Competitive Control via Online Optimization
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Excitement about the potential of “learning to control” is growing...
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..but realizing the potential is proving to be a challenge.
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Scalable, trustworthy, and predictable control is required.

We're not there yet.



“Learning & Control” is emerging as a rich, impactful field
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The seminar series is broadly focused on the intersection of control and machine learning. It
covers a broad range of topics including, but not limited to, learning for dynamical systems,

online learning and control, reinforcement learning, control-theoretic perspectives on deep
learning, and applications to various real-world systems. “:i"’_ "“;“"0‘* on
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Wednesday 9 a.m. - 10 a.m. (Pacific Time)

Zoom link: Please subscribe to the below Google group to receive Zoom
link and future announcements.

Youtube live stream: Sept 30 live streaming
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Core tenet: learning and control have complementary philosophies

— 3

Data to action (model-free) <+——> Model to action (model-based)

Mitigate uncertainty by <«——> Mitigate uncertainty via feedback
learning from the past

w_/

Both philosophies have been successful, how do we combine them?



\.

How can ML predictions be integrated into control & autonomy?
(an ML predictions be combined with MP( to improve control in face of time-
varying environment, model error, delayed observations, ...

How can ML tools help improve the robustness & efficiency of control?
(an tools such as adversarial analysis, finite-time or single trajectory bounds, and
general loss functions lead to improvements?

(an model-free and model-based approaches be combined to obtain

the best of both worlds? How much do you need to “understand” about a
system to control it? Can we bring scalability and robustness to model-free RL?



Is it possible to exploit network structure
to design scalable multi-agent RL (MARL)?

Example: Multi-access Wireless

q t -
‘ 15 Sicala.ble MARL for networkeg Systems
ui ‘ finite-time analysis for Q-learning

—— Scalable Actor Critic k=0
Scalable Actor Critick=1
------- Benchmark (ALOHA)
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(an LQR be combined with model-free
methods to control non-linear systems?

Example: Inverted Pendulum

15t provably convergent policy

gradient method for nonlinear controf
80.0
77.5 { == Model free

—— Proposed approach
—— Model based LQR controller

75.0
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# of gradient iterations

(an model-free and model-based approaches be combined to obtain

the best of both worlds? How much do you need to “understand” about 3
system to control it? Can we bring scalability and robustness to model-free RL?

GuannanQu  Yiheng Lin

uang
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\.

How can ML predictions be integrated into control & autonomy?
(an ML predictions by combined with MPC to improve control in face of time-
varying environment, model error, delayed observations, ...

How can ML tools help improve the robustness & efficiency of control?
(an tools such as adversarial analysis, finite-time or single trajectory bounds, and
general loss functions lead to improvements?

(an model-free and model-based approaches be combined to obtain

the best of both worlds? How much do you need to “understand” about a
system to control it? Can we bring scalability and robustness to model-free RL?



Online Optimization & Control



hitting cost
c1(x1)

switching cost:
1261 = Xol| 2
X0 X1

F, action space
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LG —~— /> Smoothed” Online Convex Optimization
cohvex  switching cost 3.k.3.S0(0

Goal: Algorithms to minimize cost



C1,X1,Cp,X5,C3,X3 ... €==0nline

minz e, () + lIxe = Xal
XtEF

LG —~— /> Smoothed” Online Convex Optimization
cohvex  switching cost 3.k.3.S0(0

Goal: Algorithms to minimize cost

Competitive ratio(Alg) = Cosf(Offline_Opt)

Regret(Alg) = Cost(Alg) — Codt(Static_Opt)

Key: Adversarial guarantees



We got interested because of Sustainable Data Centers

(ana data center run (almost) entirely on renewable sources?
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Requires dynamic rightsizing of capacity and smart deferral of workloads



We got interested because of Sustainable Data Centers
THE WALL STREET JOURNAL Subscribe now and get

Today's Paper * Video * Blogs * Emails * Journal Community * Mobile * Tablet

World + Europe~ UK.+ U.S.+ Business~+ Markets+ MarketData~ Tech~ Life & Style~ Opinion~ Real Estate v Jobs ~

HP Unveils Architecture for First Net Zero Energy Data Center

J Article |
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>
The things that matter e @
to you, matter to us. Learn more

Reduced orid usage by 80%!

