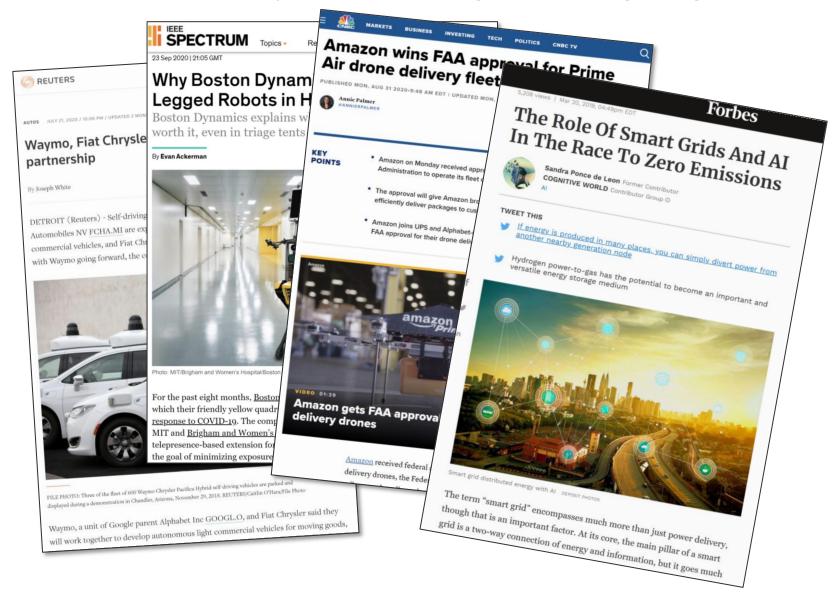
Competitive Control via Online Optimization

Adam Wierman, Caltech

Excitement about the potential of "learning to control" is growing...



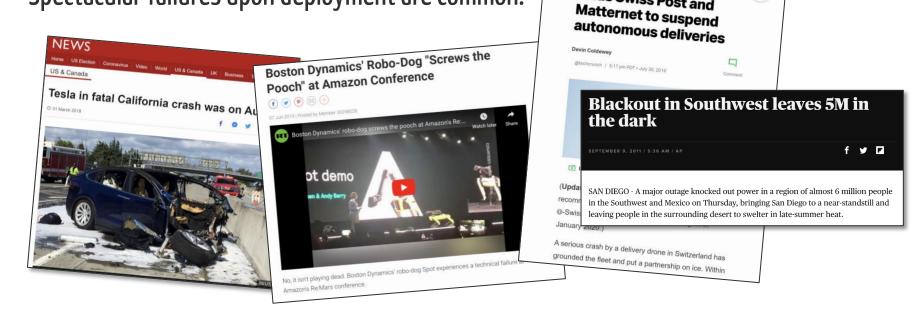
...but realizing the potential is proving to be a challenge.

Predicted arrivals have long passed.

Drone crash near kids

leads Swiss Post and

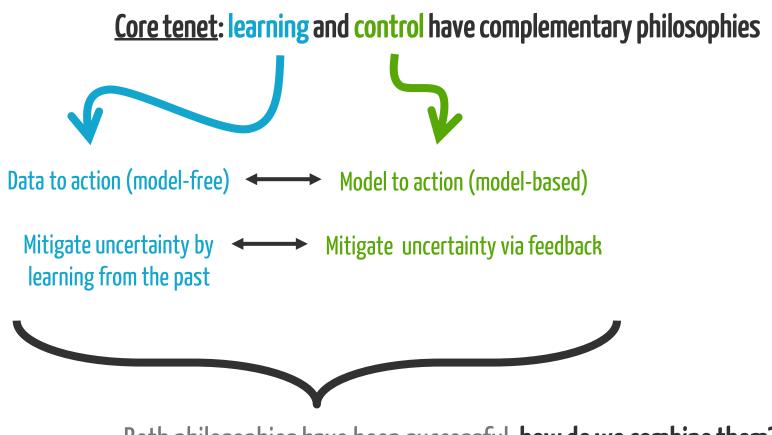
Spectacular failures upon deployment are common.



Scalable, trustworthy, and predictable control is required.

<u>We're not there yet</u>.

"Learning & Control" is emerging as a rich, impactful field



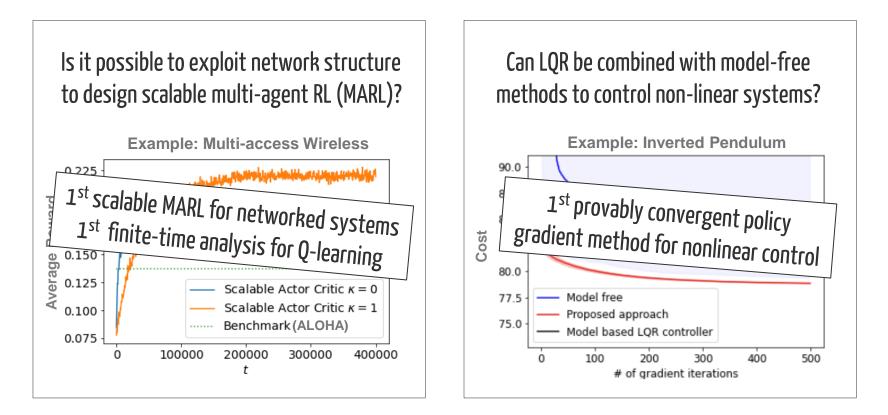
Both philosophies have been successful, how do we combine them?

How can ML predictions be integrated into control & autonomy? Can ML predictions be combined with MPC to improve control in face of timevarying environment, model error, delayed observations, ...

Today

How can ML tools help improve the robustness & efficiency of control? Can tools such as adversarial analysis, finite-time or single trajectory bounds, and general loss functions lead to improvements?

Can model-free and model-based approaches be combined to obtain the best of both worlds? How much do you need to "understand" about a system to control it? Can we bring scalability and robustness to model-free RL?



Can model-free and model-based approaches be combined to obtain the best of both worlds? How much do you need to "understand" about a system to control it? Can we bring scalability and robustness to model-free RL?

Guannan Qu

Yiheng Lin Na Li

Longbo Huang

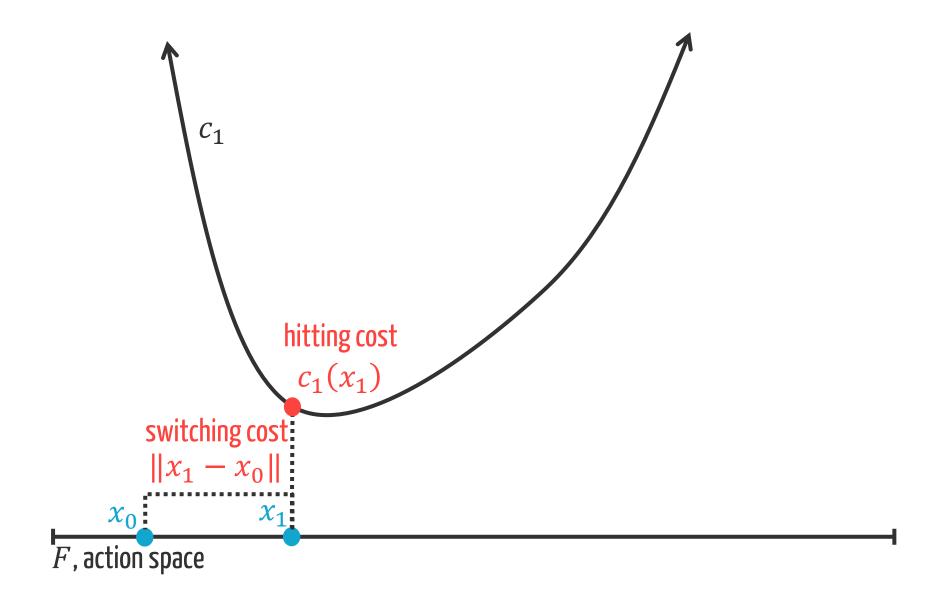
How can ML predictions be integrated into control & autonomy? Can ML predictions by combined with MPC to improve control in face of timevarying environment, model error, delayed observations, ...

