
© 2013 IBM Corporation

Industry Solutions
Optimization

Constraint Programming
Background and History

Jean-François Puget, IBM Distinguished Engineer, IBM
Twitter: @JFPuget
https://www.ibm.com/developerworks/mydeveloperworks/blogs/jfp/?lang=en

Paul Shaw, CP Products Development Lead, IBM

January 16, 2014

https://www.ibm.com/developerworks/mydeveloperworks/blogs/jfp/?lang=en

© 2013 IBM Corporation2

Industry Solutions
Optimization

Disclaimer

 We work for IBM
– The views expressed here are ours, not IBM’s

 We worked for ILOG
– Views expressed here may be biased towards ILOG / IBM past experience in this area
– They may also biased towards IBM products in this area

• IBM ILOG CP Optimizer
• ILOG Solver

 But we think there is some general truth here

 Lots of CP research deals with programming language design, or theory of
computing

– We will not deal with this here

© 2013 IBM Corporation3

Industry Solutions
Optimization

What Is Constraint Programming (CP) ?

Languages or systems for solving combinatorial
(optimization) problems

We will introduce major components of constraint programming via their
appearance during the history of the field

CP draws on :

Artificial Intelligence, Computer Vision, Expert systems, Operations
Research, Programming Languages Design, Mathematical Logic, Graph
Theory, …

© 2013 IBM Corporation4

Industry Solutions
Optimization

Waltz Filtering

Generating Semantic Descriptions From Drawings of Scenes With Shadows
David L. Waltz
1972

© 2013 IBM Corporation5

Industry Solutions
Optimization

Waltz Filtering

 Edge labels
– Convex, Concave, Shadow, Obscuring, Crack

 Junction types
– L, Arrow, T, Fork, K

 Compute consistent edge labeling
– Junctions have a finite number of admissible

labeling of their edges
– Edge label must be consistent over the junctions

involving it
– Method

• Start with all possible edge labels

• Remove labels that are inconsistent (filter)

• Propagate the filtering to neighbouring
edges of the image

• Filter edge labels, continue propagation

• Repeat the process until no more
reductions are possible

(Taken from [Waltz, 72])

© 2013 IBM Corporation6

Industry Solutions
Optimization

An Impossible Problem

 What happens if we apply Waltz filters to the Penrose triangle?
 The process “over-filters”

 At least one edge has no possible label
 That is, there is no solution

 Quite a nice result for such a simple idea!

© 2013 IBM Corporation7

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1,2,3}

{1,2,3} {1,2,3}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)

© 2013 IBM Corporation8

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1,2,3}

{1,2,3} {1,2,3}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping

© 2013 IBM Corporation9

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1}

{1,2,3} {1,2,3}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping

© 2013 IBM Corporation10

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1}

{1,2,3}

x x

y z

x

z

y




 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping
{1}

© 2013 IBM Corporation11

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1}

x x

y z

x

z

y


















  












  





(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping
{1} {1}





© 2013 IBM Corporation12

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1}

x x

y z

x

z

y



 













  












  





(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping
{2} {1,2,3}





© 2013 IBM Corporation13

Industry Solutions
Optimization

Constraint satisfaction problems (CSP)

 (Binary) Constraint Satisfaction problems were studied in the mid 1970s
 A CSP consists of variables, each with a discrete domain and binary

constraints between pairs of variables
 A constraint is represented as a relation by simply listing the pairs of

compatible values from each variable

– Can also view a constraint as a value compatibility matrix

x

y z

{1}

x x

y z

x

z

y



 











  












  





(x + y <= 3)
(x <= z)

(y = z + 1)

 The first studies in the 1970s
used backward-oriented tree
search algorithms

 John Gaschnig studied
various forms in the mid to
late 1970s

– backward checking

– backmarking

– backjumping
{2}





{1}


© 2013 IBM Corporation14

Industry Solutions
Optimization

Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as

viewed by each constraint

– For a constraint on x and y, and for each possible value of x, a
compatible value of y is available (and vice versa)

x

y z

{1,2,3}

{1,2,3} {1,2,3}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)