> ouay unvelled research from HP Labs, the company's central research arm, that illustrates the ¢
energy from traditional power grids

The research shows how the architecture, combined with holistic energy-management techniques, enables organic.
well as dependence on grid power and costs by more than 80 percent.(1) :

With the HP Net-Zero Energy Data Center research, HP aims to provide businesses and societies around the wo
renewable resources, removing dependencies such as location, energy supply and costs. This opens up the pos_ >
all sizes

“Information technology has the power to be an equalizer across societies globally, but the cost of IT services, and |
inhibits widespread adoption," said Cullen Bash, distinguished technologist, HP, and interim director, Sustainable Ec
Net-Zero Energy Data Center not only aims to minimize the environmental impact of computing, but also has a goal ¢!
center ooerations tg'exlend the reach of IT accessibilitv aloballv."

Collaborators: Zhenhua Liu, Yuan Chen, Cullen Bash, Martin ArIittﬁ, Daniel Gmach,
ZhikRui Wang, Manish Marwah and Chris Hyser




S0C0is now a core model for energy systems...
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..and the applications aren’t limited to energy!

Disney using human gperators 1o train autamatic
cameras for breadcosts




altitude
High-level motion planning H
minz: a(xe — 0)* + By — xp-1)*
t

¢

target being tracked
(there may be delay)




This has led to tons of variations to the model...

xl) C]_) x2) CZ) x3) C3) . eonline

llxe — Xt 1
@ @ "Smoothed” Online Convex Optimization

convex swntchlng cost
| RN | PN | | PR [ S

Goal: Algorithmso minimize cost AR
Bregman divergence, ...
Box constraints, Linear, Quadratic
Ramping constraints, Strongly convex,
Storage constraints, Locally polytope,
System dynamics, Separable,

Deadlines, ... Nonconvex...



This has led to tons of variations to the model...

xl; C]_; xz, CZI X3, C3) eonline
minz Ce(xe) + 2 — x|

Xt€EF

t "Smoothed” Online Convex Optimization
\ convex  switching cost

Goal: Algorithms to minimize cost

..0ut control has dvnamics and SOCO does not!



xl; C]_; xZ; C2) x3; C3) eonline

gégi c;‘(xt) + [l = X
W

convex  switching cost

'Smoothed” Online Convex Optimization

Goal: Algorithms to minimize cost

Low-level physical tracking

x: altitude, X: acceleration

Z a(xe — 0¢) + Bui € control
t
t——target being tracked




xl; C]_; xZ; C2) x3; C3) eonline

min E ce () + ||xe — x|l
XtEF x
A

convex  switching cost

'Smoothed” Online Convex Optimization

dynamics
xt_|_1 = Axt + But + Wt

min § qt||xt||2 + ||ut||2
Ut
]

Goal: Algorithms to minimize cost

Linear Dynamical System (LDS)

Goal: Algorithms that stabilize &
minimize cost



xl; C]_; xz, C2; x3; C3; eonline

minz ce(xe) + |lxcg — x¢—1 ||
XtEF

'Smoothed” Online Convex Optimization

dynamics
xt+1 = Axt + But + Wt

A motivating example: 9] _ [ 0
~M;'L

Frequency regulation with variable inertia L« » \@\
p. - A
X At

inertia susceptance frequency angle

t
\ convex  switching cost

Goal: Algorithms to minimize cost




xl; C]_; x2; C2; x3; C3; eonline

min E ce () + ||xe — x|l
XtEF x
A

convex  switching cost

'Smoothed” Online Convex Optimization

Goal: Algorithms to minimize cost

Xty1 = Axt + But + W

min § qt||xt||2 + ||ut||2
Ut
]

Goal: Alggs t stabilize &
minimize cost

A growing literature focuses on designing
no-regret & competitive controllers...

Linear Dynamical System (LDS)



xl; C]_; xZ; CZ; x3; C3; eonline

minz e () + [1%: — Xp_y |

Xt€EF

A

convex  switching cost

Goal: Algorithms to minimize cost stochastic vs. worst case

'Smoothed” Online Convex Optimization

Xt4+1 = Axt + But + W

Linear Dynamical System (LDS) min Z qellxell® + lluel

Goal: Algorithms th lize &
minimize cost

quadratic vs. general costs?



Can we connect SOCO to control?

