A Fluid Limit for an Overloaded Multi-class Many-server Queue with General Reneging Distribution

Amy R. Ward
The University of Chicago Booth School of Business

*Based on current work with Amber Puha.
A Service System Model: The Multiclass Many Server Queue

Call Centers: Garnett, Mandelbaum, Reiman (2002)
Hospital Emergency Department: Green, Soares, Giglio, and Green (2006)
A Service System Model: The Multiclass Many Server Queue

Q: Which class should the available server next serve?
Why is Scheduling Important?

Poisson arrivals, 60 per hour for both classes; 100 Servers; Exponential(1) service times; Exponential(1) patience times.

(Simulation courtesy of Huiyu Wang.)
Specialize to the M/M/N+M Queue

Atar, Giat, Shimkin (2010) The $\tilde{c}_j \mu_j / \theta_j$ rule asymptotically minimizes long-run average cost in the overloaded regime ($\tilde{c}_j = c_j + \theta_j a_j$).
The Need for Non-Static Priority Scheduling Rules

1. Static priority scheduling is not in general optimal.
 - Kim, Randhawa, and Ward (2018) for numerical experiments with non-exponential patience time distribution

2. Static priority scheduling is unfair, which can prevent its adoption.
 - Wierman (2007) for discussion in the context of computer systems
Our Research Objective
(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with abandonment, without making any distributional assumptions.

1a. Provide a fluid model relevant for a very general class of scheduling rules.

1b. Analyze a policy class with full flexibility to partially serve classes (“as fair as desired”).

2. Use fluid model invariant states to define an approximating scheduling control problem.
Some Related Works

• Single Class Fluid Model.
 – Provided the framework for approaching the multiclass case.

• Multiclass Scheduling.
 – Atar, Kaspi and Shimkin (2014) analyzed static priority for multiclass G/G/N+G.
 – We extend to non-static priority.

• Very Recent
 – Mukherjee, Li, and Goldberg (2018)
 – Large deviations analysis in Halfin-Whitt regime (M/H₂/N+M).
An **admissible scheduling policy** cannot know the future, does not preempt service, and satisfies mild conditions to control entry-into-service oscillations.
At the moment of departure, the available server next serves class j with probability p_j (if possible), where $\sum_{j=1}^{J} p_j = 1$.
The Multiclass Many-Server Queue

The State Space: \((\alpha^N, X^N, \nu^N, \eta^N) \).

Measure-valued processes.

Time elapsed since last class j arrival.

The number of class j customers in the system.
Each dot is a unit atom whose position represents the time elapsed since a customer began service, and shifts to the right at rate 1.

The ν Measure (for given Class j)

- Customer entering service has age 0.
- Customer is no longer tracked once the time spent being served exceeds that customer’s service time.
The η Measure (for given Class j)

Note: Independent of Scheduling Control.

Customer entering system has waited 0 time units.

Customer is no longer tracked once the time elapsed since arrival exceeds that customer’s patience time.

Each dot is a unit atom whose position represents the time elapsed since a customer arrival, and shifts to the right at rate 1.
Theorem (Convergence)

Suppose $\lim_{N \to \infty} \frac{E^N}{N} = E$ almost surely, and $\lim_{N \to \infty} \mathbb{E} \left[\frac{E_j^N(t)}{N} \right] = \mathbb{E}[E_j(t)]$ for all $t \geq 0$.

When the queue operates under an admissible scheduling rule, under mild initial conditions, a sequence of fluid-scaled state processes operating $(\alpha^N, X^N, \nu^N, \eta^N)/N$ is tight.

Suppose that (X, ν, η) is a distributional limit point of $\left\{ \left(\frac{X^N}{N}, \frac{\nu^N}{N}, \frac{\eta^N}{N} \right) \right\}$.

Then, we need to characterize (X, ν, η).

Scaled arrival process.

Number of servers.

Scaled system processes.
The Fluid Model Solution Space and Auxiliary Functions

Let S be the set of r.c.l.l. functions (X, ν, η) such that for all j and $t \geq 0$,

\[\int_0^t \langle h_{s,j}, \nu_j(u) \rangle \, du < \infty \quad \text{and} \quad \int_0^t \langle h_{a,j}, \eta_j(u) \rangle \, du < \infty \quad \text{(Finiteness)}. \]