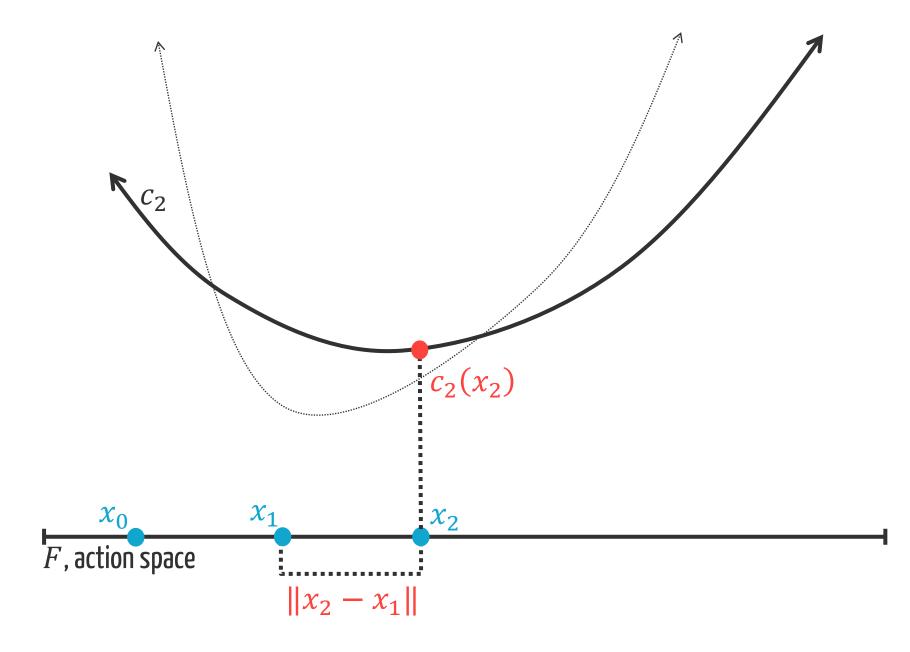
How can ML tools help improve the robustness & efficiency of control? Can tools such as adversarial analysis, finite-time or single trajectory bounds, and general loss functions lead to improvements?

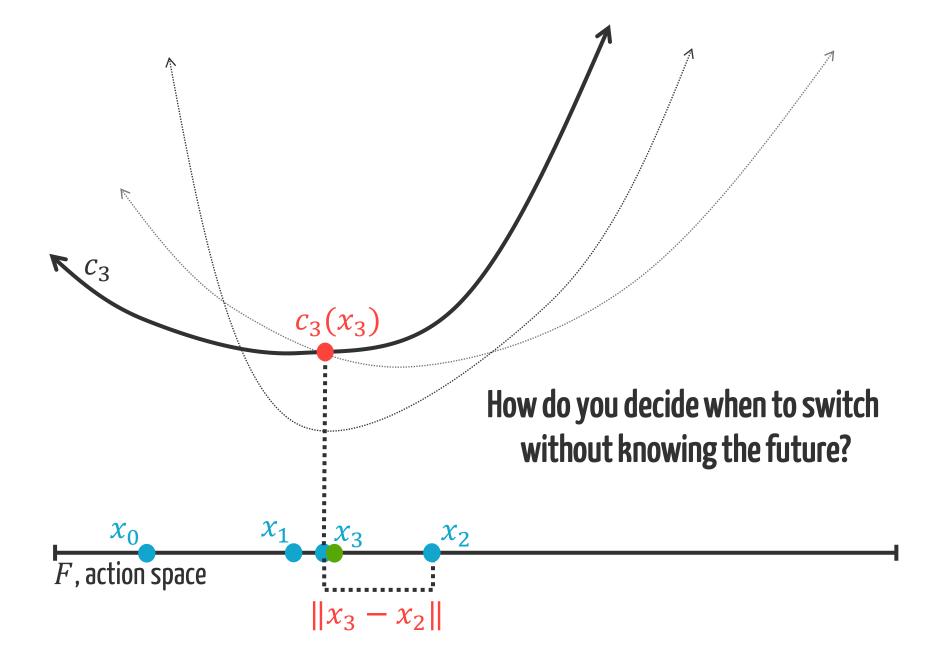
Can model-free and model-based approaches be combined to obtain the best of both worlds? How much do you need to "understand" about a system to control it? Can we bring scalability and robustness to model-free RL?

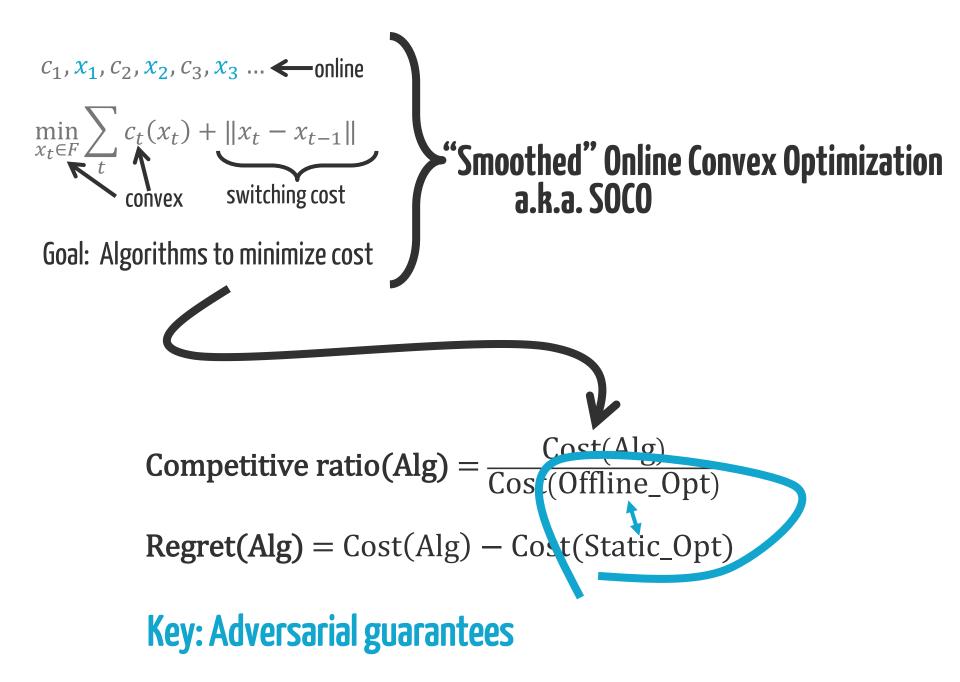
Today -

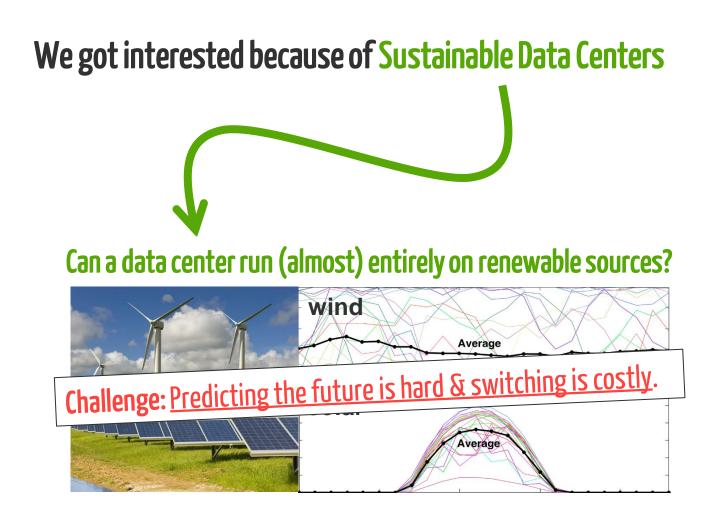
Online Optimization & Control









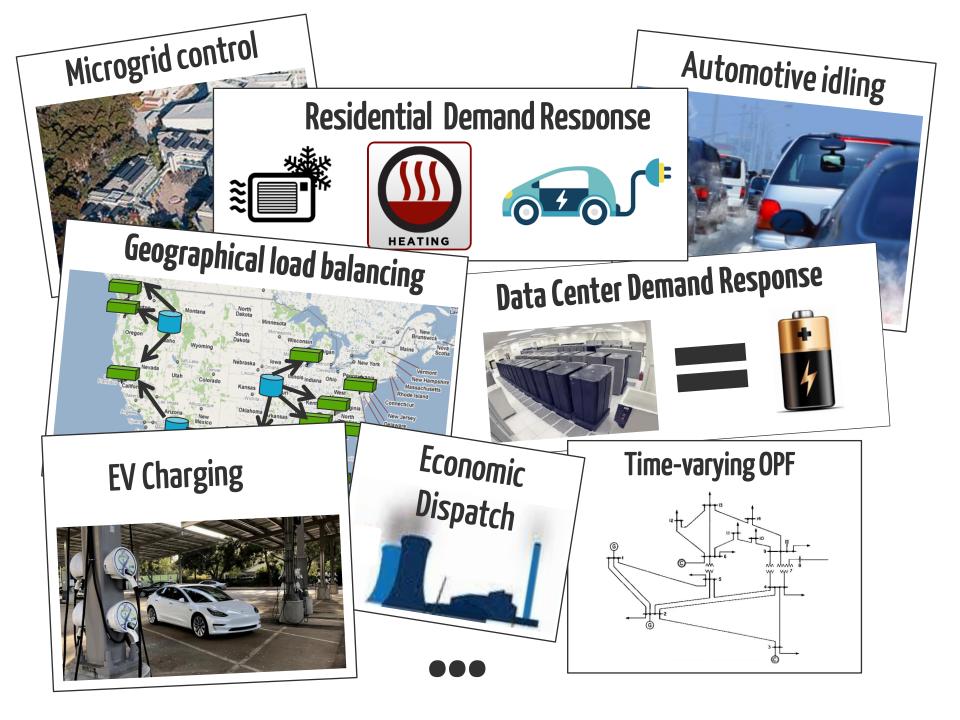


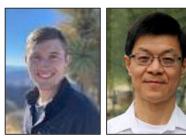
Requires <u>dynamic rightsizing</u> of capacity and <u>smart deferral</u> of workloads