A deep connection has emer
ged over the past few years
.. [GW19] [ABHKS19] [GLSW19] [GHM 20] [SLCYW20] [PSCYW20] ...

Theorem [SLCYW20 | [PSCYW21+ |: Any LDS with A.B ingsane
form is equivalent to a SOCO problem witffmemory and delay.

1 3 - :
[ A . -~
A~ ’
v 3

WeiciPan  YihengLin  Guanya Shi Soon-JoChl’Jng Yisong Yue



Can we connect SOCO to control?

A deep connection has emerged over the past few years
.. [6W19] [ABHKS19] [GLSW19 ] [GHM 20] [SLCYW20] [PSCYW20] ...

| 0] [PSCYW21+ |: Any LDS with A B incane
Theorem [SLCYW2 2.

form is equivalent to a SOCO problem witffmemory

Memory first used in 0C0in [AHM 2015].
Has importance beyond control too...



Delay: v, isrevealed at time t + k

Memory of length p

-

ve o Xep) == ) Coxesl
switching cost R

hitting cost
ct(xy — V)

F, action space



Can we connect SOCO to control?

A deep connection has emerged over the past few years
.. [6W19] [ABHKS19] [GLSW19 ] [GHM 20] [SLCYW20] [PSCYW20] ...

Theorem [SLCYW20] [PSCYW20+ : Any' LDSwith AB1 | -
form is equivalent to a SOCO problem wiff memory and delay.

Memory = input disturbance, x;,; = Ax; + B(us + wy)
Delay = state disturbance, x;., = A(x; + w;) + Bu,

..and further: non-linear switch costs = non-linear dynamics



Today: A tasteof SOC0 &
a new algorithm

We'll start by ignoring memory & delay...



A warmup: 2 cost functions {




A warmup: 2 cost functions '\ or | i
£ 1 xe =0

Afirst attempt: “Greedy” ¢



A warmup: 2 cost functions '\ or |i

Afirst attempt: “Greedy”  x¢ = 1 x; =0

C1 C1
i\ })1/T'\ YT

0 1 0 1 0 1 0 1

“Greedy:"Cost= T  “Opt:"Cost< T x 1/T=1

It is crucial to consider whether switching is “worth it”




0

A warmup: 2 cost functions '\ or |i
Lol

A second attempt: Gradient Descent



A warmup: 2 cost functions '\ or | i

T

0

A second attempt: Gradient Descent

Gradient Descent



A warmup: 2 cost functions '\ | i
Lo

EEEE P

Gradient Descent

A second attempt: Gradient Descent




A warmup: 2 cost functions '\ | i

A second attempt: Gradient Descent

- Gradient Descent ¢ C,

~ Static Optimal

Learns the best static point, but...



A warmup: 2 cost functions '\ | i

A second attempt: Gradient Descent

-~ Gradient Descent = ¢

~ Statlc Optlmal
——>°

~ Ofﬂlne Optimal

Offline optimal is order-of-magnitude better.




A warmup: 2 cost functions '\ | i

A second attempt: Gradient Descent

-~ Gradient Descent = ¢

~ Statlc Optlmal
——>°

~ Ofﬂlne Optimal

It is crucial to make “big jumps” when needed




A warmup: 2 cost functions '\ or | :

Lo

0

A second attempt: Gradient Descent

there exist

.For arbitrary y =~ 0 and any online algorithm 4,

Theorem [ABKL+13 ]
hthat CR(A) + Regret(A)/T =27

linear cost functions suc

~ Offline Optimal



Many algorithms can be no-regret for SOCO but...
Can an algorithm be constant competitive?
Yes! ...but it took a long time to get there.



The starting point

(LCP) is 3-

Theorem [LWAT13 |: Lazy Capacity Provisioning

Complex!

[BGK+ 2015] give a 2-competitive algorithm. }

[AS 2018] show 2 is the best possible. N

“Memoryless” algorithms can't be better than 3 competitive.
[ABKL+2013] & [BGK+2015] give 3-competitive memoryless algorithms.



The starting point

is 3-competitive
in 1-dimension.

e L St = ===

Theorem [LWAT13 |: Lazy Capacity Provisioning (LCP)

Years passed with no progress outside of 1 dimension.



We now understand why...

Theorem [BLLS19] [L6W20]: In J-dimensional convex body chasing (CBC)

problem, any online algorithm s Q(\/—&)-competiti\le “even when the algorithm
can perfectly forecast the next w steps bodies.

