions can be expensive to obtain
(sublinear rates, or ill-conditioned linear rates µ/L→ 0)

▶ Some functions are not smooth/regular enough

▶ Smoothness/regularity constants can be hard to estimate
(especially lower curvature)

▶ Projection on some feasible sets can be too costly

▶ Nonconvexity (esp. combined with nonsmoothness) may still
be a challenge

▶ Even a gradient computation can be too expensive
(for huge scale problems)

Still, FOM are now inescapable in a modern optimizer’s toolbox
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A motivating example

Consider the standard gradient method for constrained smoooth
minimization:

min
x∈Rn

f (x)

with f convex, smooth with L-Lipschitz gradient

For i = 0 : N − 1

xi+1 = xi −
1

L
∇f (xi )
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Exact convergence rate of projected gradient

min
x

f (x) from x0 with xi+1 = xi −
1

L
∇f (xi )

It is well known (and proved in countless references) that

f (xN)− f (x∗) ≤
L∥x0 − x∗∥2

2N

where x∗ is an optimal solution

However this worst-case convergence rate is not tight!
For example, for N = 1: iterate x1 actually satisfies

f (x1)− f (x∗) ≤
L∥x0 − x∗∥2

4

(twice better!)
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Bouding the error after one gradient step

Convex functions are known to satisfy

f (x) ≥ f (y) +∇f (y)(x − y) for all x , y

Moreover smooth convex functions actually verify condition
SC (x , y)

f (x) ≥ f (y) +∇f (y)(x − y) +
∥∇f (x)−∇f (y)∥2

2L
for all x , y

Proof simply relies on writing this condition for three pairs (x , y)

(x , y) ∈ {(x0, x1), (x∗, x0), (x∗, x1)}
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Proof of the exact convergence rate of projected gradient

f (x) ≥ f (y) +∇f (y)(x − y) +
∥∇f (x)−∇f (y)∥2

2L
for all x , y

We write
▶ (x , y) = (x0, x1)

f (x0) ≥ f (x1) +∇f (x1)(x0 − x1) +
∥∇f (x0)−∇f (x1)∥2

2L

▶ (x , y) = (x∗, x0) (since x∗ optimal implies ∇f (x∗) = 0)

f (x∗) ≥ f (x0) +∇f (x0)(x∗ − x0) +
∥∇f (x0)∥2

2L

▶ (x , y) = (x∗, x1)

f (x∗) ≥ f (x1) +∇f (x1)(x∗ − x1) +
∥∇f (x1)∥2

2L

and sum these three inequalities
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Proof of the exact convergence rate of gradient

We obtain

2f (x∗) ≥ 2f (x1) +
(
∇f (x1)−∇f (x0)

)T
(x0 − x∗)− 2∇f (x1)T (x1 − x∗)

+
1

L

(
∥∇f (x0)∥2 + ∥∇f (x1)∥2 −∇f (x1)T∇f (x0)

)
which can be rewritten (after dividing by 2) as

f (x1)− f (x∗) ≤ −
1

2

(
∇f (x1)−∇f (x0)

)T
(x0 − x∗) +∇f (x1)T (x1 − x∗)

− 1

2L

(
∥∇f (x0)∥2 + ∥∇f (x1)∥2 −∇f (x1)T∇f (x0)

)
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Proof of the exact convergence rate of gradient
Now use definition of the method x1 = x0 − g0

L and let (for
simplicity of notation) g0 = ∇f (x0), g1 = ∇f (x1) and d = x0 − x∗

Our upper bound on f (x1)− f (x∗)

− 1

2

(
∇f (x1)−∇f (x0)

)T
(x0 − x∗) +∇f (x1)T (x1 − x∗)

− 1

2L

(
∥∇f (x0)∥2 + ∥∇f (x1)∥2 −∇f (x1)T∇f (x0)

)
becomes

− 1

2
(g1 − g0)

Td + gT
1 (d − g0

L
)− 1

2L

(
∥g0∥2 + ∥g1∥2 − gT

1 g0
)

=
1

2
(g0 + g1)Td − 1

2L

(
∥g0∥2 + ∥g1∥2 + gT

1 g0
)