We got interested because of Sustainable Data Centers

<u>Collaborators</u>: Zhenhua Liu, Yuan Chen, Cullen Bash, Martin Arlitt, Daniel Gmach, Zhikui Wang, Manish Marwah and Chris Hyser

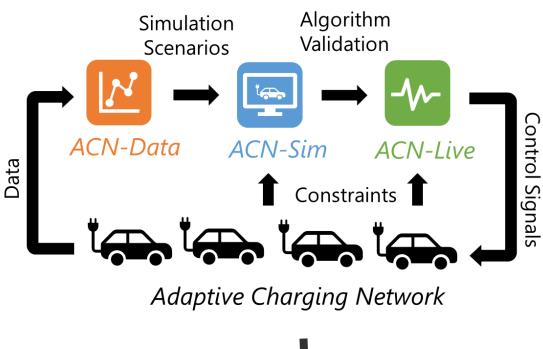
SOCO is now a core model for energy systems...

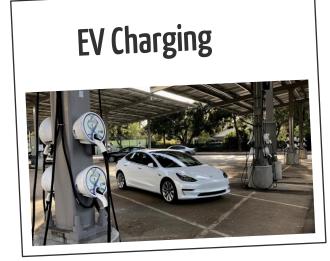




Zach Lee

Steven Low





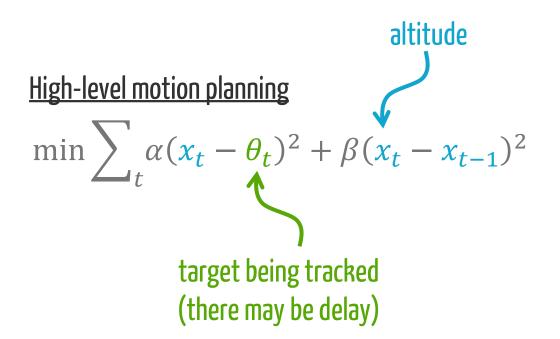
...and the applications aren't limited to energy!

Facial animation

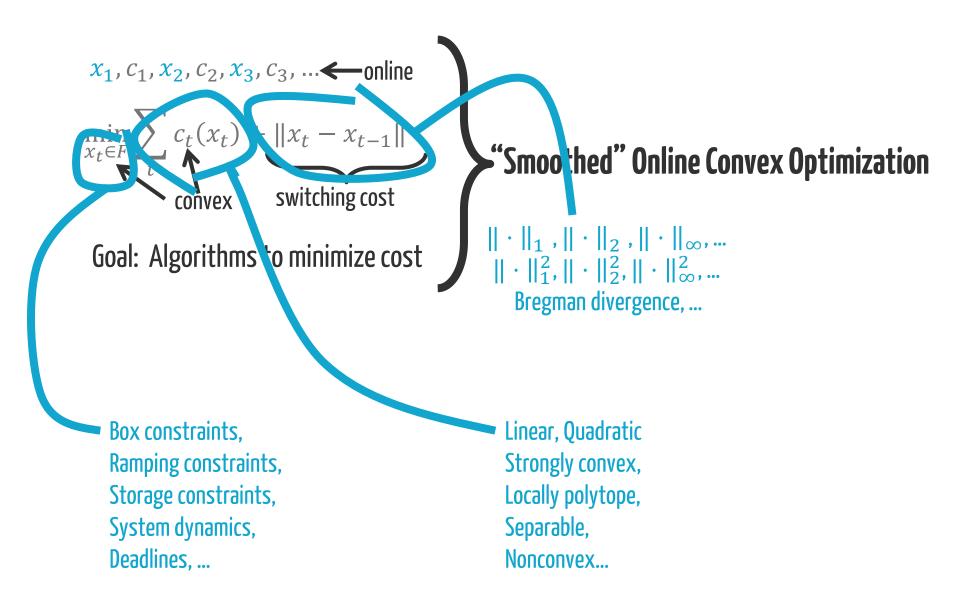
Robotic planning

Autonomous vehicles

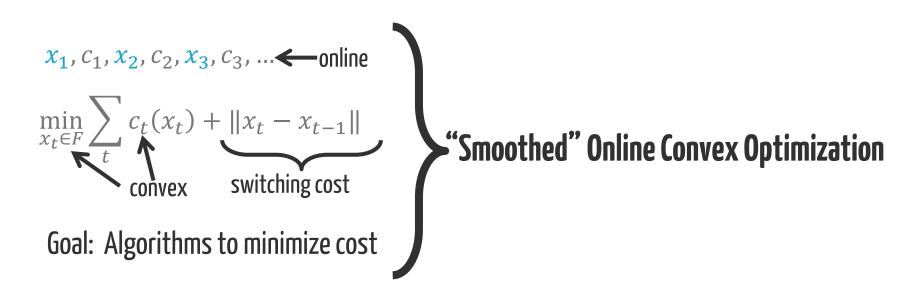
 $\bullet \bullet \bullet$



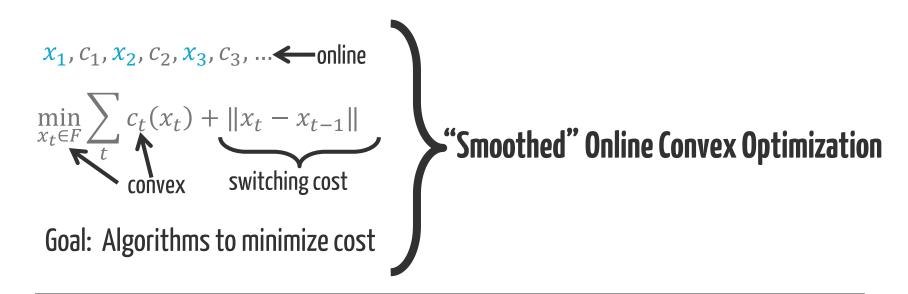
This has led to tons of variations to the model...

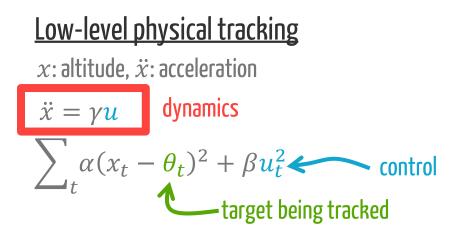


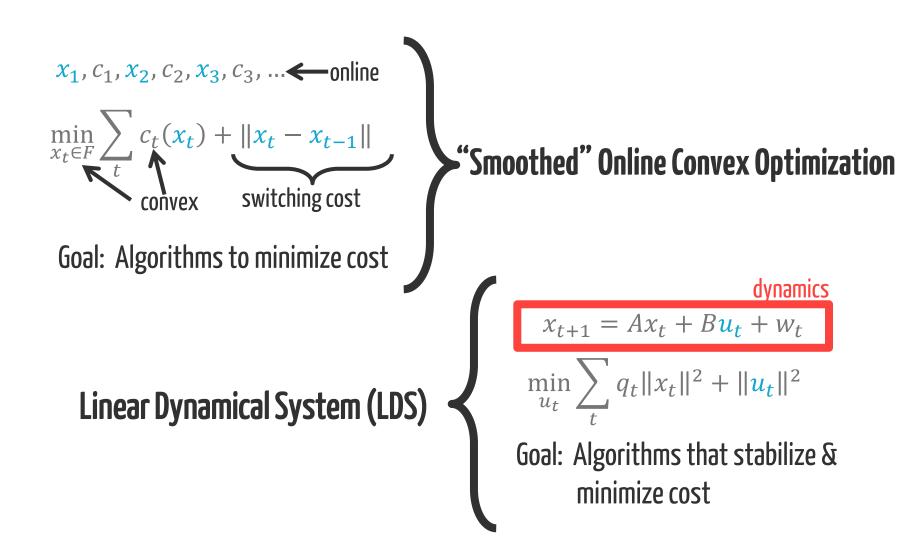
This has led to tons of variations to the model...

