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Excitement about the potential of “learning to control” is growing…



…but realizing the potential is proving to be a challenge.

Spectacular failures upon deployment are common.

Predicted arrivals have long passed.



Scalable, trustworthy, and predictable control is required.

We’re not there yet.



“Learning & Control” is emerging as a rich, impactful field



Core tenet: learning and control have complementary philosophies

Data to action (model-free)

Mitigate uncertainty by 

learning from the past

Model to action (model-based)

Mitigate  uncertainty via feedback

Both philosophies have been successful, how do we combine them?



How can ML tools help improve the robustness & efficiency of control?
Can tools such as adversarial analysis, finite-time or single trajectory bounds, and 

general loss functions lead to improvements?  

How can ML predictions be integrated into control & autonomy?
Can ML predictions be combined with MPC to improve control in face of time-

varying environment, model error, delayed observations, … Today

Can model-free and model-based approaches be combined to obtain 

the best of both worlds? How much do you need to “understand” about a 

system to control it? Can we bring scalability and robustness to model-free RL?
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Is it possible to exploit network structure 

to design scalable multi-agent RL (MARL)?

Example: Multi-access Wireless

Can LQR be combined with model-free 

methods to control non-linear systems?

Example: Inverted Pendulum
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Can model-free and model-based approaches be combined to obtain 

the best of both worlds? How much do you need to “understand” about a 

system to control it? Can we bring scalability and robustness to model-free RL?



How can ML tools help improve the robustness & efficiency of control?
Can tools such as adversarial analysis, finite-time or single trajectory bounds, and 

general loss functions lead to improvements?  

How can ML predictions be integrated into control & autonomy?
Can ML predictions by combined with MPC to improve control in face of time-

varying environment, model error, delayed observations, … 
Today

Can model-free and model-based approaches be combined to obtain 

the best of both worlds? How much do you need to “understand” about a 

system to control it? Can we bring scalability and robustness to model-free RL?



Online Optimization & Control



𝑐1 𝑥1

𝐹, action space

𝑐1

𝑥1𝑥0

‖𝑥1 − 𝑥0‖

hitting cost

switching cost



‖𝑥2 − 𝑥1‖

𝑥2

𝑐2 𝑥2

𝐹, action space

𝑐2

𝑥1𝑥0



𝑥3

𝑐3

𝑐3(𝑥3)

‖𝑥3 − 𝑥2‖
𝐹, action space

𝑥2𝑥1

How do you decide when to switch 

without knowing the future?

𝑥0



min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost
“Smoothed” Online Convex Optimization

Goal:  Algorithms to minimize cost

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3 …

convex

online

a.k.a. SOCO



min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost
“Smoothed” Online Convex Optimization

Goal:  Algorithms to minimize cost

convex

online

Competitive ratio(Alg) =
Cost Alg

Cost Offline_Opt

a.k.a. SOCO

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3 …

Regret(Alg) = Cost Alg − Cost(Static_Opt)

Key: Adversarial guarantees



We got interested because of Sustainable Data Centers

wind

solar

Can a data center run (almost) entirely on renewable sources?

Requires dynamic rightsizing of capacity and smart deferral of workloads



We got interested because of Sustainable Data Centers

Collaborators: Zhenhua Liu, Yuan Chen, Cullen Bash, Martin Arlitt, Daniel Gmach, 

Zhikui Wang, Manish Marwah and Chris Hyser



SOCO is now a core model for energy systems…



…

Residential  Demand Response

Time-varying OPF
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…and the applications aren’t limited to energy!