=
1

4
L∥d∥2 − 1

4
L
∥∥∥d − g0

L
− g1

L

∥∥∥2 − 1

2L

∥∥∥g0
L

∥∥∥2 − 1

2L

∥∥∥g1
L

∥∥∥2
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Proof of the exact convergence rate of gradient

We have obtained

f (x1)−f (x∗) ≤
1

4
L∥d∥2−1

4
L
∥∥∥d−g0

L
−g1

L

∥∥∥2− 1

2L

∥∥∥g0
L

∥∥∥2− 1

2L

∥∥∥g1
L

∥∥∥2
which establishes the claim

f (x1)− f (x∗) ≤
1

4
L∥d∥2 = L∥x0 − x∗∥2

4

Goal of this talk is to introduce and describe a systematic
technique to find this type of proof, called

performance estimation
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Outline

First-order methods : a brief introduction

Introduction to performance estimation
A motivating example
Finite-dimensional reformulation using interpolation

A convex formulation for performance estimation
Smooth convex interpolation
Semidefinite optimization formulation

Performance estimation of standard algorithms
Gradient method
Other methods and criteria
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Goal

Study methods for smooth unconstrained convex minimization

min
x∈Rd

f (x),

▶ function f ∈ F0,L: convex, L-Lipschitz gradient,

▶ method: first-order, oracle based, fixed-step coefficients
(ability to compute f and ∇f given a x)

▶ Methods include fixed-step gradient, fast gradient (Nesterov
acceleration), heavy ball method, etc.

▶ Compute exact worst-case guarantees after N iterations
▶ Performance criteria include for example

▶ maximum possible value of f (xN)− f ∗

▶ maximum possible distance of ∥xN − x∗∥
▶ maximum possible value of max0≤k≤N ∥∇f (xk)∥

over all functions f ∈ F0,L and starting points x0
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Performance estimation problem
Formally, for a given
▶ problem class F whose members are equipped with oracle Of

▶ methodM defined for a number of iterations N
▶ bound on the initial distance to the solution R
▶ performance criterion P

we want to evalutate worst-case performance w(F ,R,M,N,P)
defined as

sup
f,x0,...,xN,x∗

P(Of , x0, . . . , xN , x∗) (PEP)

s.t. f ∈ F , x∗ is optimal for f , ∥x0 − x∗∥ ≤ R

x1, . . ., xN is generated by methodM starting from x0,

Variable f is a function, and infinite-dimensional
No explicit constraint on dimension of domain of function f

How to solve this difficult optimization problem?

Let us do it step by step ...
34



A black-box method

First N iterates generated by a first-order black-box methodM
(N calls of the oracle), starting from initial x0 are

x1 =M1 (x0,Of (x0)) ,

x2 =M2 (x0,Of (x0),Of (x1)) ,

...

xN =MN (x0,Of (x0), . . . ,Of (xN−1)) .

Only depends on x0 and the finite list of outputs from the oracle

→ (PEP) can be reformulated as a finite-dimensional problem

i.e. replace (infnite-dimensional) functional variable f ∈ F
by a list of N (finite-dimensional) oracle outputs Of (xk)
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A finite-dimensional reformulation

Since method is oracle based, (PEP) can be reformulated in a
finite way using only only iterates {xi}i∈I , their function values
{fi}i∈I and their gradients {gi}i∈I as

sup
{xi,gi,fi}i∈I

P
(
{xi , gi , fi}i∈I

)
, (f-PEP)

s.t. there exists f ∈ F such that Of (xi ) = {fi , gi} ∀i ∈ I ,

x1, . . ., xN is generated by methodM from x0,

∥x0 − x∗∥2 ≤ R,

g∗ = 0

Crucial part is the first constraint, which says that {xi , gi , fi}i∈I
can be interpolated on F → find an equivalent tractable condition
for smooth convex functions
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Brief history of performance estimation

▶ Concept of performance estimation introduced by Drori and
Teboulle (2012, published 2014)

▶ Nonconvex formulation proposed by Drori and Teboulle
→ they solve a convex relaxation → only provides bounds,
but shown to be tight for some algorithms (using matching
worst-case functions)

▶ Other approaches similar in spirit:
integral quadratic constraints by Lessard, Recht, Packard
(2014); Lyapunov/potential functions by Taylor, Bach (2019)