Yihenglin  Gautam Goel




|2 — x1||._.-"



||x2 - x1||



How do you decide where to move
without Rnowing the future?



We now understand why:
Theorem [BLLS19] [L6W20]: In J-dimensional convex body chasing (CBC)

\d)-competitive, even when the algorithm

problem, any online algorithm s
can perfectly forecast the next w ste

ps bodies.

A 9%

B aveson
ut we usually have some structure!




A breakthrough

Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD)

is1+0(1/ym )-competitive for m-strongly convex
hitting costs and switching costs that are either the squared-L>

norm or Bregman divergence.

Gautam Goel ~ Yihenglin  Haoyuan Sun



1]: Regularized Online Balanced Descent (ROBD)

1+ 0(1/Jm ompetitive for m-strongly convex
00 costsand switching costs that are either the squared-L,

m or Bregman divergence.

No dependence on the
dimension d!



What is achi ?
..ﬁ‘fble ] Regularized Online Balanced Descent (ROBD)
1 +0(1/dm): petitive for m- -strongly convex
switching costs that are either the squared-L,

norm or Bregman divergence.

Theorem [GLSW19] All online algorithms have competitive ratio
(1 + ﬁ + 4 /m) form- -strongly convex hitting costs

and squared L, switching costs.




Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD)
is% (1+ ﬁ + 4 /m)-competitive for rn-strongly convex
hitting cosand switching costs that are either the squared-Lo
aman divergence.

Theorem [G ' 19]: All online algorithms have competitive ratio
> %(1 + ﬁ + 4 /m) for me-strongly convex hitting costs
and squared L switching costs.




Regularized Online Balanced Descent (0BD)

ve = argmingc, (x) "\
o Y




Regularized Online Balanced Descent (0BD)

Project ontoalevel set K; = { x|c.(x) < [}
where [ balances costs, i.e., [|x (1) — x._{|| = BL.




Regularized Online Balanced Descent (0BD)

Project ontoalevel set K; = { x|c.(x) < [}
where [ balances costs, i.e., [|x (1) — x._{|| = BL.

Theorem [GLSW19]: 0BD has a competitive ratio of Q(m=2/3). |




Key idea: 0BD is not “greedy” enough.

Theorem [GLSW19]: 0BD has a competitive ratio of Q(m=2/3).




Greedy Online Balanced Descent (G-0BD)

Project ontoalevel set K; = { x|c;(x) < [}
Geometricview” | where [ balances costs, i.e., ||x(1) — x._1 || = BL.
Then, take an O (1/m )-size step toward the minimizer.




“Geometric view”
A

v
“Local view”

Greedy Online Balanced Descent (G-0BD)

Project ontoalevel set K; = { x|c;(x) < [}
where [ balances costs, i.e., [|x (1) — x;_1|| = Bl.€
Then, take an O (1/m )-size step toward the minimizer.

~—

D,

7

x; = argmin, c;(x) + ?1 lx — xc—11|% + Ac(x, v
L \ J

N 4
Y /
Project onto a level set!
Vee(x) + A(x — x4—1) =0



“Geometric view”
A

v
“Local view”

Greedy Online Balanced Descent (G-0BD)

Project ontoalevel set K; = { x|c;(x) < [}
where [ balances costs, i.e., [|x (1) — x._1|| = BL.
Then, take an O (1/m )-size step toward the minimizer.

x¢ = argmin, ¢, (x) + ?1 X — x¢—1 |17 + Azc(x, vp)

Regularized Online Balanced Descent (R-0BD)

Computationally easier and...




Theorem [GLSW19]: Regularized Online Balanced Descent (ROBD)

is—lz- (1+ ﬁ + 4 /m)-competitive for m-strongly convex
osts that are either the squared-L,

hitting costs and switching C
norm or Bregman divergence.

el

Regulariged Online Balanced Descent (R-0BD)
Computationally easier and obtains the optimal competitive ratio!



Can an algorithm be constant competitive?
Yes, witha little structure!

