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Disclaimer

 We work for IBM
– The views expressed here are ours, not IBM’s

 We worked for ILOG
– Views expressed here may be biased towards ILOG / IBM past experience in this area
– They may also biased towards IBM products in this area

• IBM ILOG CP Optimizer
• ILOG Solver

 But we think there is some general truth here

 Lots of CP research deals with programming language design, or theory of 
computing

– We will not deal with this here
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What Is Constraint Programming (CP) ?

Languages or systems for solving combinatorial 
(optimization) problems

We will introduce major components of constraint programming via their 
appearance during the history of the field

CP draws on : 

Artificial Intelligence, Computer Vision, Expert systems, Operations 
Research, Programming Languages Design, Mathematical Logic, Graph 
Theory, …
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Waltz Filtering

Generating Semantic Descriptions From Drawings of Scenes With Shadows
David L. Waltz
1972
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Waltz Filtering

 Edge labels
– Convex, Concave, Shadow, Obscuring, Crack

  Junction types
– L, Arrow, T, Fork, K

 Compute consistent edge labeling
– Junctions have a finite number of admissible 

labeling of their edges
– Edge label must be consistent over the junctions 

involving it
– Method

• Start with all possible edge labels

• Remove labels that are inconsistent (filter)

• Propagate the filtering to neighbouring 
edges of the image

• Filter edge labels, continue propagation

• Repeat the process until no more 
reductions are possible

(Taken from [Waltz, 72])
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An Impossible Problem

 What happens if we apply Waltz filters to the Penrose triangle?
 The process “over-filters”

 At least one edge has no possible label
 That is, there is no solution

 Quite a nice result for such a simple idea!
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Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary 

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of 

compatible values from each variable

– Can also view a constraint as a value compatibility matrix
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Constraint satisfaction problems (CSP)
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 The first studies in the 1970s 
used backward-oriented tree 
search algorithms

 John Gaschnig studied 
various forms in the mid to 
late 1970s

– backward checking

– backmarking

– backjumping
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Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as 

viewed by each constraint

– For a constraint on x and y, and for each possible value of x, a 
compatible value of y is available (and vice versa)
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Later developments

 Generalization of Waltz filtering
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Later developments
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Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as 

viewed by each constraint. 

– For a constraint on x and y, and for each possible value of x, a 
compatible value of y is available (and vice versa)
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 Look at constraint “x-z”

– x=2 is not possible

 Here, all variables are fixed.  
In typical problems, there will 
generally just be a domain 
reduction
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Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as 

viewed by each constraint. 

– For a constraint on x and y, and for each possible value of x, a 
compatible value of y is available (and vice versa)
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 The fusion of a tree search 
backtracking algorithm with 
Mackworth's algorithm 
invoked at each node 
became the newest way to 
solve CSPs

 It is the basis of the 
techniques used in CP 
solvers today

 The “constraint-centic” vision 
is still the usual method
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The AC-3 Algorithm

Q = { (j,k) : (j,k) in arcs(G) }
while Q not empty do

select and delete any arc (l,m) from Q

if revise(l,m) then

add all arcs (n,l) to Q where (n,l) in arcs(G)

revise(j,k)

del = false

for all x in domain(j)

if there is no y in domain(k) such that C
jk
(x,y)

delete x from domain(j)

del = true

return del 
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ALICE : A Language for an Intelligent Combinatorial Exploration 
(Jean-Louis Laurière, 1976) 

 Generic system for solving combinatorial problems
 Main features

– Problem stated as the search for functions betwen finite sets subject 
to some constraints

– Constraints could be logical or algebraic

– Had a modelling language resembling what we see today

– Black box solving module

• Using dynamic rules to determine how the solver should behave 
at each node is the search

• Had a kind of “portfolio” of rules

• Used bipartite graphs to represent a function internally

– Could optimize an objective function and provide a proof

 Had a big influence in France where CP research is most active 



© 2013 IBM Corporation21

Industry Solutions
Optimization

SOIT constante N, P ; sessions number, slots number
   ensemble  S = [1 N] ; session set

      H = [1 P] ; slot set
TROUVER fonction  F : S -> H  DIS  DMA
; DIS : slot disjunction (exclusion)
; DMA : max degree on sessions (number of rooms)

AVEC MIN MAX F(i)
i dans S

F(5) < F(10)
F(11) > F(4)   ET  F(11) > F(6)

FIN
  11, 10  ; values for N, P
  2, 3, 5, 7, 8, 10  ; sessions in disj. with 1… (1/2 matrix)

     3, 3, 3, 3, 3, 3, 3, 3, 3, 3  ; max degree for elements in H
  FIN

Timetabling Example
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Constraint Logic Programming (mostly 1980s)

 The PROLOG language, 
(Colmerauer, 1973)

– Backtracking search
– Solve equalities between labeled trees

 Extended in the 1980s to handle more 
general constraints 

– Finite domains (CSP)

– Linear programming

 A number of systems were created

– Prolog III

– CHIP

– CLP(R)

– Eclipse

An Eclipse example
        S E N D
+   M O R E
= M O N E Y

smm :- X = [S,E,N,D,M,O,R,Y], 
X :: 0 .. 9, 
M #> 0, 
S #> 0, 
1000*S + 100*E + 10*N + D 
+ 1000*M + 100*O + 10*R + 
E #= 10000*M + 1000*O + 
100*N + 10*E + Y,

 alldistinct(X), 
labeling(X), 
write(X). 
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Progress made in the 1980s

 Structure could be modelled

– e.g. alldistinct in the previous Eclipse model

– The “element” constraint or expression allows the user to index an 
array of values using a decision variable

– The hope is that suitable solvers would be able to better solve 
structured models where semantics are better preserved

• For example, one can do better domain reduction on more 
structured models

– Better realized in the 90s via powerful global constraints

 Black box search, as done in ALICE was seen as too limited for real 
problems

– Systems like CHIP allowed the user to program the search process
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Constraint Programming Toolkits (late 80s until today)

 Instead of designing a new 
language, implement a library in a 
host language.  For example:

– Lisp
• PECOS (Puget, 1990)

– C++
• ILOG Solver (Puget, 1992)
• Gecode (Schulte et al., 2005)
• OR-Tools (Perron et al., 2009)

– Java
• CHOCO (Laburthe et al.)