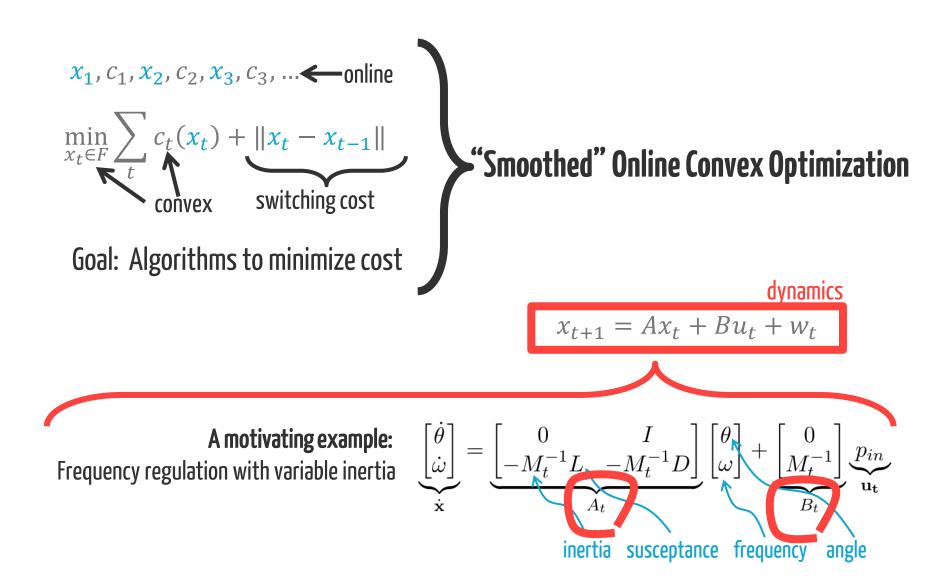


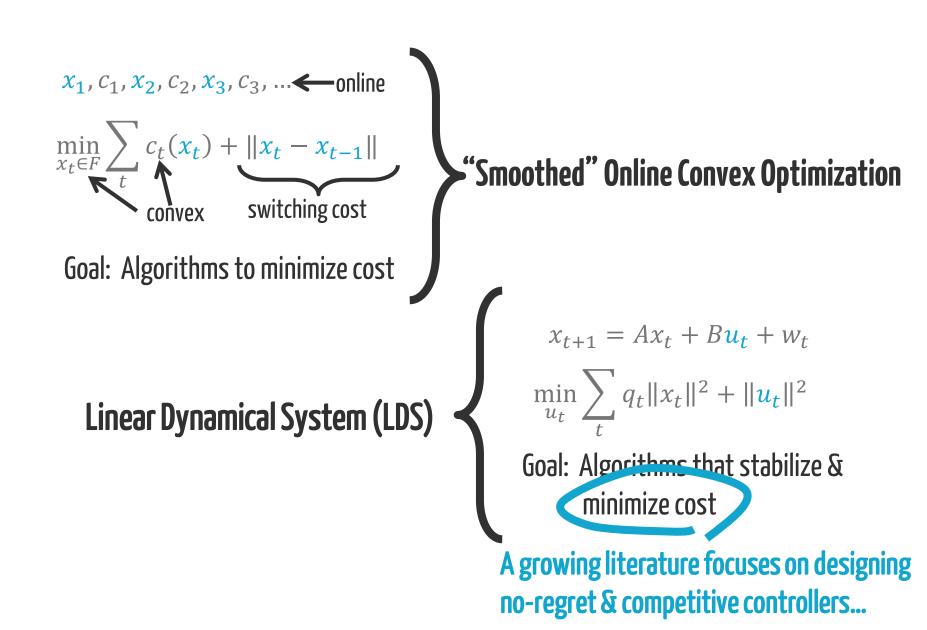
<u>...but control has dynamics and SOCO does not!</u>

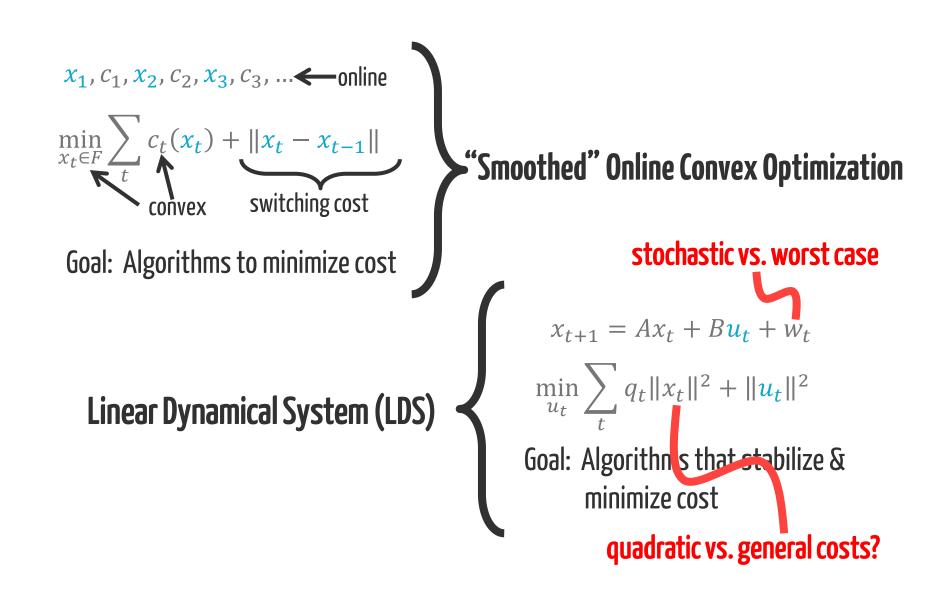






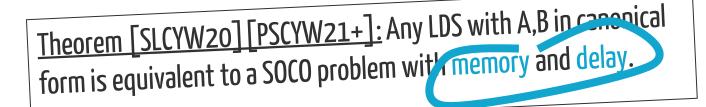






Can we connect SOCO to control?

A deep connection has emerged over the past few years ... [GW19] [ABHKS19] [GLSW19] [GHM 20] [SLCYW20] [PSCYW20] ...



Yiheng Lin

Weici Pan

Guanya Shi Soon-Jo Chung

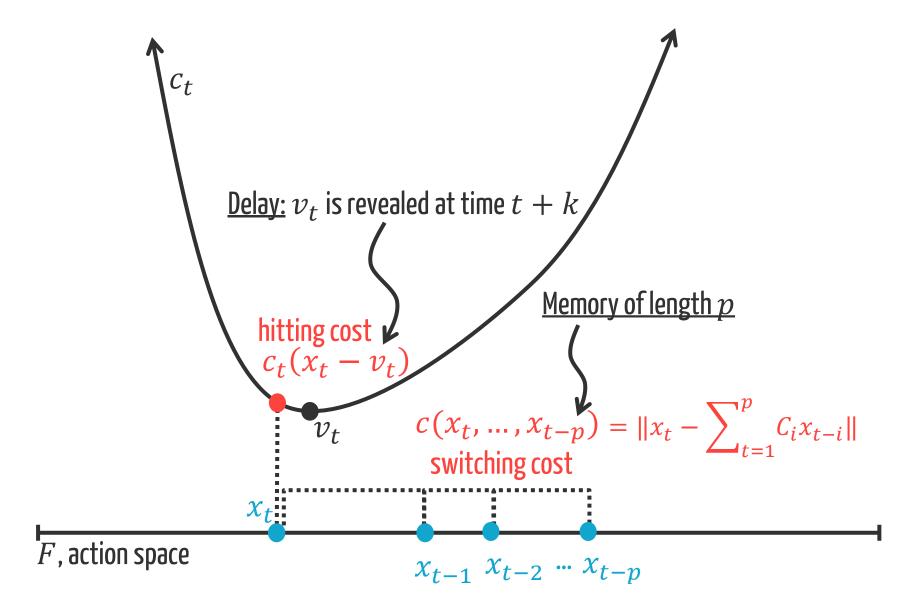
Yisong Yue

Can we connect SOCO to control?

A deep connection has emerged over the past few years ... [GW19] [ABHKS19] [GLSW19] [GHM 20] [SLCYW20] [PSCYW20] ...

<u>Theorem [SLCYW20] [PSCYW21+]:</u> Any LDS with A,B in canonical form is equivalent to a SOCO problem with memory and delay.

Memory first used in OCO in [AHM 2015]. Has importance beyond control too...



Can we connect SOCO to control?

A deep connection has emerged over the past few years ... [GW19] [ABHKS19] [GLSW19] [GHM 20] [SLCYW20] [PSCYW20] ...