© 2013 IBM Corporation15

Industry Solutions
Optimization

Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as

viewed by each constraint

– For a constraint on x and y, and for each possible value of x, a
compatible value of y is available (and vice versa)

y

 Looking at constraint “x-y”

– x=3 is not possible

– y=3 is not possible

x

y z

{1,2}

{1,2}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)
z

{1,2,3}

© 2013 IBM Corporation16

Industry Solutions
Optimization

Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as

viewed by each constraint

– For a constraint on x and y, and for each possible value of x, a
compatible value of y is available (and vice versa)

y

 Looking at constraint “x-y”

– x=3 is not possible

– y=3 is not possible

 Looking at constraint “y-z”

– y=1 is not possible

– z=2 is not possible

– z=3 is not possible

x

y z

{1,2}

{2}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)
z

{1}

© 2013 IBM Corporation17

Industry Solutions
Optimization

Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as

viewed by each constraint.

– For a constraint on x and y, and for each possible value of x, a
compatible value of y is available (and vice versa)

y

 Look at constraint “x-z”

– x=2 is not possible

 Here, all variables are fixed.
In typical problems, there will
generally just be a domain
reduction

x

y z

{1}

{2}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)
z

{1}

© 2013 IBM Corporation18

Industry Solutions
Optimization

Later developments

 Generalization of Waltz filtering

– Resulted in the “arc-consistency” algorithm of Mackworth (1977)
 For a given CSP, Mackworth's algorithm filters the domains maximally, as

viewed by each constraint.

– For a constraint on x and y, and for each possible value of x, a
compatible value of y is available (and vice versa)

y

 The fusion of a tree search
backtracking algorithm with
Mackworth's algorithm
invoked at each node
became the newest way to
solve CSPs

 It is the basis of the
techniques used in CP
solvers today

 The “constraint-centic” vision
is still the usual method

x

y z

{1}

{2}

x x

y z

x

z

y





 












  












  







(x + y <= 3)
(x <= z)

(y = z + 1)
z

{1}

© 2013 IBM Corporation19

Industry Solutions
Optimization

The AC-3 Algorithm

Q = { (j,k) : (j,k) in arcs(G) }
while Q not empty do

select and delete any arc (l,m) from Q

if revise(l,m) then

add all arcs (n,l) to Q where (n,l) in arcs(G)

revise(j,k)

del = false

for all x in domain(j)

if there is no y in domain(k) such that C
jk
(x,y)

delete x from domain(j)

del = true

return del

© 2013 IBM Corporation20

Industry Solutions
Optimization

ALICE : A Language for an Intelligent Combinatorial Exploration
(Jean-Louis Laurière, 1976)

 Generic system for solving combinatorial problems
 Main features

– Problem stated as the search for functions betwen finite sets subject
to some constraints

– Constraints could be logical or algebraic

– Had a modelling language resembling what we see today

– Black box solving module

• Using dynamic rules to determine how the solver should behave
at each node is the search

• Had a kind of “portfolio” of rules

• Used bipartite graphs to represent a function internally

– Could optimize an objective function and provide a proof

 Had a big influence in France where CP research is most active

© 2013 IBM Corporation21

Industry Solutions
Optimization

SOIT constante N, P ; sessions number, slots number
 ensemble S = [1 N] ; session set

 H = [1 P] ; slot set
TROUVER fonction F : S -> H DIS DMA
; DIS : slot disjunction (exclusion)
; DMA : max degree on sessions (number of rooms)

AVEC MIN MAX F(i)
i dans S

F(5) < F(10)
F(11) > F(4) ET F(11) > F(6)

FIN
 11, 10 ; values for N, P
 2, 3, 5, 7, 8, 10 ; sessions in disj. with 1… (1/2 matrix)

 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ; max degree for elements in H
 FIN

Timetabling Example

© 2013 IBM Corporation22

Industry Solutions
Optimization

Constraint Logic Programming (mostly 1980s)