▶ This talk’s: an exact formulation for performance estimation
of unconstrained first-order optimization algorithms
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Preview of our main result

▶ A reformulation as a semidefinite optimization problem
(dimension proportional to N)

▶ formulation is exact
→ optimal value provides the exact worst-case performance

▶ any dual feasible solution
→ upper bound on the worst-case performance
can be converted into a standard proof
(a weighted sum of valid inequalities)

▶ any primal feasible solution
→ lower bound on the worst case performance
can be converted into a concrete function
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The function class F0,L

A differentiable function f : Rn → R, f is called convex and L-smooth if
∀x , y ∈ Rn we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + ⟨∇f (y), x − y⟩,

(2) (L-smoothness) ∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥,

(2b) (L-smoothness) f (x) ≤ f (y) + ⟨∇f (y), x − y⟩+ L
2∥x − y∥2.
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Smooth convex interpolation problem

Consider a set S , and its associated values {(xi , gi , fi )}i∈S with
coordinates xi , subgradients gi and function values fi .

▶ Is there f ∈ F0,L (L-Lipschitz gradient, convex) s.t.

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S .

x

f

•
x0 •

x2

•
x1

▶ We want necessary and sufficient conditions for existence of f

▶ These conditions will appear as a constraints in our PEP formulation

41



Smooth convex interpolation (L <∞)

First attempt: following set conditions is necessary

fi ≥ fj + gT
j (xi − xj), i , j ∈ S , (C1)

||gi − gj ||2 ≤ L||xi − xj ||2.

but not sufficient!

(x1, g1, f1) = (−1,−2, 1)
(x2, g2, f2) = (0,−1, 0)

x

f

•

•

x1

x2

•

•

satisfies (C1) with L = 1 but cannot be differentiable...

(of course set of conditions does work if set S is whole domain)
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Smooth convex interpolation (L <∞)

Second attempt: following set conditions is necessary

fi ≥ fj + gT
j (xi − xj), i , j ∈ S , (C2)

fi ≤ fj + gT
j (xi − xj) +

L

2
||xi − xj ||22.

but not sufficient!

(x1, g1, f1) =

((
0
0

)
,

(
1
0

)
, 0

)
(x2, g2, f2) =

((
1
0

)
,

(
1
α

)
, 1

)
x (1)x (2)

f

•

•

x1

x2

•

•

•

•

x1

x2

•

•

satisfies (C2) but do not even satisfy the basic conditions (C1)...

conditions (C2) may also satisfy previous example for some L...
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A different approach
Idea: reduce smooth convex interpolation to convex interpolation.

Using two basic operations to transform the problem:

▶ Conjugation: f is closed, proper and convex, then:
f L-Lipschitz gradient⇔ f ∗ 1

L -strongly convex

(xi , gi , fi )i∈S is F0,L-interp.⇔ (gi , xi , x
T
i gi−fi )i∈S is F1/L,∞-interp.

▶ Minimal curvature subtraction:
f (x) µ-strongly convex ⇔ f (x)− µ

2 ||x ||
2
2 convex

Since ∇
(
f (x)− µ

2 ||x ||
2
)
= ∇f (x)− µx we have

(xi , gi , fi )i∈S is Fµ,L-interpolable

⇔(xi , gi − µxi , fi −
µ

2
||xi ||2)i∈S is F0,L−µ-interpolable
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Reminder: Conjugation
Given a proper function f : Rd → R ∪ {+∞}, the
(Legendre-Fenchel) conjugate of f is defined as:

f ∗(y) = sup
x∈Rd

yT x − f (x),

with f ∗ ∈ F0,∞ (proper, closed and convex).

For f ∈ F0,∞, we have a one-to-one correspondence between f
and f ∗, and the following propositions are equivalent:

(a) f (x) + f ∗(g) = gT x ,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞

(xi , gi , fi )i∈S is F0,L-interpolable

⇔(gi , xi , x
T
i gi − fi )i∈S is F1/L,∞-interpolable
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Smooth convex interpolation

▶ Correct necessary and sufficient conditions are given by
following Theorem [Taylor, Hendrickx, G. 2016]