For $(X, \nu, \eta) \in S$, define for all j and $t \geq 0$,

- $B_j(t) := \langle 1, \nu_j(t) \rangle$, $I_j(t) = 1 - \sum_{j=1}^{J} B_j(t)$ \hspace{1cm} \text{(Proportion of class j fluid in service)};
- $D_j(t) := \int_0^t \langle h_{s,j}, \nu_j(u) \rangle \, du$ \hspace{1cm} \text{(Cumulative departure process)};
- $Q_j(t) := X_j(t) - B_j(t)$ \hspace{1cm} \text{(Queue-length process)};
- $\chi_j(t) := \inf \{ x \geq 0 : \langle 1_{[0,x]}, \eta_j(t) \rangle \geq Q_j(t) \}$ \hspace{1cm} \text{(Class j head-of-line wait time process)};
- $R_j(t) := \int_0^t \left\langle 1_{[0,\chi_j(u)]}, h_{a,j}, \eta_j(u) \right\rangle \, du$ \hspace{1cm} \text{(Cumulative abandonment process)};
- $K_j(t) := B_j(t) + D_j(t) - B_j(0)$ \hspace{1cm} \text{(Cumulative entry-into-service process)}.

Number of jobs in system. \hspace{1cm} Age-in-service measure. \hspace{1cm} Potential queue measure.

Service distribution hazard rate. \hspace{1cm} Abandonment distribution hazard rate.
A Fluid Model Solution (Not Unique)

Let \(E \) be an arrival function. Then, \((X, \nu, \eta) \in \mathcal{S}\) is a fluid model solution for \(E \) if the following hold.

1. For each \(j \), \(K_j \) is non-decreasing and \(\sum_{j=1}^{J} B_j(t) \in [0,1] \) for all \(t \geq 0 \).

 (No service rule specified.)

2. For all \(j \) and \(t \geq 0 \), \(X_j(t) = X_j(0) + E_j(t) - R_j(t) - D_j(t) \), and \(0 \leq Q_j(t) \leq \int_0^{H_j^r} \eta_j(dy) \).

3. For all \(j, f \in C_b([0, \infty)) \), and \(t \geq 0 \),

 \[
 \langle f, \nu_j(t) \rangle = \left\{ f(\cdot +t) \frac{\tilde{G}_{s,j}(\cdot +t)}{G_{s,j}(\cdot)}, \nu_j(0) \right\} + \int_0^t f(t-u)\tilde{G}_{s,j}(t-u)dK_j(u)
 \]

 \[
 \langle f, \eta_j(t) \rangle = \left\{ f(\cdot +t) \frac{\tilde{G}_{a,j}(\cdot +t)}{\tilde{G}_{a,j}(\cdot)}, \nu_j(0) \right\} + \int_0^t f(t-u)\tilde{G}_{a,j}(t-u)dE_j(u)
 \]

(As in Atar, Kaspi, and Shimkin 2014, with static priority equation eliminated.)
A specified WRBS fluid model solution also satisfies
\[p_j \int_s^t 1\{Q_j(u) > 0\} dD_\Sigma(u) \leq K_j(t) - K_j(s) \leq p_j \int_s^t dD_\Sigma(u), 1 \leq j < J \]
and
\[I(t) = [I(t) - Q_j(t)]^+ . \]

Lemma: If \(E_j \) is absolutely continuous with density \(\lambda_j(\cdot) \) for each \(j \), then so are the coordinates of \(X \) and the auxiliary functions, and

\[K_j(t) = \int_0^t (\lambda_j(u) \land p_j \delta(u)) 1\{Q_j(u) = 0\} + p_j \delta(u) 1\{Q_j(u) > 0\} du, \]

where \(\delta \) is the density of \(D_\Sigma \).
Theorem (Non-Policy Specific Convergence)

Suppose \(\lim_{N \to \infty} \frac{E^N}{N} = E \) almost surely, and \(\lim_{N \to \infty} \mathbb{E} \left[\frac{E_j^N(t)}{N} \right] = \mathbb{E}[E_j(t)] \) for all \(t \geq 0 \).

Under mild initial conditions, a sequence of fluid-scaled state processes \((\alpha^N, X^N, \nu^N, \eta^N)/N\) is tight.

Suppose that \((X, \nu, \eta)\) is a distributional limit point of \(\left\{ \left(\frac{X^N}{N}, \frac{\nu^N}{N}, \frac{\eta^N}{N} \right) \right\}\).

Then, under mild conditions*, \((X, \nu, \eta)\) is, almost surely, a fluid model solution for \(E\) with specified initial state.

- Conditions are similar to the single class case. Hazard rates of abandonment and service distributions are either bounded or lower semi-continuous, and \(E_j\) is continuous for all \(j\) (for example, \(E_j(t) = \lambda_j t\)).
Theorem (Weak Convergence)

Suppose \(\lim_{N \to \infty} \frac{E^N}{N} = E \) almost surely, and \(\lim_{N \to \infty} \mathbb{E} \left[\frac{E_j^N(t)}{N} \right] = \mathbb{E}[E_j(t)] \)

for all \(t \geq 0 \).