 The PROLOG language,
(Colmerauer, 1973)

– Backtracking search
– Solve equalities between labeled trees

 Extended in the 1980s to handle more
general constraints

– Finite domains (CSP)

– Linear programming

 A number of systems were created

– Prolog III

– CHIP

– CLP(R)

– Eclipse

An Eclipse example
 S E N D
+ M O R E
= M O N E Y

smm :- X = [S,E,N,D,M,O,R,Y],
X :: 0 .. 9,
M #> 0,
S #> 0,
1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R +
E #= 10000*M + 1000*O +
100*N + 10*E + Y,

 alldistinct(X),
labeling(X),
write(X).

© 2013 IBM Corporation23

Industry Solutions
Optimization

Progress made in the 1980s

 Structure could be modelled

– e.g. alldistinct in the previous Eclipse model

– The “element” constraint or expression allows the user to index an
array of values using a decision variable

– The hope is that suitable solvers would be able to better solve
structured models where semantics are better preserved

• For example, one can do better domain reduction on more
structured models

– Better realized in the 90s via powerful global constraints

 Black box search, as done in ALICE was seen as too limited for real
problems

– Systems like CHIP allowed the user to program the search process

© 2013 IBM Corporation24

Industry Solutions
Optimization

Constraint Programming Toolkits (late 80s until today)

 Instead of designing a new
language, implement a library in a
host language. For example:

– Lisp
• PECOS (Puget, 1990)

– C++
• ILOG Solver (Puget, 1992)
• Gecode (Schulte et al., 2005)
• OR-Tools (Perron et al., 2009)

– Java
• CHOCO (Laburthe et al.)

 Decision variable types
– Sets, task (scheduling), object,

classes, strings
 Constraint types

– Logical, arithmetic, set, finite
capacity resources, graphs

– Numerous global constraints
 Flexibility for implementing search

procedures
 Hybridization with other domains

– SAT
• No-good learning
• Propagation (watched literals)
• Lazy clause generation

– MP (SCIP, Achterberg)
– Local search (LNS, Shaw)

© 2013 IBM Corporation25

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {3,4}
x5 {2,4,5,6}
x6 {5,6,7}

The bipartite graph
represents the
domains of the
variables.

An arc from x2 to 3
means that 3 is a
possible domain value
for x2

© 2013 IBM Corporation26

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {3,4}
x5 {2,4,5,6}
x6 {5,6,7}

Between them,
variables x1, x2 and x3
can take only values
in {1,2,3}

Since three variables
cover 3 values and
all variables must take
different values, no
other variable can
take values in {1,2,3}

© 2013 IBM Corporation27

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {4,5,6}
x6 {5,6,7}

x4 must take the value
4 and so no other
variable can take the
value 4

© 2013 IBM Corporation28

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {5,6}
x6 {5,6,7}

Regin's filtering
algorithm is
based on matching
theory and
identification of
strongly connected
components.

It was one of the first
to use non-trivial
algorithms to boost
domain reduction

© 2013 IBM Corporation29

Industry Solutions
Optimization

Global Constraint Example: “All Different” Constraint (Regin 1994)

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

x1 {1,2}
x2 {2,3}
x3 {1,3}
x4 {4}
x5 {5,6}
x6 {5,6,7}

The “one specialized
algorithm per
constraint” method was
pioneered in the 1980
and is now the standard
method of buildinging
CP Solvers in
preference to methods
like Macworth's AC-3

© 2013 IBM Corporation30

Industry Solutions
Optimization

Global Constraint Example: Scheduling (Edge Finding, Carlier and
Pinson, 1988-1994)

● Consider some deadline t.

● Θ = all activities that must finish before t.

● Λ = all activities that can start before t but can
finish after t.

● If we can add one activity from Λ into Θ, how
big earliest completion time we can make?

● Is it bigger than t?

● If yes, activity we used from Λ can be updated
and removed from Λ.