▶ Set {(xi , gi , fi )}i∈S is F0,L-interpolable if and only

fj ≥ fi + gT
i (xj − xi ) +

1

2L
||gi − gj ||22 ∀i , j ∈ S

holds for every pair of indices i ∈ I and j ∈ S

▶ These correspond to (slighlty less) well-known necessary
conditions for L-smoothness (but only those are also sufficient)

f (x) ≥ f (y) +∇f (y)T (x − y) +
1

2L
∥∇f (x)−∇f (y)∥2

▶ Proof provides an explicit interpolating function
(piecewise linear-quadratic, not unique)
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A semidefinite optimization formulation

Let I = {0, 1, . . . ,N, ∗}, assume w.l.o.g. f ∗ = 0, x∗ = 0, g∗ = 0

Our performance estimation problem is now

sup
{xi ,gi ,fi}i∈I\{∗}

P
(
{xi , gi , fi}i∈I

)
, (f-PEP2)

such that {xi , gi , fi}i∈I is Fµ,L-interpolable,

x1, . . ., xN is generated by methodM,

∥x0 − x∗∥2 ≤ R.

▶ We want an exact and convex reformulation
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Fixed-step first-order algorirhms

▶ In order to deal with the method constraint, we only consider
fixed-step first-order methods

xi = x0 −
1

L

i−1∑
k=0

hi ,kgk

where hi ,k and fixed constants

▶ Iterates are defined by linear expressions involving past oracle
outputs

▶ Many classic, standard black-box methods can be
reformulated in this way (including methods based on multiple
sequences)

▶ Recursively express all iterates in terms of gradients (and
initial iterate x0)

▶ This leads to tractable linear equalities in our formulation,
involving variables xi and gi only
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Simple example: PEP for gradient method

max
f ,x0,...,xN ,x∗

f (xN)− f ∗,

subject to the constraints

f ∈ F0,L i.e. convex and has L-Lipschitz gradient

∇f (x∗) = 0,

xi+1 = xi −
h

L
∇f (xi ),

||x0 − x∗||22 ≤ R2.

can be reformulated as finite-dimensional problem using our
F0,L-interpolation conditions
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Formulation for performance optimization

Worst-case estimation problem translates into an exact finite
problem

max fN − f ∗

s.t. fj ≥ fi + gT
i (xj − xi ) +

1

2L
||gi − gj ||22 ∀i ̸= j ∈ {0, ...,N, ∗}

xi+1 = xi −
h

L
gi ∀i ∈ {0, ...,N − 1}

(x0 − x∗)T (x0 − x∗) ≤ R2

▶ Only remaining difficulty: scalar products, i.e. nonconvex
quadratic constraints

▶ Solution: Gram matrix G ⪰ 0, containing all scalar products
which turns the problem turns into an equivalent semidefinite
optimization problem
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Formulation for performance optimization
Example: N = 1 iteration, assume wlog x∗ = g∗ = 0, and choose

P = (x0 | x1 | g0 | g1)

G = PTP =


xT0 x0 xT0 x1 xT0 g0 xT0 g1
xT1 x0 xT1 x1 xT1 g0 xT1 g1
gT
0 x0 gT

0 x1 gT
0 g0 gT

0 g1
gT
1 x0 gT

1 x1 gT
1 g0 gT

1 g1

 ⪰ 0.

Our interpolating constraints become linear in the elements of G
From G ⪰ 0, we can recover x0, x1, g0 and g1.

Function f has d variables ⇔ rank(G ) ≤ d
Formulation is exact and dimension-free in large-scale case, i.e.

N ≪ d (actually when 2N + 2 ≤ d)
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Final semidefinite formulation for performance optimization
Assuming the performance criterion idepends linearly on function
values fi and elements of G (gT

i gj and xT0 gj) we now have

max
G∈SN+2,f ∈RN+1

bT f + Tr(CG ) (sdp-PEP)

s.t. fj − fi + Tr (GAij) ≤ 0, for all i , j ∈ I ,

Tr (GAR)− R2 ≤ 0,

G ⪰ 0.