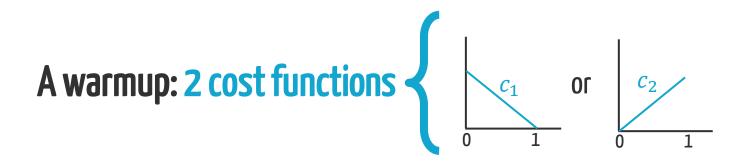
<u>Theorem [SLCYW20] [PSCYW20+]:</u> Any LDS with A,B in canonical form is equivalent to a SOCO problem with memory and delay.

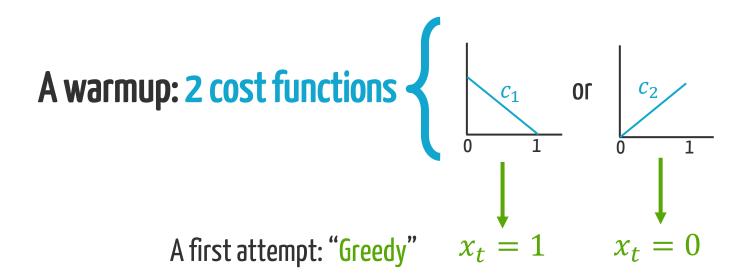
Memory \rightarrow input disturbance, $x_{t+1} = Ax_t + B(u_t + w_t)$ Delay \rightarrow state disturbance, $x_{t+t} = A(x_t + w_t) + Bu_t$

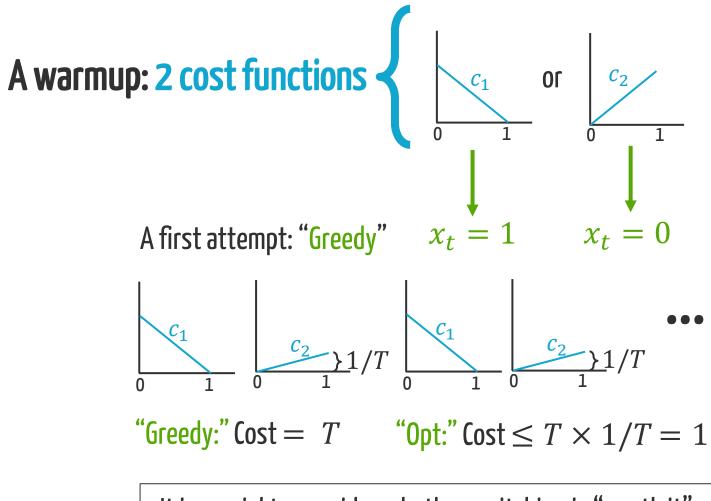
...and further: non-linear switch costs \rightarrow non-linear dynamics

<u>Today</u>: A taste of SOCO & a new algorithm

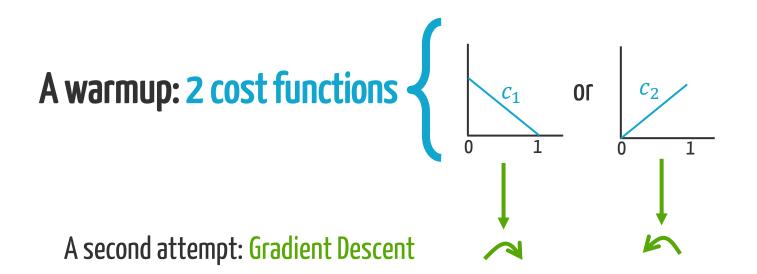
We'll start by ignoring memory & delay...

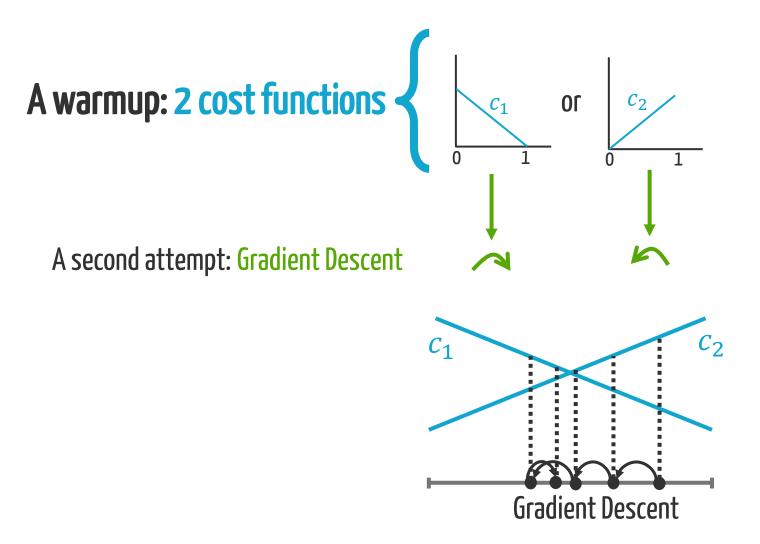


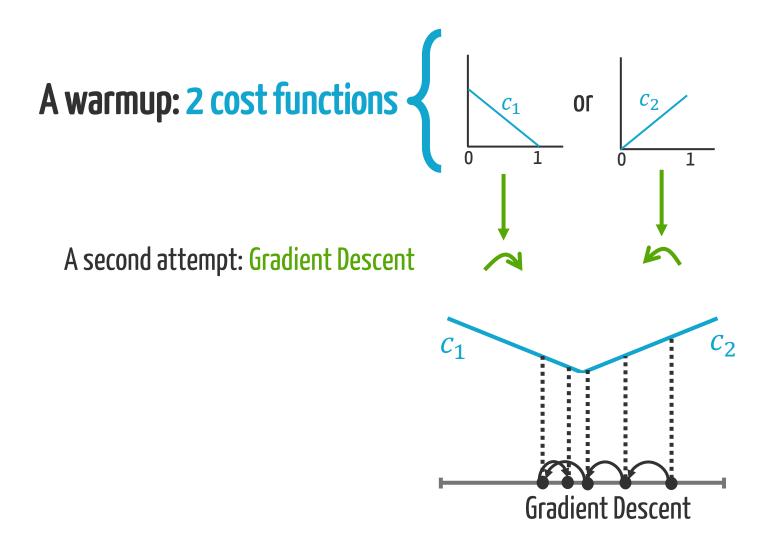


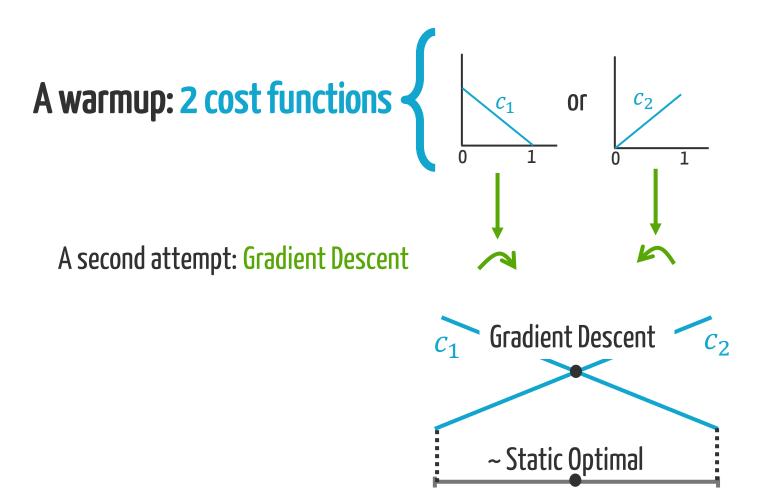


It is crucial to consider whether switching is "worth it"