● for example t = lctD = 18

● Θ = {D, E, F}

● Λ = {C}

● ECT{C,D,E,F} = 19

● Yes: 19 > 18

● estC := 18

© 2013 IBM Corporation31

Industry Solutions
Optimization

From Toolkits to Solvers

 ALICE was a black box
– Users would state the problem in a

declarative way (a model)
– Similar to MP solvers like CPLEX

 CP progress was towards a “clear” box
– Emphasis was maximum flexibility

• Programmable search
• Programmable constraint propagation

 Skill set needed to use CP was growing:

– Large family of constraints types (100s)

– In general, little effort on making simple
things simple

– Adoption was decreasing in the industry
– MIP solvers were more and more

adopted

 We tried to learn from MIP solvers

CP Next Challenge: Simplicity of Use
(Puget 2004)

 Puget proposed that we go back to the
“model-and-run” approach because
CP was in a dead end

– Not well received…(at the time)

 Progress on automatic search
– e.g. Impact Search (Refalo 2004)

– International workshops and sessions
on “autonomous” search

 ILOG effort, resulted in CP Optimizer

– First modern automatic CP solver

 Others use different approaches based
on local search

– e.g. COMET, LocalSolver

© 2013 IBM Corporation32

Industry Solutions
Optimization

Most Recently

CP is being integrated into modelling tools:

– OPL (CP Optimizer)

– AIMMS (CP Optimizer)

– AMPL (CP Optimizer, Gecode)

New solvers are still being built, for example:

– Chuffed (G12 project - uses lazy clause generation)

– Opturion (Commercial spin off from G12 project)

– OR-tools (Google, started by ex-ILOG people)

– LocalSolver (Local search over 0-1 variables)

© 2013 IBM Corporation33

Industry Solutions
Optimization

Putting it all together

Waltz Filtering algorithm

Arc-consistency
CSP ALICE

Prolog

Prolog III CPL(R)CHIP

Pecos

ILOG Solver

Linear ProgrammingMathematical Logic

Choco

Gecode

Expert Systems

1970

1980

1990

2000

Eclipse

G12, Minizinc

Local Search

Comet

Local Solver

Modeling languages

OPL

CP Optimizer
Opturion OR-Tools

© 2013 IBM Corporation34

Industry Solutions
Optimization

Constraint programming decoded

What Constraint Programming people
call it

What Math Programming people should
understand

Programming Computer programming

Planning Programming

Solution Feasible solution

Optimal solution Solution

Variable Decision variable

Variable Domain Variable bounds or set of admissible values

Constraints Not limited to linear, quadratic or mixed
integer

Tree Search Branch & Bound

Heuristics Branching strategy

Constraint inference Presolve

Constraint Propagation Bound strengthening

Global constraint Specialized algorithm

© 2013 IBM Corporation35

Industry Solutions
Optimization

Conclusion
 CP is an alternative to MIP solvers

– And can be used in combination with them

 Good for combinatorial problems
– Optimization too of course, but optimality proof has not been the focus

 Major sweet spot is scheduling. e.g. In CP Optimizer:
– Precedence constraints, resources, reservoirs, optional tasks
– Work breakdown hierarchies

– Best known results on many benchmarks

 Solvers are generally free for academic use, even commercial
solvers. Give them a go!

	Constraint Programming Principles and History Jean-François Puget, IBM Distinguished Engineer, IBM January 14, 2014 Twitter: @JFPuget https://www.ibm.com/developerworks/mydeveloperworks/blogs/jfp/?lang=en
	Disclaimer
	What Is Constraint Programming (CP) ?
	Waltz Filtering
	Slide 5
	A correct edge labeling
	Constraint satisfaction problems (CSP)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	ALICE : A Language for an Intelligent Combinatorial Exploration (Laurière, 1976)
	Time tabling example
	Constraint Logic Programming
	Slide 23
	Slide 24
	Global constraint example 1: Alldiff constraint
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Global constraint 2: resource constraints
	From libraries to solvers
	Slide 32
	Putting it all together
	Constraint programming decoded
	Conclusion