..and the results extend to settings with delay & memory



Theorem [ SLCYW20] [PSCYW20+ |- Optimistic ROBD (A)is
A+m

k 1 ) i
0(l + a) maxts, i a?) 3 competitive

for [-smooth, m-strongly convex hitting costs with delay k
and memory of length p with @ = yP_ NG




Theorem [SLCYW20] [PSCYW20+ |- Optimistic ROBD (A)is
A+m

k 1 ) i
0(l + a)maxts, T a7 1 competitive
with delay k

i m-strongly convex hitting costs
thp witha = yP_ NG

and memgry of leng

Implies .the first constant competitive policy
for LDS in the case of adversarial noise.



Delay > state disturbance
Xeye = A(xe + we) + Bu,

Delay hurts exponenti\e’l\lli/b vd20+]: Optimistic ROBD(A) is
Theorem.set A+m "
)A} -competitive

1
0(1 + o) Wax{z, e |
for [>smo0 m-strongly convex hit ng costs with delay k
and memory ¢f length p witha = Yh_ IIGil.

Impact of memory is “small”

Memory = input disturbance
Xer1 = Axe + B(ug +wy)




| | CYW20+I:OptimisticROBD()L) is
Theorem [SLCYW20 PS 1.0

! -competitive
ol + a)k max{-i, m+(1—a2))t} comp

for [-smooth, m-strongly convex hittigg costs with delay k
and memory of length p witha = Yb_q Gl

Example: Frequency regulation with time-varying inertia Example: Trajectory tracking with double integrator dynamics

(=]
-

Frequency Deviation [Hz]




Optimistic ROBD
Key idea: “optimistically” track the ROBD (full information) trajectory.



Optimistic ROBD
Key idea: “optimistically” track the ROBD (full information) trajectory.

Run ROBD on
observed costs

Run ROBD on cost function that minimizes
cost experienced toROBD (i. e., v/_;)



Optimistic ROBD
Key idea: “optimistically” track the ROBD (full information) trajectory.

Run ROBD on
observed costs

Xt+1= Xt4+1

Run ROBD on cost function (i. e., v;_;)
that minimizes cost experienced to ROBD



Can an algorithm be constant competitive?
Yes, with a little structure!
..and the results extend to settings with delay & memory

& storage/inventory constraints
& non-convex costs

& predictions




Competitive Control via Online Optimization

(\)

Huge progress!
No predictions: LCP = RBG = ... > ROBD —> Optimistic ROBD...
Can we deepen the Predictions: MPC = AFHC = CHC = RHGD — SFHC....

connection between o
S0C0 and control? Many successful applications!

Sustainable Data (enters,
EV charging, video streaming,
(DNs, Microgrids, ...

..stilllots of open questions remain!



Competitive Control via Online Optimization

Papers introducing Online Balanced Descent and its variations:

= NChen, G Goel, A Wierman. Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent. Conference
on Learning Theory (COLT) 2018

= (Goel, AWierman. An Online Algorithm for Smoothed Regression and LQR Control. Conference on Artificial Intelligence and
Statistics (AISTATS) 2019

= (3 Goel, Y Lin, H Sun, A Wierman. Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization.
NeurlPS 2019, oral spotlight.
= (Shi,YLin, S Chung, Y Yue, and A Wierman. Online Optimization with Memory and Competitive Control. NeurlPS 2020.

= YLin, G Goel, A Wierman. Online Optimization with Predictions and Non-Convex Losses. Sigmetrics 2020.
= WPan, G Shi, S Chung, Y Yue, and A Wierman. Competitive Control via Online Optimization. Under Preparation.

Papers connecting online optimization with distributed optimization:
= Plondon, S Vardi, AWierman, and H Yi. A parallizable acceleration framework for packing linear programs. AAAI 2018.

= PLondon, N Chen, S Vardi, and A Wierman. Logarithmic Communication for Distributed Optimization in Multi-Agent Systems.
Sigmetrics 2020.

Papers bridging model-based & model-free control:

= (6 Qu, AWierman. Finite-time Analysis of Asynchronous Stochastic Approximation and Q-learning. COLT 2020.

= (3 Qu, AWierman, N Li. Scalable Reinforcement Learning of Localized Policies for Multi-Agent Networked Systems. L4DC 2020,
oral spotlight.

= (Qu,YLin, AWierman, N Li. Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward.
NeurlPS 2020.

= (Qu,CVYu, SLow, A Wierman, Combining Model-B nd Model-Free Methods for Nonlinear Control: A Provably Convergen

Policy Gradient Approach. Under submission