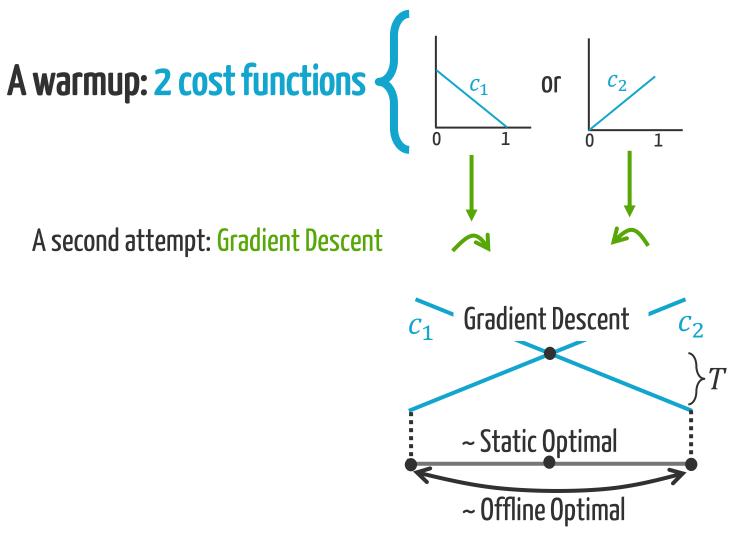




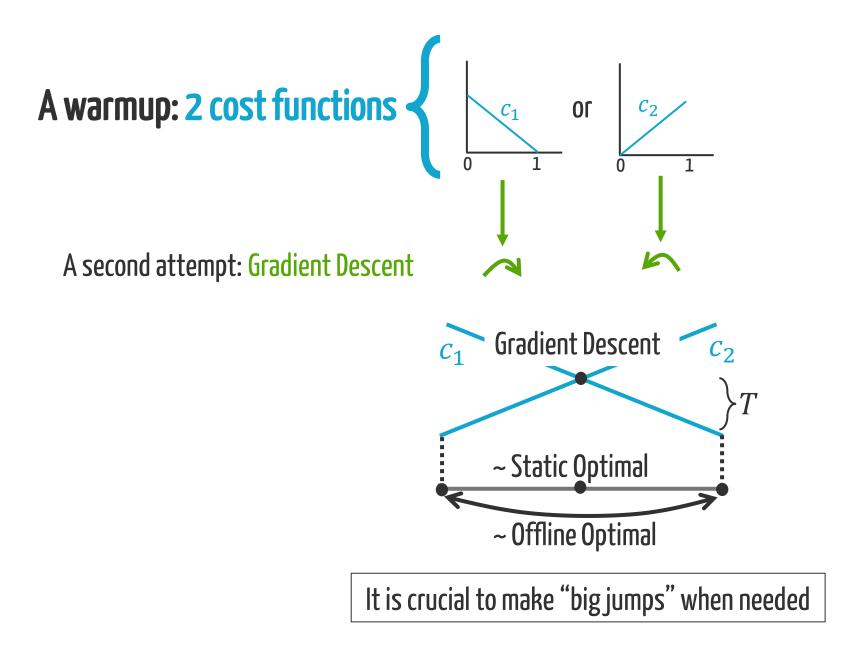


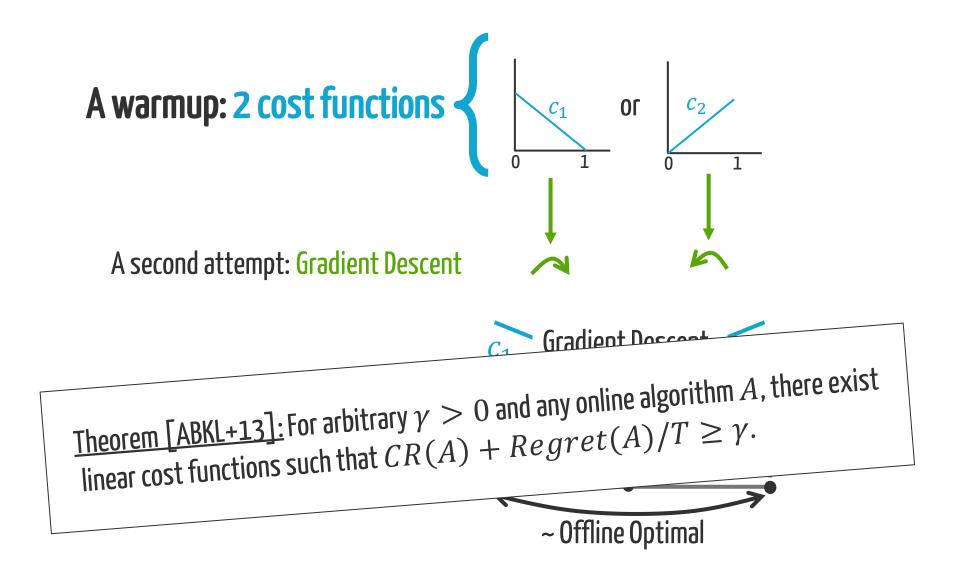


Learns the best static point, but...



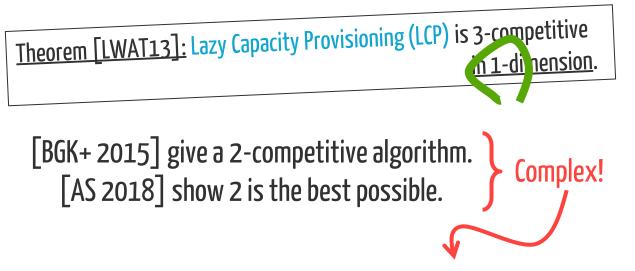
Offline optimal is order-of-magnitude better.





Many algorithms can be no-regret for SOCO but... Can an algorithm be constant competitive? Yes! ...but it took a long time to get there.

The starting point



"Memoryless" algorithms can't be better than 3 competitive. [ABKL+ 2013] & [BGK+2015] give 3-competitive memoryless algorithms.

The starting point

<u>Theorem [LWAT13]: Lazy Capacity Provisioning (LCP)</u> is 3-competitive <u>in 1-dimension</u>.

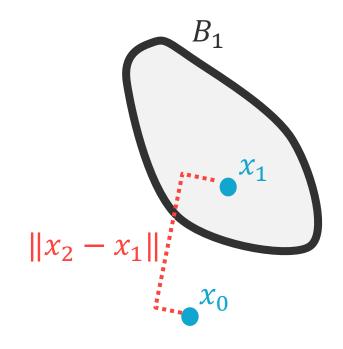
Years passed with no progress outside of 1 dimension.

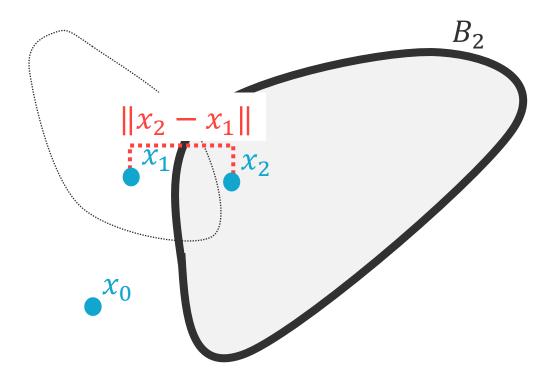
We now understand why...

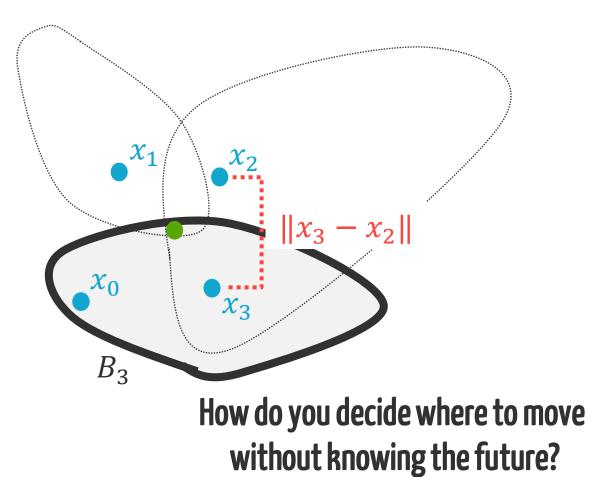
Theorem [BLLS19] [LGW20]: In *d*-dimensional <u>convex body chasing (CBC)</u> problem, any online algorithm is $\Omega(\sqrt{d})$ -competitive, even when the algorithm can perfectly forecast the next *w* steps bodies.

Yiheng Lin

Gautam Goel

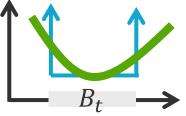






We now understand why:

Theorem [BLLS19] [LGW20]: In *d*-dimensional <u>convex body chasing (CBC)</u> <u>problem</u>, any online algorithm is $\Omega(\sqrt{d})$ -competitive , even when the algorithm can perfectly forecast the next *w* steps bodies.



But we usually have some structure!

A breakthrough

Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD) is $1 + O(1/\sqrt{m})$ -competitive for m-strongly convex hitting costs and switching costs that are either the squared- L_2 norm or Bregman divergence.

Gautam Goel

Yiheng Lin

Haoyuan Sun

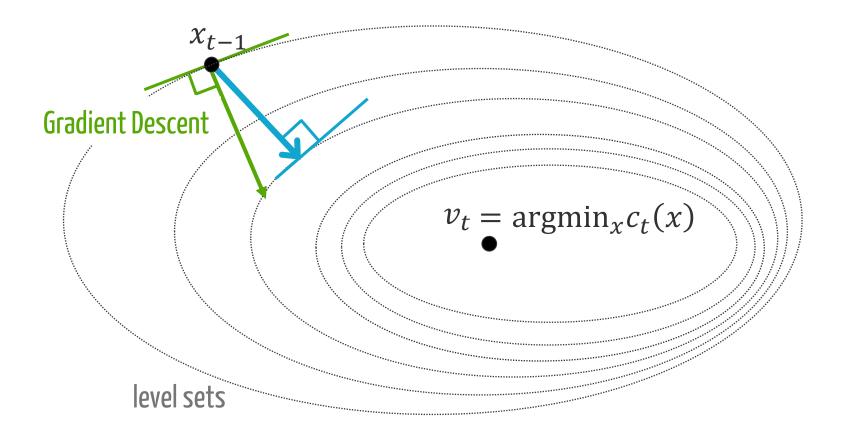
Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD) is $1 + O(1/\sqrt{m})$ -competitive for m-strongly convex hitting costs and switching costs that are either the squared- L_2 norm or Bregman divergence.

