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Leon Walras, 1874 

 Pioneered  general 

    equilibrium theory 

 



General Equilibrium Theory 

Occupied center stage in Mathematical 

Economics for over a century 



Central tenet 

 Markets should operate at  equilibrium 

 

      



Central tenet 

 Markets should operate at  equilibrium 

 

     i.e.,  prices  s.t.   

 

           Parity between supply and demand 



Do markets even admit 

equilibrium prices? 



Do markets even admit 

equilibrium prices? 

Easy if only one good! 



Supply-demand curves 



Do markets even admit 

equilibrium prices? 

What if there are multiple goods and 

 multiple buyers with diverse desires 

 and different buying power? 



Arrow-Debreu Model 

 n  agents and  g  divisible goods. 

 

 Agent i:  has initial endowment of goods  

 

   and a concave utility function  

       (yields convexity!) 
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Arrow-Debreu Model 

 n  agents and  g  divisible goods. 

 

 Agent i:  has initial endowment of goods  

 

   and a concave utility function  

   

         piecewise-linear, concave (PLC) 

 

ÎR+

g

ui : R+

g ® R+



Agent i comes with  

an initial endowment 

 



At given prices, agent i  

sells initial endowment 

1p 2p
3p



… and buys optimal bundle 

of goods, i.e,      

1p 2p
3p

max ui (bundle)



Several agents with own endowments  

and utility functions. 

 

 

 

Currently, no goods in the market. 



Agents sell endowments  

at current prices. 

1p 2p
3p



Each agent wants  

an optimal bundle. 

1p 2p
3p



Equilibrium  

 Prices  p  s.t.  market clears, 

 

 i.e., there is no deficiency or surplus  

        of any good. 



Arrow-Debreu Theorem, 1954 

 Celebrated theorem in Mathematical Economics 

 

 Established existence of market equilibrium under 

      very general conditions using a deep theorem from  

      topology  -  Kakutani fixed point theorem. 

 

     



Kenneth Arrow 

Nobel Prize, 1972 



Gerard Debreu 

Nobel Prize, 1983 



Arrow-Debreu Theorem, 1954 

 Celebrated theorem in Mathematical Economics 

 

 Established existence of market equilibrium under 

      very general conditions using a theorem from  

      topology  -  Kakutani fixed point theorem. 

 

  

  Highly non-constructive! 



 Leon Walras (1774): 

    Tatonnement process:  

    Price adjustment process to arrive at equilibrium 

 

Deficient goods:  raise prices 

Excess goods:      lower prices 

Inherently algorithmic notion!  



Leon Walras 

 Tatonnement process:  

    Price adjustment process to arrive at equilibrium 

 

Deficient goods:  raise prices 

Excess goods:      lower prices 

 

 Does it converge to equilibrium? 



GETTING TO ECONOMIC 

EQUILIBRIUM: A 

PROBLEM AND ITS 

HISTORY 

For the third International Workshop 
on Internet and Network Economics 

 

Kenneth J. Arrow 



OUTLINE 

I. BEFORE THE FORMULATION OF 
GENERAL EQUILIBRIUM THEORY 

II. PARTIAL EQUILIBRIUM 

III. WALRAS, PARETO, AND HICKS 

IV. SOCIALISM AND 
DECENTRALIZATION 

V. SAMUELSON AND SUCCESSORS 

VI. THE END OF THE PROGRAM 



Part VI: THE END OF THE PROGRAM 

A. Scarf’s example 

B. Saari-Simon Theorem: For any dynamic system 
depending on first-order information (z) only, there 
is a set of excess demand functions for which 
stability fails.  (In fact, theorem is stronger). 

C. Uzawa:  Existence of general equilibrium is 
equivalent to fixed-point theorem 

D. Assumptions on individual demand functions do 
not constrain aggregate demand function 
(Sonnenschein, Debreu, Mantel) 



Centralized algorithms for equilibria 

 

Scarf,  Smale,  … , 1970s:  Nice approaches! 

 

     



Centralized algorithms for equilibria 

 

Scarf,  Smale,  … , 1970s:  Nice approaches! 