▶ Constant data matrices Aij , and AR that depend on method
M (i.e. coefficients hi ,k) and function class parameters L, µ

▶ Exact formulation, matrix variable G is size N + 2, has O(N2)
linear constraints

▶ Solution of (primal) provides an explicit function attaining the
worst-case performance (using interpolation of the solution)
→ optimal value = lower bound on worst-case performance
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Obtaining a proof for the exact worst-case performance

To obtain a proof that computed value is an upper bound on the
worst-case performance, use solution of the dual SDP problem

inf
S ,λij ,τ

τR2 such that τAR − C +
∑
i ,j∈I

λijAij = S , (d-sdp-PEP)

∑
i ,j∈I

λij(uj − ui ) = b,

S ⪰ 0,

λij ≥ 0, i , j ∈ I ,

τ ≥ 0,

to derive a bound in the spirit of the introductory example
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Obtaining a proof for the exact worst-case performance

▶ Dual solution will provide a coefficient λij for each
interpolating condition
→ weights for the list of inequalities valid for each pairs of
iterates

In the example: λ01 = λ∗0 = λ∗1 =
1
2 and λ10 = 0, leading to

a sum of three valid inequalities SC (i , j) ≥ 0

1

2
SC (0, 1) +

1

2
SC (∗, 0) + 1

2
SC (∗, 1) ≥ 0
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Obtaining a proof for the exact worst-case performance

▶ Dual solution will provide a positive semidefinite slack matrix
S
→ quadratic form (in the xi and gi ) expressing the slack for
the weighted sum of valid inequalities will be nonnegative

In the example 0 ≤ 1
2SC (0, 1) + 1

2SC (∗, 0) + 1
2SC (∗, 1) =

1
4L∥d∥

2 −
(
f (x1)− f (x∗)

)
− QUAD(x , g) with

QUAD(x , g) =
L

4

∥∥∥d− g0

L
− g1

L

∥∥∥2+ 1

2L

∥∥∥g0
L

∥∥∥2+ 1

2L

∥∥∥g1
L

∥∥∥2 ≥ 0
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First-order methods : a brief introduction

Introduction to performance estimation

A convex formulation for performance estimation

Performance estimation of standard algorithms
Gradient method
Other methods and criteria
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Performance estimation of standard algorithms

▶ We compute numerical results from our formulation
(for values of N up to a few dozens/hundreds)

▶ In many cases we can identify the analytical form of a primal
solution valid for all N (hence an explicit function f )

▶ This gives us rigorous lower bounds on the worst-case
performance for all N

▶ Dependence on some constants can be derived a priori using
homogeneity considerations

▶ In several cases we can also identify the analytical form of a
dual solution with matching objective function for all N →
rigorous proof of the worst-case

▶ If no analytical dual solution: (one-sided) conjectures strongly
supported by numerical evidence
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Gradient method: results
Criterion fN − f ∗ and gradient method with constant step-size h

xi+1 = xi − h
Lgi .

Our results match, for all tested 0 < h < 2 and 1 ≤ N ≤ 100

max f (xN)− f ∗ =
LR2

2
max

(
1

2Nh + 1
, (1− h)2N

)
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2N

Conjectured by Drori and
Teboulle, 2014, who proved
it analytically for h ≤ 1

Suggests two worst-case
regimes

Class theoretical bound for
h = 1 from literature is

LR2

2

1

N
(2× worse)
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Intuition for each term in the bound

Each term corresponds to an explicit worst-case function
(which one is active depends on h and N)

These are very simple: 1D and piecewise linear-quadratic

Stays on linear part until last
iteration

Purely quadratic, controlled
overshooting at each iteration
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Optimal gradient step-size
Using the conjectured worst-case, compute optimal hopt(N)

2− log 4N

2N
∼ 1+(1+4N)−1/(2N) ≤ hopt(N) ≤ 1+(1+2N)−1/(2N) ∼ 2− log 2N

2N
.

(equalize both terms in bounds, no closed-form solution)
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( red: h = 1 classic bound, green: h = 1 exact bound, blue: optimal h exact bound)

Optimal step-size tends quickly to 2
Exact bound for hopt approximately twice better than for h = 1
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A few words about numerics

Problems solved with YALMIP+MOSEK, verified with
interval-arithmetic VSDP toolbox