…



min෍
𝑡
𝛼 𝑥𝑡 − 𝜃𝑡

2 + 𝛽 𝑥𝑡 − 𝑥𝑡−1
2

altitude

target being tracked

(there may be delay)

High-level motion planning



“Smoothed” Online Convex Optimization

This has led to tons of variations to the model…

min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

‖ ⋅ ‖1 , ‖ ⋅ ‖2 , ‖ ⋅ ‖∞, … 

‖ ⋅ ‖1
2, ‖ ⋅ ‖2

2, ‖ ⋅ ‖∞
2 , … 

Bregman divergence, …

Linear, Quadratic

Strongly convex,

Locally polytope,

Separable, 

Nonconvex…

Box constraints,

Ramping constraints,

Storage constraints, 

System dynamics, 

Deadlines, …



“Smoothed” Online Convex Optimization

This has led to tons of variations to the model…

min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

…but control has dynamics and SOCO does not!



“Smoothed” Online Convex Optimization
min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

Low-level physical tracking

ሷ𝑥 = 𝛾𝑢

෍
𝑡
𝛼 𝑥𝑡 − 𝜃𝑡

2 + 𝛽𝑢𝑡
2

𝑥: altitude, ሷ𝑥: acceleration

control

target being tracked

dynamics



Linear Dynamical System (LDS)

“Smoothed” Online Convex Optimization
min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

min
𝑢𝑡

෍

𝑡

𝑞𝑡 𝑥𝑡
2 + 𝑢𝑡

2

Goal:  Algorithms that stabilize & 

minimize cost

dynamics



A motivating example: 

Frequency regulation with variable inertia

“Smoothed” Online Convex Optimization
min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

inertia    susceptance    frequency     angle

dynamics



Linear Dynamical System (LDS)

“Smoothed” Online Convex Optimization
min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

min
𝑢𝑡

෍

𝑡

𝑞𝑡 𝑥𝑡
2 + 𝑢𝑡

2

Goal:  Algorithms that stabilize & 

minimize cost

A growing literature focuses on designing 

no-regret & competitive controllers…



Linear Dynamical System (LDS)

“Smoothed” Online Convex Optimization
min
𝑥𝑡∈𝐹

෍

𝑡

𝑐𝑡 𝑥𝑡 + ‖𝑥𝑡 − 𝑥𝑡−1‖

switching cost

Goal:  Algorithms to minimize cost

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, …

convex

online

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

min
𝑢𝑡

෍

𝑡

𝑞𝑡 𝑥𝑡
2 + 𝑢𝑡

2

Goal:  Algorithms that stabilize & 

minimize cost

stochastic vs. worst case

quadratic vs. general costs?



Can we connect SOCO to control? 

A deep connection has emerged over the past few years  

… [GW19] [ABHKS19] [GLSW19 ] [GHM 20] [SLCYW20] [PSCYW20] …

Guanya Shi Soon-Jo Chung Yisong YueYiheng LinWeici Pan



Has importance beyond control too…
Memory first used in OCO in [AHM 2015].

Can we connect SOCO to control? 

A deep connection has emerged over the past few years  

… [GW19] [ABHKS19] [GLSW19 ] [GHM 20] [SLCYW20] [PSCYW20] …



𝑐𝑡 𝑥𝑡 − 𝑣𝑡

𝐹, action space

𝑐𝑡

𝑥𝑡

hitting cost

switching cost

𝑐(𝑥𝑡, … , 𝑥𝑡−𝑝)

𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−𝑝

𝑣𝑡

Delay:𝑣𝑡 is revealed at time 𝑡 + 𝑘

= ‖𝑥𝑡 −෍
𝑡=1

𝑝

𝐶𝑖𝑥𝑡−𝑖‖

Memory of length 𝑝

…



Memory → input disturbance,  𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵(𝑢𝑡 + 𝑤𝑡)

Delay → state disturbance, 𝑥𝑡+𝑡 = 𝐴 𝑥𝑡 +𝑤𝑡 + 𝐵𝑢𝑡

Can we connect SOCO to control? 