Under the conditions of the previous theorem, and also assuming the abandonment distributions have bounded hazard rate, the sequence of fluid-scaled processes \(\left\{ \left(\frac{X^N}{N}, \frac{\nu^N}{N}, \frac{\eta^N}{N} \right) \right\} \) weakly converges to the unique WRBS(\(p \)) fluid model solution.

Bounded hazard may seem strong, but consistent with what was assumed for SP.
Our Research Objective
(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with abandonment, without making any distributional assumptions.

1a. Provide a fluid model relevant for a—very general class of scheduling rules.

1b. Analyze a policy class with full flexibility—to partially serve classes (“as fair as desired”).

2. Use fluid model invariant states to define an approximating scheduling control problem.
Fluid Model Invariant States

Assumptions.

• **(Fluid arrival process)** For some \(\lambda \in (0, \infty) \), \(E_j(t) = \lambda_j t \) for all \(j \) and \(t \geq 0 \).

• **(Overloaded)** For each \(j \), \(\rho_1 + \rho_2 + \cdots + \rho_J > 1 \) for \(\rho_j = \frac{\lambda_j}{\mu_j} \).

• **(Mean abandonment time)** For each \(j \), \(\int_0^\infty \bar{G}_a,j(x)dx = \frac{1}{\theta_j} \).

Definition (Feasible server effort allocation).

\[
\mathcal{B} = \left\{ b \in \mathbb{R}_+^J : b_j \leq \rho_j, \sum_{j=1}^J b_j \leq 1 \right\}
\]

Theorem. For each \(b \in \mathcal{B} \), there exists an invariant state such that \(b_j \) is the proportion of server effort devoted to class \(j \), and

\[
Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) \quad \text{for all } t \geq 0,
\]

where \(f_j(x) = G_{a,e,j} \left(\left(G_{a,j} \right)^{-1}(x) \right) \).

Abandonment stationary excess cdf.

Abandonment cdf.

Intuition: If exponential abandonment distribution, then

\[
\frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) = \frac{1}{\theta_j} (\lambda_j - b_j \mu_j) = q_j.
\]

Flow balance implies \(\lambda_j - b_j \mu_j = \theta_j q_j \).
Fluid Model Invariant States

Assumptions.

- **(Fluid arrival process)** For some \(\lambda \in (0, \infty)^J, E_j(t) = \lambda_j t \) for all \(j \) and \(t \geq 0 \).
- **(Overloaded)** For each \(j \), \(\rho_1 + \rho_2 + \cdots + \rho_J > 1 \) for \(\rho_j = \frac{\lambda_j}{\mu_j} \).
- **(Mean abandonment time)** For each \(j \), \(\int_0^\infty G_{a,j}(x)dx = \frac{1}{\theta_j} \).

Definition (Feasible server effort allocation).

- \(B = \{ b \in \mathbb{R}^J_+: b_j \leq \rho_j, \sum_{j=1}^J b_j \leq 1 \} \)

Theorem. For each \(b \in B \), there exists an invariant state such that \(b_j \) is the proportion of server effort devoted to class \(j \), and

\[
Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) \text{ for all } t \geq 0, \text{ where } f_j(x) = G_{a,e,j} \left(\left(G_{a,j} \right)^{-1}(x) \right).\]

Q1: For any given \(b \in B \), how should I schedule so as to achieve \(b \)?

Q2: What is my approximating control problem?
The Fluid Control Problem

\[m^* = \min_{b \in B_j} \sum_{j=1}^{J} c_j \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) + a_j (\lambda_j - b_j \mu_j) \]

Queue
Abandonments

Solution Properties. When is static priority (asymptotically) optimal?

If there is no holding cost; that is, \(c_j = 0 \).

If the abandonment distribution has non-decreasing hazard rate (IFR), then
- \(f_j \) is concave, and \(m^* \) is achieved by a feasible vertex.
- I.E., the solution motivates a static priority policy.
 (Consistent with earlier, but don’t know ordering).

If the abandonment distribution has non-increasing hazard rate (DFR), then
- \(f_j \) is convex, and \(m^* \) could be attained by a non-vertex feasible point.
- I.E., the solution motivates partially serving classes (not static priority).
 (We have numeric examples with non-vertex feasible point solution.)
Assume No Holding Costs and Static Priority Scheduling.

A two-class $M/LN(1,4)/100 + LN(1, v)$* queue, with each class having arrival rate 60 per hour.

(Q: Why does queue size decrease as variability increases?)

(High priority queue has predicted size 0, and simulated size about 1.5 for all values of the variability v.)
What are the Predicted Abandonment Rates?
(Recall: Two-class $M/LN(1,4)/100 + LN(1, \nu)$ queue, with each class having arrival rate 60 per hour.)