 

    (slow and suffer from numerical instability) 





Theoretical Computer Science 

 Primal-dual paradigm 

 

 Convex programs 

 

 Complementary pivot algorithms 



(Complementary) Pivot Algorithms 

 Dantzig, 1947:  Simplex algorithm for LP 

 

 Lemke-Howson, 1964:   2-Nash Equilibrium 

 

 Eaves, 1975:  Equilibrium for Arrow-Debreu  

    markets under linear utilities  

    
  f (x) = cj

j

å  xj



(Complementary) Pivot Algorithms 

 Very fast in practice (even though 

      exponential time in worst case). 

 

 Work on rational numbers with bounded  

    denominators, hence no instability issues. 

 

 Reveal deep structural properties. 

 

 



(Complementary) Pivot Algorithms 

 Eaves, 1975:  Equilibrium for linear 

                           Arrow-Debreu markets 

                           (based on Lemke’s algorithm) 

 

 Until very recently, no extension to more 

    general utility functions! 



(Complementary) Pivot Algorithms 

 Eaves, 1975:  Equilibrium for linear 

                           Arrow-Debreu markets 

                           

 Until very recently, no extension to more 

    general utility functions! 

 

                            Why? 



 

Separable, piecewise-linear concave  

utility functions 



 Separable utility function 

 

        For a single buyer :

Utility from good j ,   f j : + ® +

Total utility from bundle,  f (x) = f j

j

å (xj )



utility 

: piecewise-linear, concave 

amount of j 

f j



Arrow-Debreu market under separable,  

piecewise-linear concave (SPLC) utilities 

 Can Eaves’ algorithm be extended to this case? 

 

 



 Eaves, 1975 Technical Report: 

Also under study are extensions of the overall method to 

include piecewise-linear utilities, production, etc., if 

successful, this avenue could prove important in real 

economic modeling. 

 

 Eaves, 1976 Journal Paper: 

... Now suppose each trader has a piecewise-linear, concave 

utility function. Does there exist a rational equilibrium? 

Andreu Mas-Colell generated a negative example, using 

Leontief utilities. Consequently, one can conclude that 

Lemke’s algorithm cannot be used to solve this class of 

exchange problems. 



Leontief utility 

 

 

 

 

u x( ) = min
x1

a1

,
x2

a2

,   ...  ,
xn

an

æ
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ö
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Leontief utility: is non-separable! 

 Utility = min{#bread,  2 #butter} 

 

 

 Only bread or only butter gives 0 utility! 



 Devanur & Kannan, 2007, 

   V. & Yannakakis, 2007: 

 

 If all parameters are rational numbers,  

      there is a rational equilibrium. 

      

 

      

 

 

 

       

Rationality for SPLC Utilities 



 

Theorem (Garg, Mehta, Sohoni & V., 2012):    

Complementary pivot algorithm for Arrow-Debreu 

  markets under SPLC utility functions. 

              (based on Lemke’s algorithm) 

 



Experimental Results 

 Inputs are drawn uniformly at random.   

|A|x|G|x#Seg #Instances Min Iters Avg Iters Max Iters 

10 x 5 x 2 1000 55 69.5 91 

10 x 5 x 5 1000 130 154.3 197 

10 x 10 x 5 100 254 321.9 401 

10 x 10 x 10 50 473 515.8 569 

15 x 15 x 10 40 775 890.5 986 

15 x 15 x 15 5 1203 1261.3 1382 

20 x 20 x 5 10 719 764 853 

20 x 20 x 10 5 1093 1143.8 1233 
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Linear Complementarity   

&  Lemke’s Algorithm 





Linear complementarity problem 

 

 Generalizes LP 



min   c
T

x

s.t.    Ax ³ b

        x ³ 0

max   b
T
z

s.t.    AT z£ c

        z³ 0



min   c
T

x

s.t.    Ax ³ b

        x ³ 0

max   b
T
z

s.t.    AT z£ c

        z³ 0

Complementary Slackness:

Let x ,  z  both be feasible.