A deep connection has emerged over the past few years  

… [GW19] [ABHKS19] [GLSW19 ] [GHM 20] [SLCYW20] [PSCYW20] …

…and further: non-linear switch costs → non-linear dynamics



Today: A taste of SOCO & 
a new algorithm

We’ll start by ignoring memory & delay…



A warmup: 2 cost functions or

0                  1 0                  1

𝑐1 𝑐2



A warmup: 2 cost functions or

0                  1 0                  1

A first attempt: “Greedy” 𝑥𝑡 = 1 𝑥𝑡 = 0

𝑐1 𝑐2



A warmup: 2 cost functions or

A first attempt: “Greedy” 𝑥𝑡 = 1 𝑥𝑡 = 0

0                  1

𝑐1

0                  1
1/𝑇

𝑐2

0                  1

𝑐1

0                  1

𝑐2

0                  1

𝑐1

0                  1
1/𝑇

𝑐2

…

“Greedy:” Cost = 𝑇 “Opt:” Cost ≤ 𝑇 × 1/𝑇= 1

It is crucial to consider whether switching is “worth it”



A warmup: 2 cost functions or

0                  1 0                  1

A second attempt: Gradient Descent

𝑐1 𝑐2



A warmup: 2 cost functions or

0                  1 0                  1

𝑐1 𝑐2

Gradient Descent

𝑐1 𝑐2

A second attempt: Gradient Descent



A warmup: 2 cost functions or

0                  1 0                  1

Gradient Descent

𝑐1 𝑐2

𝑐1 𝑐2

A second attempt: Gradient Descent



A warmup: 2 cost functions or

0                  1 0                  1

Learns the best static point, but… 

Gradient Descent

~ Static Optimal

𝑐1 𝑐2

𝑐1 𝑐2

A second attempt: Gradient Descent



A warmup: 2 cost functions or

0                  1 0                  1

𝑇

~ Offline Optimal

Gradient Descent

~ Static Optimal

𝑐1 𝑐2

𝑐1 𝑐2

A second attempt: Gradient Descent

Offline optimal is order-of-magnitude better.



A warmup: 2 cost functions or

0                  1 0                  1

𝑇

It is crucial to make “big jumps” when needed

~ Offline Optimal

Gradient Descent

~ Static Optimal

𝑐1 𝑐2

𝑐1 𝑐2

A second attempt: Gradient Descent



A warmup: 2 cost functions or

0                  1 0                  1

𝑇

~ Offline Optimal

Gradient Descent

~ Static Optimal

𝑐1 𝑐2

𝑐1 𝑐2

A second attempt: Gradient Descent



Can an algorithm be constant competitive? 

Many algorithms can be no-regret for SOCO but…

Yes!  …but it took a long time to get there.



The starting point

“Memoryless” algorithms can’t be better than 3 competitive. 

[ABKL+ 2013] & [BGK+2015] give 3-competitive memoryless algorithms.

[BGK+ 2015] give a 2-competitive algorithm.

[AS 2018] show 2 is the best possible.  
Complex!



The starting point

Years passed with no progress outside of 1 dimension.



Gautam GoelYiheng Lin

We now understand why…



𝑥1

𝐵1

‖𝑥2 − 𝑥1‖

𝑥0



‖𝑥2 − 𝑥1‖
𝑥1

𝐵2

𝑥2

𝑥0



‖𝑥3 − 𝑥2‖

𝑥1

𝐵3

𝑥2

𝑥3

How do you decide where to move 

without knowing the future?

𝑥0



We now understand why:

𝐵𝑡

But we usually have some structure!



Gautam Goel Yiheng Lin Haoyuan Sun

A breakthrough



No dependence on the 

dimension 𝒅!



What is achievable?  





𝑣𝑡

𝑥𝑡−1

= argmin𝑥𝑐𝑡 𝑥

level sets

Regularized Online Balanced Descent (OBD)

Gradient Descent



𝑥𝑡
𝑣𝑡

𝑥𝑡−1

Project onto a level set 𝐾𝑙 = { 𝑥|𝑐𝑡 𝑥 ≤ 𝑙}
where 𝑙 balances costs, i.e., 𝑥 𝑙 − 𝑥𝑡−1 = 𝛽𝑙.