N hopt Conjecture DT relaxation Rel. error SDP-PEP Rel. error

1 1.5000 LR2/8.00 LR2/8.00 0.00 LR2/8.00 7e-09

2 1.6058 LR2/14.85 LR2/14.54 2e-02 LR2/14.85 5e-09

5 1.7471 LR2/36.94 LR2/32.57 1e-01 LR2/36.94 1e-08

10 1.8341 LR2/75.36 LR2/59.80 3e-01 LR2/75.36 3e-08

20 1.8971 LR2/153.77 LR2/109.58 4e-01 LR2/153.77 6e-08

30 1.9238 LR2/232.85 LR2/156.23 5e-01 LR2/232.85 7e-08

40 1.9388 LR2/312.21 LR2/201.10 6e-01 LR2/312.21 3e-08

50 1.9486 LR2/391.72 LR2/244.70 6e-01 LR2/391.72 1e-07

100 1.9705 LR2/790.22 LR2/451.72 7e-01 LR2/790.22 1e-07

Table: Gradient Method for convex L-smooth function, worst-case
computed with relaxation from Drori and Teboulle and worst-case
obtained by exact formulation (SDP-PEP) for the criterion f (xN)− f ∗.
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Results on gradient norm

▶ Residual gradient norm ∥∇f (xN)∥, smooth case

max ∥∇f (xN)∥2 = LR max

(
1

Nh + 1
, |1− h|N

)

▶ Simple 1D piecewise linear-quadratic solutions in all cases
(different for each case)

▶ All results lead to optimal step-sizes
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Nesterov’s accelerated gradient method

Belongs to the class of fixed-step methods
Algorithm:

Initialization: x1 = x0 − g0
L , t1 = 1:

For i = 1 : N − 2

ti+1 =
1 +

√
1 + 4t2i
2

xi+1 = xi −
(
1 +

ti − 1

ti+1

)
gi
L

+
ti − 1

ti+1
(xi − xi−1) +

ti − 1

ti+1

gi−1

L

Termination: xN = xN−1 − gN−1

L

(nonstandard description, obtained from standard two-sequence
algorithm)
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Nesterov’s accelerated gradient method

Accelerated gradient with L = 1, R = 1 and µ = 0
Known theoretical bound: fN − f ∗ ≤ 2LR2

(N+1)2
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Relatively modest improvement (≈ 15% better)
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Smallest gradient norm among all iterates
▶ Dual methods care about gradient norm (← primal feasibility)
▶ For accelerated gradient methods, objective function accuracy

is O( 1
k2 ) but norm of residual gradient ∥∇f (xN)∥ is only O( 1k )

▶ However this norm is not necessarily decreasing monotonically!
▶ We can compute worst-case performance for

min0≤i≤N ||∇f (xi )||22 which is still semidefinite-representable
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Performance estimation: take-home messages
▶

Worst-case behaviour of first-order methods can be
computed exactly using semidefinite optimization

▶
For any fixed-coefficient first-order method

after any given number of iterations
on the class of smooth convex objective with given parameters

▶
Methodology provides easy-to-check (but not very intuitive)

proofs and explicit examples of worst-case functions

▶
Very flexible: choice of performance criteria (e.g. objective

value, gradient norm); can be extended to many settings such
as constrained, nonsmooth, proximal, non-convex, stochastic,

block-coordinate, etc. (see tomorrow’s talk)
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Thank you for your attention!

See you tomorrow morning for (many) extensions and recent results
and a presentation of two software toolboxes: PESTO and PEPit
https://github.com/PerformanceEstimation

References (unconstrained case):

Performance of first-order methods for smooth convex minimization: a

novel approach, Yoel Drori and Marc Teboulle., Math.Prog.vol.145 issue

1 (June 2014)

Smooth strongly convex interpolation and exact worst-case performance

of first-order methods, Adrien B. Taylor, Julien M. Hendrickx, François

Glineur, Math. Prog. vol. 161 issue 1 (Jan. 2017)
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Thank you for your attention!

See you tomorrow morning for (many) extensions and recent results
and a presentation of two software toolboxes: PESTO and PEPit
https://github.com/PerformanceEstimation

References (alternative approaches):

Analysis and design of optimization algorithms via integral quadratic

constraints, Laurent Lessard, Benjamin Recht and Andrew Packard,

SIAM J. on Optimization, 26(1), pp.57-95.

Stochastic first-order methods: non-asymptotic and computer-aided

analyses via potential functions, Adrien Taylor and Francis Bach. Conf.

on Learning Theory, PMLR, 2019, pp.2934-2992.
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