Then both are optimal iff

"i :  zi = 0  or  Ax( )
i
= bi

"j :  xj = 0  or  AT z( )
j
= cj



  x,  z are both optimal iff

            Ax ³ b                     AT z£ c

               x ³ 0                          z³ 0

z
T

Ax- b( ) = 0        x
T

c- AT z( ) = 0
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Then  y  gives optimal solutions iff

                   M y £ q

                      y ³ 0

       y. q- M y( ) = 0

square matrix 
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Then  y  gives optimal solutions iff

                   M y £ q

                      y ³ 0

       y. q- M y( ) = 0

square matrix 



Linear Complementarity Problem 

Given  n´ n matrix M  and vector  q find y s.t.

M y £ q

y ³ 0

y. (q- M y) =0



Linear Complementarity Problem 

Given  n´ n matrix M  and vector  q find y s.t.

M y £ q

y ³ 0

y. (q- M y) =0

quadratic   



Linear Complementarity Problem 

Given  n´ n matrix M  and vector  q find y s.t.

M y £ q

y ³ 0

y. (q- M y) =0   Clearly, q- M y ³ 0( )
i.e., for each i :

yi = 0 or inequality i  is satisfied with equality.



Examples of linear complementarity 

 LP:  complementary slackness 

 

 2-Nash: For row player, 

 either Pr[row i] = 0  or  row i is a best response. 



Nonlinear complementarity 

 Plays a key role in KKT conditions for 

    convex programs 



Linear Complementarity Problem 

Given  n´ n matrix M  and vector  q find y s.t.

M y £ q

y ³ 0

y. (q- M y) =0

i.e., for each i :

yi = 0 or inequality i  is satisfied with equality.



Linear Complementarity Problem 

Given  n´ n matrix M  and vector  q find y s.t.

M y £ q

y ³ 0

y. (q- M y) =0

.

Introduce slack variables v

M y + v = q

y ³ 0, v ³ 0   (Since  q- M y ³ 0)

 y. v = 0

i.e., for each i : yi = 0  or   vi = 0.



 

M y + v = q

y ³ 0

v ³ 0  

y. v=0

Assume polyhedron in 2n  defined by 

red constraints is non-degenerate.    

Solution to LCP satisfies 2n equalities  

Þ   is a vertex of the polyhedron. 



Possible scheme 

 Find one vertex of polyhedron 

    and walk along 1-skeleton, via pivoting, 

    to a solution. 

 



Possible scheme 

 Find one vertex of polyhedron 

    and walk along 1-skeleton, via pivoting, 

    to a solution. 

 

 

 But in which direction is the solution? 



Lemke’s idea 

Add a new dimension:

M y + v - z1 = q

y ³ 0

v ³ 0

z ³ 0  

y. v= 0



Lemke’s idea 

Add a new dimension:

M y + v - z1 = q

y ³ 0

v ³ 0

z ³ 0  

y. v=0

Note:  Easy to get a solution to augmented LCP:

  Pick y = 0,  z large  and v = q + z1 .  Then v³ 0.



Lemke’s idea 

Add a new dimension:

M y + v - z1 = q

y ³ 0

v ³ 0

z ³ 0  

y. v= 0

Want:  solution of augmented LCP with z= 0.

Will be solution of original LCP!



 S: set of solutions to augmented LCP,  

                     each satisfies 2n equalities. 

 

 Polyhedron is in 2n+1 space. 

 

 Hence,  S  is a subset of 1-skeleton, i.e., 

                   consist of edges and vertices. 

 

 Every solution is fully labeled, i.e.,   

"i : yi =0 or vi =0



Vertices of polyhedron lying in S 

 Two possibilities: 

 

1).  Has a double label, i.e., 

 

 

 Only 2 ways of relaxing double label, hence 

    this vertex has exactly 2 edges of S incident. 

 

 

 

 

 

 

$i : yi =0 and vi =0



Vertices of polyhedron lying in S 

 Two possibilities: 

 

2).  Has  z = 0 

 

 Only 1 way of relaxing z = 0, hence 

    this vertex has exactly 1 edge of S incident. 