= argmin𝑥𝑐𝑡 𝑥

Regularized Online Balanced Descent (OBD)



𝑥𝑡
𝑣𝑡

𝑥𝑡−1

Project onto a level set 𝐾𝑙 = { 𝑥|𝑐𝑡 𝑥 ≤ 𝑙}
where 𝑙 balances costs, i.e., 𝑥 𝑙 − 𝑥𝑡−1 = 𝛽𝑙.

= argmin𝑥𝑐𝑡 𝑥

Regularized Online Balanced Descent (OBD)

Theorem [GLSW19]:  OBD has a competitive ratio of Ω(𝑚−2/3 ).



Key idea: OBD is not “greedy” enough.

Theorem [GLSW19]:  OBD has a competitive ratio of Ω(𝑚−2/3 ).



𝑥𝑡
𝑣𝑡

𝑥𝑡−1

= argmin𝑥𝑐_𝑡 𝑥

Project onto a level set 𝐾𝑙 = { 𝑥|𝑐𝑡 𝑥 ≤ 𝑙}
where 𝑙 balances costs, i.e., 𝑥 𝑙 − 𝑥𝑡−1 = 𝛽𝑙.

Then, take an 𝑂 𝑚 -size step toward the minimizer.

“Geometric view”

Greedy Online Balanced Descent (G-OBD)



𝑥𝑡 = argmin𝑥 𝑐𝑡 𝑥 +
𝜆1
2

𝑥 − 𝑥𝑡−1
2 + 𝜆2𝑐(𝑥, 𝑣𝑡)

Project onto a level set 𝐾𝑙 = { 𝑥|𝑐𝑡 𝑥 ≤ 𝑙}
where 𝑙 balances costs, i.e., 𝑥 𝑙 − 𝑥𝑡−1 = 𝛽𝑙.

Then, take an 𝑂 𝑚 -size step toward the minimizer.

“Geometric view”

“Local view”

𝛻𝑐𝑡 𝑥 + 𝜆 𝑥 − 𝑥𝑡−1 = 0
Project onto a level set!

Greedy Online Balanced Descent (G-OBD)



Greedy Online Balanced Descent (G-OBD)

Project onto a level set 𝐾𝑙 = { 𝑥|𝑐𝑡 𝑥 ≤ 𝑙}
where 𝑙 balances costs, i.e., 𝑥 𝑙 − 𝑥𝑡−1 = 𝛽𝑙.

Then, take an 𝑂 𝑚 -size step toward the minimizer.

“Geometric view”

“Local view” 𝑥𝑡 = argmin𝑥 𝑐𝑡 𝑥 +
𝜆1
2

𝑥 − 𝑥𝑡−1
2 + 𝜆2𝑐(𝑥, 𝑣𝑡)

Regularized Online Balanced Descent (R-OBD)
Computationally easier and…



Regularized Online Balanced Descent (R-OBD)
Computationally easier and obtains the optimal competitive ratio!



Can an algorithm be constant competitive? 

Yes, with a little structure!

…and the results extend to settings with delay & memory



Guanya Shi Soon-Jo Chung Yisong YueYiheng LinWeici Pan



Implies the first constant competitive policy 

for LDS in the case of adversarial noise.



Delay hurts exponentially.

Impact of memory is “small”

Memory → input disturbance

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵(𝑢𝑡 + 𝑤𝑡)

Delay → state disturbance

𝑥𝑡+𝑡 = 𝐴 𝑥𝑡 +𝑤𝑡 + 𝐵𝑢𝑡



delay=5 delay=0 5 predictionsdelay=3

Example: Trajectory tracking with double integrator dynamicsExample: Frequency regulation with time-varying inertia

Our algorithm

Current



Optimistic ROBD

Key idea: “optimistically” track the ROBD (full information) trajectory.