No dependence on the dimension *d*!

What is achievable? W19]: Regularized Online Balanced Descent (ROBD) is $1 + O(1/\sqrt{m})$ -competitive for m-strongly convex hitting costs and switching costs that are either the squared- L_2 norm or Bregman divergence.

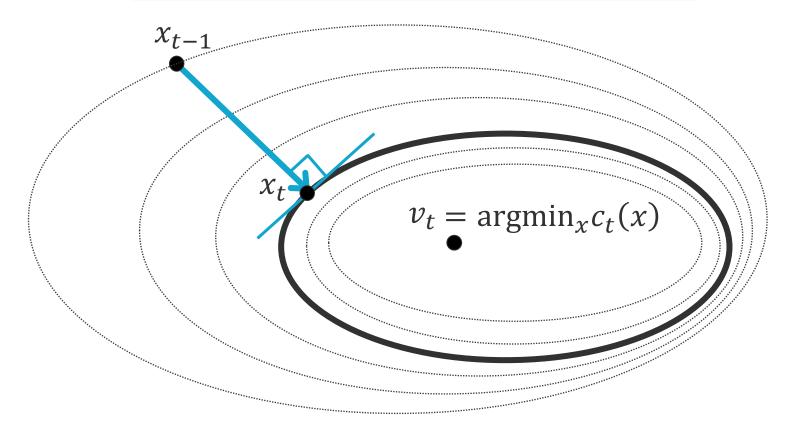
Theorem [GLSW19]: All online algorithms have competitive ratio $\geq \frac{1}{2} (1 + \sqrt{1 + 4/m}) \text{ for } m \text{-strongly convex hitting costs}$ and squared L_2 switching costs. Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD) is $\frac{1}{2}(1 + \sqrt{1 + 4/m})$ -competitive for *m*-strongly convex hitting cost and switching costs that are either the squared- L_2 norm or Breg man divergence. Theorem [GLSW19]: All online algorithms have competitive ratio $\geq \frac{1}{2}(1 + \sqrt{1 + 4/m})$ for *m*-strongly convex hitting costs and squared L_2 switching costs.

Regularized Online Balanced Descent (OBD)



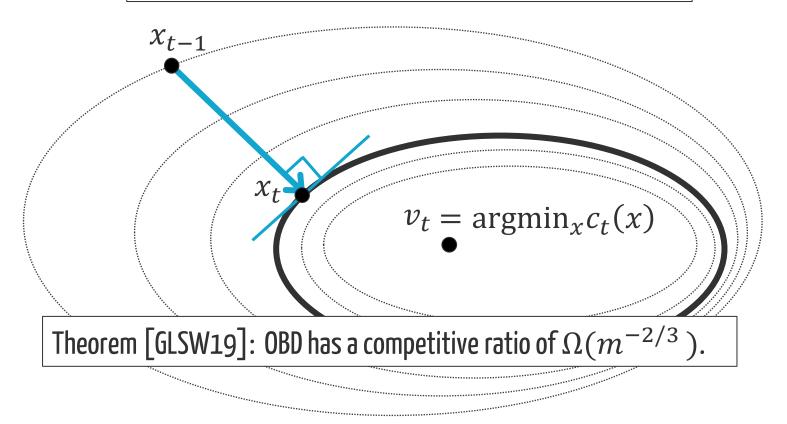
Regularized Online Balanced Descent (OBD)

Project onto a level set $K_l = \{ x | c_t(x) \le l \}$ where *l* balances costs, i.e., $||x(l) - x_{t-1}|| = \beta l$.



Regularized Online Balanced Descent (OBD)

Project onto a level set $K_l = \{ x | c_t(x) \le l \}$ where *l* balances costs, i.e., $||x(l) - x_{t-1}|| = \beta l$.

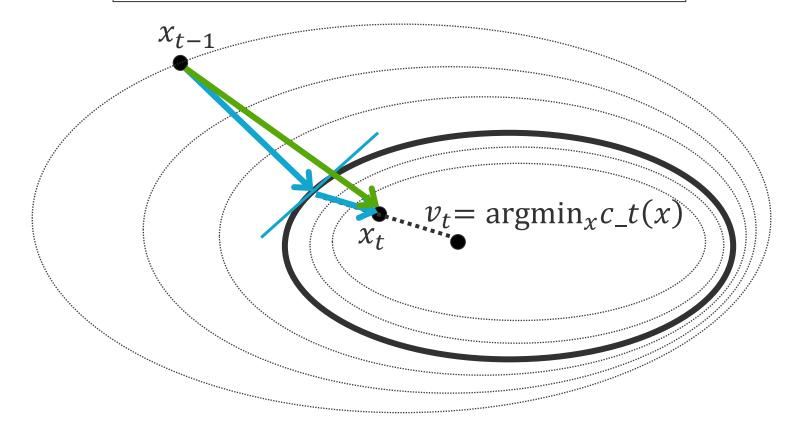


Theorem [GLSW19]: OBD has a competitive ratio of $\Omega(m^{-2/3})$.

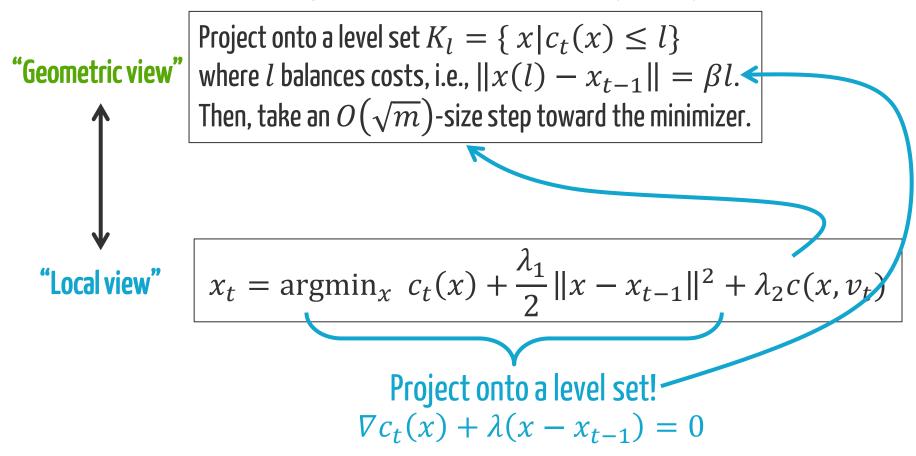
Greedy Online Balanced Descent (G-OBD)

"Geometric view"

Project onto a level set $K_l = \{ x | c_t(x) \le l \}$ where l balances costs, i.e., $||x(l) - x_{t-1}|| = \beta l$. Then, take an $O(\sqrt{m})$ -size step toward the minimizer.



Greedy Online Balanced Descent (G-OBD)



Greedy Online Balanced Descent (G-OBD)

Project onto a level set $K_l = \{ x | c_t(x) \le l \}$ "Geometric view" where *l* balances costs, i.e., $||x(l) - x_{t-1}|| = \beta l$. Then, take an $O(\sqrt{m})$ -size step toward the minimizer. $x_{t} = \operatorname{argmin}_{x} c_{t}(x) + \frac{\lambda_{1}}{2} \|x - x_{t-1}\|^{2} + \lambda_{2}c(x, v_{t})$ "Local view" **Regularized Online Balanced Descent (R-OBD)**

Computationally easier and...

Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD) is $\frac{1}{2}(1 + \sqrt{1 + 4/m})$ -competitive for *m*-strongly convex hitting costs and switching costs that are either the squared- L_2 norm or Bregman divergence.