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(\lambda_2 - b_2 \mu_2) \times N = (0.6 - 0.4) \times 100 = 20$</td>
</tr>
</tbody>
</table>

A: Even though the same number of jobs abandon, jobs that abandon do so sooner, reducing average queue-size and wait time.
The Fluid Control Problem

\[m^* = \min_{b \in B_j} \sum_{j=1}^{J} c_j \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) + a_j (\lambda_j - b_j \mu_j) \]

Queue

Abandonments

Solution Properties. When is static priority (asymptotically) optimal?

If there is no holding cost; that is, \(c_j = 0 \).

If the abandonment distribution has non-decreasing hazard rate (IFR), then
- \(f_j \) is concave, and \(m^* \) is achieved by a feasible vertex.
- I.E., the solution motivates a static priority policy.
 —(Consistent with earlier, but don’t know ordering).

If the abandonment distribution has non-increasing hazard rate (DFR), then
- \(f_j \) is convex, and \(m^* \) could be attained by a non-vertex feasible point.
- I.E., the solution motivates partially serving classes (not static priority).
 (We have numeric examples with non-vertex feasible point solution.)
Example with Non-Vertex Optima

\[m^* = \min_{b \in B_J} \sum_{j=1}^{J} c_j \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) + a_j (\lambda_j - b_j \mu_j) \]

Queue

Abandonments

Parameters: \(\rho_1 = \rho_2 = \mu_1 = \mu_2 = c_1 = c_2 = 1 \) and \(a_1 = a_2 = 0 \).

Then, \(b_2 = 1 - b_1 \), and we have a 1-D problem.

Patience densities: Class 2 is exponential(\(\theta_2 \));
Class 1 has density \(\frac{2e^{-x} + 2e^{-2x}}{3} \) for \(x > 0 \), which has mean \(\frac{5}{6} \).

The minimizer \(b_1 \in [0,1] \) satisfies

\[\theta_2 = \frac{2}{3b_1} \left(1 + 3b_1 - \sqrt{1 + 3b_1} \right). \]

(This example is developed by Amber Puha’s student Jacques Coulombe.)
Fluid Model Invariant States

Assumptions.

• **(Fluid arrival process)** For some $\lambda \in (0, \infty)^J$, $E_j(t) = \lambda_j t$ for all j and $t \geq 0$.

• **(Overloaded)** For each j, $\rho_1 + \rho_2 + \cdots + \rho_J > 1$ for $\rho_j = \frac{\lambda_j}{\mu_j}$.

• **(Mean abandonment time)** For each j, $\int_0^\infty \bar{G}_{a,j}(x) dx = \frac{1}{\theta_j}$.

Definition **(Feasible server effort allocation).**

• $B = \{b \in \mathbb{R}^J_+: b_j \leq \rho_j, \sum_{j=1}^J b_j \leq 1\}$

Theorem. For each $b \in B$, there exists an invariant state such that b_j is the proportion of server effort devoted to class j, and

$$Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j}\right)$$

for all $t \geq 0$, where $f_j(x) = G_{a,e,j} \left((G_{a,j})^{-1}(x)\right)$.

Abandonment stationary excess cdf.
Abandonment cdf.

Q1: For any given $b \in B$, how should I schedule so as to achieve b?

Q2: What is my approximating control problem?
Conjecture: WRBS is Asymptotically Optimal

Convergence to Fluid Control Problem Solution:
If \(b \in B \) solves the fluid control problem, then the RBS policy that sets

\[
p_j = \frac{\mu_j b_j}{\sum_{k=1}^J \mu_k b_k}
\]

has cost equal to \(m^* \) on fluid scale; that is,

\[
\lim_{N \to \infty} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{j=1}^J \left(\int_0^T c_j Q_j^N(t; RBS) dt + a_j \frac{R_j^N(T; RBS)}{T} \right) \right] = m^*.
\]

*To mimic static priority, set \(b_j = \rho_j \) for high priority classes.

Lower Bound:
Under any admissible policy \(\pi \in \Pi \),

\[
\lim_{N \to \infty} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{j=1}^J \left(\int_0^T c_j Q_j^N(t; \pi) dt + a_j \frac{R_j^N(T; \pi)}{T} \right) \right] \geq m^*.
\]
Concluding Remarks

<table>
<thead>
<tr>
<th>Fluid Control Problem Assumptions</th>
<th>Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>No holding cost</td>
<td>Static Priority RBS</td>
</tr>
<tr>
<td>IFR</td>
<td>Static Priority RBS</td>
</tr>
<tr>
<td>DFR</td>
<td>RBS</td>
</tr>
</tbody>
</table>

Tutorial paper (with open problems) available soon from my web page (or email me): http://faculty.chicagobooth.edu/Amy.Ward/publications.html