Optimistic ROBD

𝑥𝑡−1

𝑥𝑡−2

𝑥𝑡−3

ො𝑥𝑡−2

Key idea: “optimistically” track the ROBD (full information) trajectory.

𝑥𝑡−4

𝑥𝑡−3
𝑅𝑂𝐵𝐷

𝑥𝑡−4
𝑅𝑂𝐵𝐷

ො𝑥𝑡−1 ො𝑥𝑡 = 𝑥𝑡

Run ROBD on 

observed costs

Run ROBD on cost function that minimizes 

cost experienced to ROBD (i. e. , 𝑣𝑡−𝑖
∗ )

Delay=3



Optimistic ROBD

𝑥𝑡−1

𝑥𝑡−2

𝑥𝑡−3

Key idea: “optimistically” track the ROBD (full information) trajectory.

𝑥𝑡−4

𝑥𝑡−3
𝑅𝑂𝐵𝐷

𝑥𝑡−4
𝑅𝑂𝐵𝐷

ො𝑥𝑡−1
ො𝑥𝑡

𝑥𝑡
Run ROBD on 

observed costs

Run ROBD on cost function (i. e. , 𝑣𝑡−𝑖)
that minimizes cost experienced to ROBD

𝑥𝑡−2
𝑅𝑂𝐵𝐷

ො𝑥𝑡+1= 𝑥𝑡+1



Can an algorithm be constant competitive? 

Yes, with a little structure!

…and the results extend to settings with delay & memory

& predictions

& non-convex costs

& storage/inventory constraints



…still lots of open questions remain!

Huge progress!

No predictions:  LCP → RBG →… → ROBD → Optimistic ROBD…

Predictions: MPC → AFHC → CHC → RHGD → SFHC …

Many successful applications!

Sustainable Data Centers,

EV charging, video streaming,

CDNs, Microgrids, …

Competitive Control via Online Optimization

Can we deepen the 

connection between 

SOCO and control?



Papers introducing Online Balanced Descent and its variations:

▪ N Chen, G Goel, A Wierman. Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent. Conference 

on Learning Theory (COLT) 2018

▪ G Goel, A Wierman. An Online Algorithm for Smoothed Regression and LQR Control. Conference on Artificial Intelligence and 

Statistics (AISTATS) 2019

▪ G Goel, Y Lin, H Sun, A Wierman. Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization.

NeurIPS 2019, oral spotlight. 

▪ G Shi, Y Lin, S Chung, Y Yue, and A Wierman. Online Optimization with Memory and Competitive Control. NeurIPS 2020.

▪ Y Lin, G Goel, A Wierman. Online Optimization with Predictions and Non-Convex Losses. Sigmetrics 2020.

▪ W Pan, G Shi, S Chung, Y Yue, and A Wierman. Competitive Control via Online Optimization. Under Preparation.

Papers connecting online optimization with distributed optimization:

▪ P London, S Vardi, A Wierman, and H Yi. A parallizable acceleration framework for packing linear programs. AAAI 2018.

▪ P London, N Chen, S Vardi, and A Wierman. Logarithmic Communication for Distributed Optimization in Multi-Agent Systems. 

Sigmetrics 2020.

Papers bridging model-based & model-free control:

▪ G Qu, A Wierman. Finite-time Analysis of Asynchronous Stochastic Approximation and Q-learning. COLT 2020.

▪ G Qu, A Wierman, N Li. Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems. L4DC 2020, 

oral spotlight.

▪ G Qu, Y Lin, A Wierman, N Li. Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward.

NeurIPS 2020.

▪ G Qu, C Yu, S Low, A Wierman. Combining Model-Based and Model-Free Methods for Nonlinear Control: A Provably Convergent 

Policy Gradient Approach. Under submission

Competitive Control via Online Optimization