Regularized Online Balanced Descent (R-OBD)

Computationally easier and <u>obtains the optimal competitive ratio!</u>

Can an algorithm be constant competitive? Yes, with a little structure! <u>...and the results extend to settings with delay & memory</u> $\begin{array}{l} \underline{\text{Theorem [SLCYW20][PSCYW20+]: Optimistic ROBD}(\lambda) \text{ is}} \\ O(l+\alpha)^k \max\{\frac{1}{\lambda}, \frac{\lambda+m}{m+(1-\alpha^2)\lambda}\} \text{ -competitive}} \\ \text{for } l\text{-smooth, } m\text{-strongly convex hitting costs with delay } k \\ \text{and memory of length } p \text{ with } \alpha = \sum_{i=1}^p \|C_i\|. \end{array}$

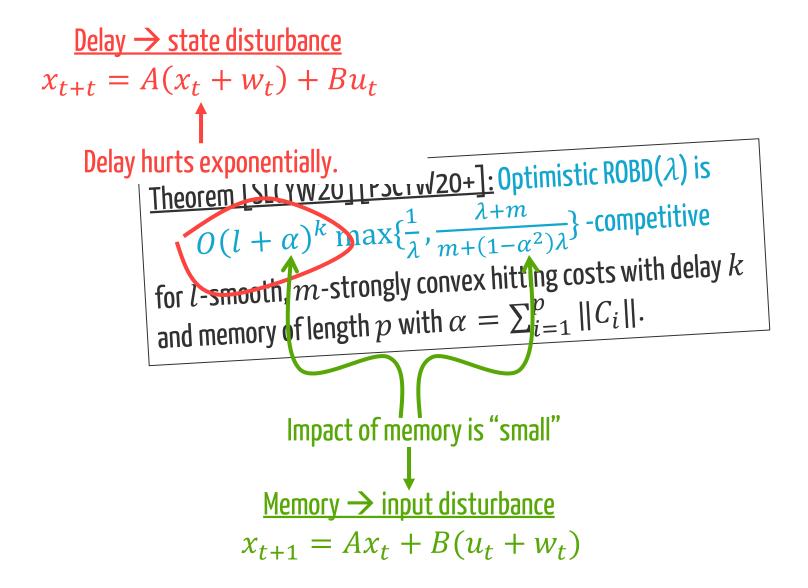
Yiheng Lin

Guanya Shi Soon-Jo Chung

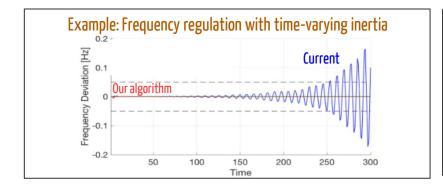
Yisong Yue

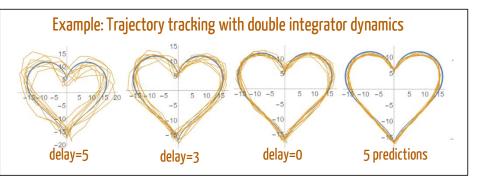
 $\begin{array}{l} \underline{\text{Theorem [SLCYW20] [PSCYW20+]: Optimistic ROBD(\lambda) is}}\\ O(l+\alpha)^k \max\{\frac{1}{\lambda}, \frac{\lambda+m}{m+(1-\alpha^2)\lambda}\} \text{-competitive} \\ \text{for } l\text{-smooth, } m\text{-strongly convex hitting costs with delay } k \\ \text{and memory of length } p \text{ with } \alpha = \sum_{i=1}^p ||C_i||. \end{array}$

Implies the first constant competitive policy for LDS in the case of adversarial noise.



 $\begin{array}{l} \underline{\text{Theorem}\left[\text{SLCYW20}\right]\left[\text{PSCYW20+}\right]:\text{Optimistic ROBD}(\lambda)\text{ is}}\\ O(l+\alpha)^k\max\{\frac{1}{\lambda},\frac{\lambda+m}{m+(1-\alpha^2)\lambda}\}\text{ -competitive} \\ \text{for }l\text{-smooth, }m\text{-strongly convex hitting costs with delay }k\\ \text{and memory of length }p\text{ with }\alpha=\sum_{i=1}^p\|C_i\|. \end{array}$



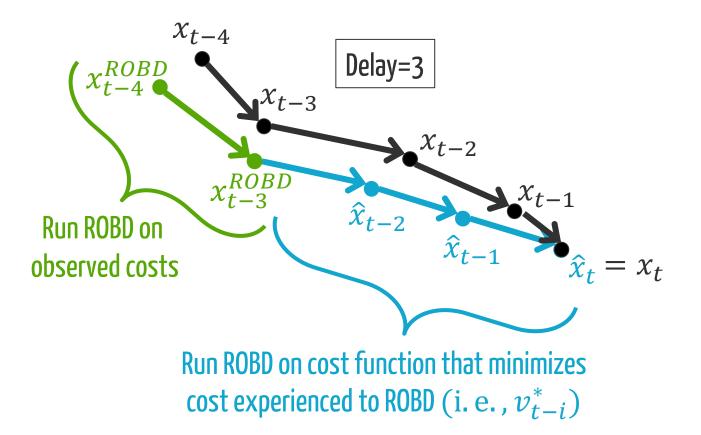


Optimistic ROBD

Key idea: "optimistically" track the ROBD (full information) trajectory.

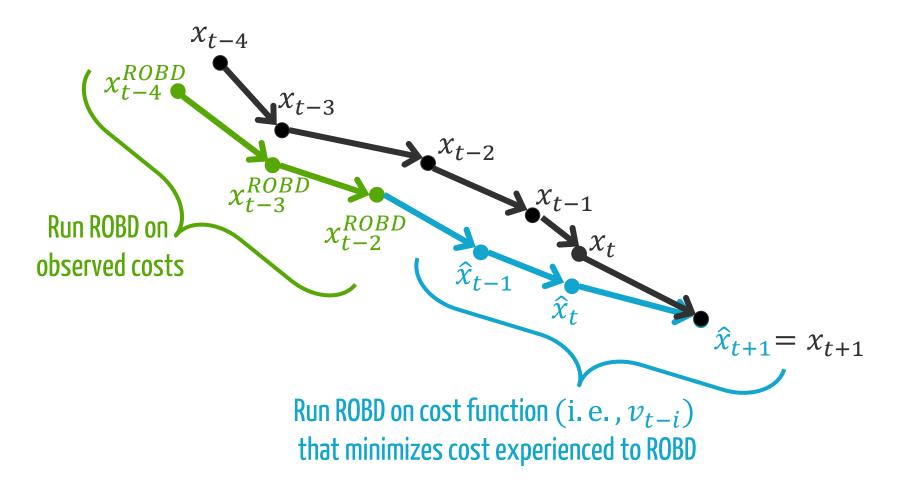
Optimistic ROBD

Key idea: "optimistically" track the ROBD (full information) trajectory.



Optimistic ROBD

Key idea: "optimistically" track the ROBD (full information) trajectory.



 Can an algorithm be constant competitive?

 Yes, with a little structure!

 ...and the results extend to settings with delay & memory

 & storage/inventory constraints

 & non-convex costs

 & predictions

Competitive Control via Online Optimization

Huge progress!

No predictions: LCP \rightarrow RBG \rightarrow ... \rightarrow ROBD \rightarrow Optimistic ROBD... Predictions: MPC \rightarrow AFHC \rightarrow CHC \rightarrow RHGD \rightarrow SFHC ...

Many successful applications!

Sustainable Data Centers, EV charging, video streaming, CDNs, Microgrids, ...

...still lots of open questions remain!

Competitive Control via Online Optimization

Papers introducing Online Balanced Descent and its variations:

- N Chen, G Goel, A Wierman. <u>Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent.</u> Conference on Learning Theory (COLT) 2018
- G Goel, A Wierman. <u>An Online Algorithm for Smoothed Regression and LQR Control</u>. Conference on Artificial Intelligence and Statistics (AISTATS) 2019
- G Goel, Y Lin, H Sun, A Wierman. <u>Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization.</u> NeurIPS 2019, oral spotlight.
- G Shi, Y Lin, S Chung, Y Yue, and A Wierman. <u>Online Optimization with Memory and Competitive Control.</u> NeurIPS 2020.
- Y Lin, G Goel, A Wierman. <u>Online Optimization with Predictions and Non-Convex Losses.</u> Sigmetrics 2020.
- W Pan, G Shi, S Chung, Y Yue, and A Wierman. <u>Competitive Control via Online Optimization</u>. Under Preparation.

Papers connecting online optimization with distributed optimization:

- P London, S Vardi, A Wierman, and H Yi. <u>A parallizable acceleration framework for packing linear programs</u>. AAAI 2018.
- P London, N Chen, S Vardi, and A Wierman. Logarithmic Communication for Distributed Optimization in Multi-Agent Systems.
 Sigmetrics 2020.

Papers bridging model-based & model-free control:

- G Qu, A Wierman. <u>Finite-time Analysis of Asynchronous Stochastic Approximation and Q-learning</u>. COLT 2020.
- G Qu, A Wierman, N Li. Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems. L4DC 2020, oral spotlight.
- G Qu, Y Lin, A Wierman, N Li. <u>Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward.</u> NeurIPS 2020.
- G Qu, C Yu, S Low, A Wierman. <u>Combining Model-Based and Model-Free Methods for Nonlinear Control: A Provably Convergent</u> <u>Policy Gradient Approach</u>. Under submission