 Decision variable types
– Sets, task (scheduling), object, 

classes, strings
 Constraint types

– Logical, arithmetic, set, finite 
capacity resources, graphs

– Numerous global constraints
 Flexibility for implementing search 

procedures
 Hybridization with other domains

– SAT 
• No-good learning
• Propagation (watched literals)
• Lazy clause generation

– MP (SCIP, Achterberg)
– Local search (LNS, Shaw)
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Global Constraint Example: “All Different” Constraint (Regin 1994)

x1
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7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {3,4}
x5 {2,4,5,6}
x6 {5,6,7}

The bipartite graph
represents the
domains of the
variables.

An arc from x2 to 3
means that 3 is a
possible domain value
for x2



© 2013 IBM Corporation26

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)
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The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {3,4}
x5 {2,4,5,6}
x6 {5,6,7}

Between them,
variables x1, x2 and x3
can take only values
in {1,2,3}

Since three variables
cover 3 values and
all variables must take
different values, no
other variable can
take values in {1,2,3}
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Global Constraint Example: “All Different” Constraint (Regin 1994)
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The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {4,5,6}
x6 {5,6,7}

x4 must take the value
4 and so no other
variable can take the
value 4



© 2013 IBM Corporation28

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)
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The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {5,6}
x6 {5,6,7}

Regin's filtering
algorithm is
based on matching
theory and
identification of
strongly connected
components.

It was one of the first
to use non-trivial
algorithms to boost
domain reduction
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Global Constraint Example: “All Different” Constraint (Regin 1994)
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The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {5,6}
x6 {5,6,7}

The “one specialized
algorithm per
constraint” method was
pioneered in the 1980
and is now the standard
method of buildinging
CP Solvers in
preference to methods
like Macworth's AC-3
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Global Constraint Example: Scheduling (Edge Finding, Carlier and 
Pinson, 1988-1994)

● Consider some deadline t.

● Θ = all activities that must finish before t.

● Λ = all activities that can start before t but can 
finish after t.

● If we can add one activity from Λ into Θ, how 
big earliest completion time we can make?

● Is it bigger than t?

● If yes, activity we used from Λ can be updated 
and removed from Λ.

● for example t = lctD = 18

● Θ = {D, E, F}

● Λ = {C}                                      
     

● ECT{C,D,E,F} = 19                       

           

● Yes: 19 > 18

● estC := 18



© 2013 IBM Corporation31

Industry Solutions
Optimization

From Toolkits to Solvers

 ALICE was a black box
– Users would state the problem in a 

declarative way (a model)
– Similar to MP solvers like CPLEX

 CP progress was towards a “clear” box
– Emphasis was maximum flexibility

• Programmable search
• Programmable constraint propagation

 Skill set needed to use CP was growing:

– Large family of constraints types (100s)

– In general, little effort on making simple 
things simple

– Adoption was decreasing in the industry
– MIP solvers were more and more 

adopted

 We tried to learn from MIP solvers

CP Next Challenge: Simplicity of Use 
(Puget 2004)

 Puget proposed that we go back to the 
“model-and-run” approach because 
CP was in a dead end

– Not well received…(at the time)

 Progress on automatic search
– e.g. Impact Search (Refalo 2004)

– International workshops and sessions 
on “autonomous” search

 ILOG effort, resulted in CP Optimizer

– First modern automatic CP solver

 Others use different approaches based 
on local search

– e.g. COMET, LocalSolver
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Most Recently

CP is being integrated into modelling tools:

– OPL (CP Optimizer)

– AIMMS (CP Optimizer)

– AMPL (CP Optimizer, Gecode)

New solvers are still being built, for example:

– Chuffed (G12 project - uses lazy clause generation)

– Opturion (Commercial spin off from G12 project)

– OR-tools (Google, started by ex-ILOG people)

– LocalSolver (Local search over 0-1 variables)
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Putting it all together

Waltz Filtering algorithm

Arc-consistency
CSP ALICE

Prolog

Prolog III CPL(R)CHIP

Pecos

ILOG Solver

Linear ProgrammingMathematical Logic

Choco

Gecode

Expert Systems

1970

1980

1990

2000

Eclipse

G12, Minizinc

Local Search

Comet

Local Solver

Modeling languages

OPL

CP Optimizer
Opturion OR-Tools
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Constraint programming decoded

What Constraint Programming people 
call it

What Math Programming people should 
understand

Programming Computer programming

Planning Programming

Solution Feasible solution

Optimal solution Solution

Variable Decision variable

Variable Domain Variable bounds or set of admissible values

Constraints Not limited to linear, quadratic or mixed 
integer

Tree Search Branch & Bound

Heuristics Branching strategy

Constraint inference Presolve

Constraint Propagation Bound strengthening

Global constraint Specialized algorithm
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Conclusion
 CP is an alternative to MIP solvers

– And can be used in combination with them

 Good for combinatorial problems
– Optimization too of course, but optimality proof has not been the focus

 Major sweet spot is scheduling. e.g. In CP Optimizer:
– Precedence constraints, resources, reservoirs, optional tasks
– Work breakdown hierarchies

– Best known results on many benchmarks

 Solvers are generally free for academic use, even commercial 
solvers.  Give them a go!
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