 

 

 

 

 

 



Vertices of polyhedron lying in S 

 Two possibilities: 

 

2).  Has  z = 0 

 

 Only 1 way of relaxing z = 0, hence 

    this vertex has exactly 1 edge of S incident. 

 

 This is a solution to original LCP!  

 

 

 

 

 



 

 

 

   Hence S consists of paths and cycles! 

 



z= 0

z= 0z= 0



 ray:   unbounded edge of S. 

 

 principal ray:    each point has y = 0. 

 

 secondary ray:    rest of the rays. 



Lemke’s idea 

Add a new dimension:

M y + v - z1 = q

y ³ 0

v ³ 0

z ³ 0  

y. v=0

Note:  Easy to get a solution to augmented LCP:

  Pick y = 0,  z large  and v = q + z1 .  Then v³ 0.



z¯

principal 

ray 

y = 0

yi = 0

vi = 0



z¯

principal 

ray 

y = 0

yi = 0

vi = 0 yk = 0

vk = 0

yi ­



z¯

principal 

ray 

y = 0

yi = 0

vi = 0 yk = 0

vk = 0

yi ­ yk ­



principal 

ray 

y = 0

yi = 0

vi = 0

Path lies in S! 



z= 0

principal 

ray 

y = 0

yi = 0

vi = 0



y = 0

principal 

ray secondary 

ray 

yi = 0

vi = 0



Problem with Lemke’s algorithm 

 No recourse if path starting with  

    primary ray ends in a secondary ray! 



Problem with Lemke’s algorithm 

 No recourse if path starting with  

    primary ray ends in a secondary ray! 

 

 We show that for each of our LCPs,  

    associated polyhedron has no secondary rays! 

 



Dramatic change!  

Polyhedron of 

 

 original LPC:  no clue where solution is. 

 

 augmented LCP:  know a path  

                    leading to solution! 



Theorem (Garg, Mehta, Sohoni & V., 2012):    

1). Derive LCP whose solutions  

        correspond to equilibria. 

2). Polyhedron of LCP has no secondary rays. 

 

 

 

Corollary: The number of equilibria is odd, 

                     up to scaling. 

 



z= 0

z= 0z= 0

z= 0z= 0



Theorem (Garg, Mehta, Sohoni & V., 2012):    

1). Derive LCP whose solutions  

        correspond to equilibria. 

2). Polyhedron of LCP has no secondary rays. 

3). If no. of goods or agents is a constant,  

      polyn. vertices of polyhedron are solutions 

      =>  strongly polynomial algorithm 

 

 

 



Derive LCP (assume linear utilities)  

 Market clearing 

Every good fully sold 

Every agent spends all his money 

 

 

 Optimal bundles 

Every agent gets a utility maximizing bundle 



Model 

Utility of agent i:   uij

j

å xij

Initial endowment of agent i:  wij ,   j ÎG

W.l.o.g. assume 1 unit of each good 

in the market.



Variables 

pj :   price of good j

qij :   amount of money 

          spent by i  on j



Guaranteeing optimal bundles 

 Agent i spends only on 

 

 

 

 bang-per-buck of i    

Si = argmax j

uij

pj

ì
í
ï

îï

ü
ý
ï

þï

= max j

uij

pj

ì
í
ï

îï

ü
ý
ï

þï

=(
1

li

  at equilibrium)



Optimal bundles, guaranteed by: 

"j :                   
uij

pj

£
1

li

qij > 0 Þ
uij

pj

=
1

li



Optimal bundles, guaranteed by: 

"j :                   
uij

pj

£
1

li

qij > 0 Þ
uij

pj

=
1

li

          qij > 0 or
uij

pj

=
1

li



Optimal bundles, via complementarity 

"i : "j : uijli £ pj

qij (uijli - pj )= 0



LCP for linear utilities 

"j : qij

i

å £ pj comp pj

"i : wij

j

å pj £ qij

j

å     comp li

"i, j : uijli £ pj                   comp qij

&  non-negativity for pj , qij , li


