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MAASTRO CLINIC    (MAASTricht Radiation Oncology) 

– Independent non-profit radiation oncology clinic 

• emphasis: academic cancer care and research 

• 20 radiation oncologists 

• 7 medical physicists 

• 5 biologists 

• >20 PhD students 

• 2 CT + 1 PET/CT scanners 

• 4 LINACs (+2 in satellite Venlo) 

• brachytherapy (125I, 192Ir) 

• >4000 new patients/year 

 Dutch radiotherapy centres  



Oncology 

 

– Main cancer treatment modalities: 

• surgery 

• chemotherapy    (systemic/biological agents) 

• radiotherapy    (ionising radiation) 

 

 

– Radiotherapy: 

• treatment of choice in ~50% of the cases 

• curative intent : sterilise spread of tumour cells 

• palliative intent : alleviate pain symptoms to achieve highest quality of life 

 
 

 



Radiotherapy 

 

– Aim:  
 

• deliver therapeutic dose to tumour without damaging healthy normal tissues 

 

 

 

– Radiation therapy modalities: 
 

• internal radioactive source  (brachytherapy) 
 

• external particle beam accelerator (teletherapy)  



External beam irradiation 

 

– Particle accelerator generates high-energy rays of:  

• photons 

• electrons 

• protons 

• neutrons 

• … 

 

– Energetic particles:  
• penetrate through the skin 

• interact with matter (i.e. tissues) by electrical forces 

• deposit dose (measured in J/kg) while losing kinetic energy 



External beam photon therapy  



External beam photon therapy: linear accelerator 

 

– Degrees of freedom:  
 

• gantry angle 

• couch angle 

• number of beams 

• beam angles 

• beam apertures 

• beam intensities 

• … 



Treatment planning problem 

 

– Medical and biological parameters: (radiation oncologist) 

• prescription dose level for tumour 

• tolerance dose levels for normal tissues 

• dose-time fractionation scheme 

 

 

– Technical and physical parameters: (medical physicist) 

• treatment setup geometry: patient position relative to beam 

• beam arrangement:  numbers, angles, … 

• beam settings:   energy, shapes, intensity profiles, … 

 



Beam number and angles 

5 equidistant beams single beam 

Cross-firing beams: basic principle to add up dose in tumour  

           and keep dose in healthy tissues low 



Beam shapes and intensities 

  Conventional RT: 

   rectangular beam shape 

   uniform radiation intensity distribution 

 

  3D-Conformation RT (3D-CRT): 

   MLC: irregular beam shape 

   uniform radiation intensity distribution 

 

  Intensity-Modulated RT (IMRT): 

   non-uniform intensity distribution 



Beam shapes and intensities 

 

– Beam shapes 
• multi-leaf collimator (MLC) 

• tungsten leafs 

 

 

 
– Beam intensity modulation 

• different aperture shapes 

• same radiation intensity (fluence) 

• fluence map construction 

• beam intensity elements (bixels) 



Forward problem: beam aperature optimisation  

design parameters: leaf positions 

fluence map 

dose distribution 

evaluation criteria: dosimetric quality 

discretised set of 

pencil beams with 

tunable intensity levels 



Mathematical model 

structure: dose distribution evaluation: cost functions 

design parameters: leaf positions 

constraints    feasible design space 



Inverse problem: beam aperature optimisation  

cost functions define planning  

objectives and constraints 

evaluation criteria:  

dosimetric quality 

adjustment of design parameters 

tunable intensity levels 



Large-scale optimisation problem: head & neck tumour 

 

– Beam setup: 
• 9 fixed co-planar beams 

• 5000 bixels 

• 100000 voxels 

 

–  Clinical aims: 
• uniform tumour dose 

• spare salivary glands 

• spare optical system 

• spare spinal cord 

• … 



Multi-criteria optimisation problem 

… 

     target coverage 

 

– Define objectives and constraints to fulfill the clinical aims: 



Cost functions 

 

– Clinical aims require a planning trade-off: 
 

• contradictory goals 
 

• mutually dependent 
 

• cannot be perfectly achieved 
 

• subjective and highly case specific 
 

• “best compromise” solution is unknown beforehand 



Solving the optimisation problem 

 

– Finding a “best compromise” solution requires: 
 

• decision-making strategy 
 

• user-algorithm interaction to guide the optimisation algorithm 

 

 

 

– Use a priori  information: 
 

• planner     :   preferences  (e.g. ranking by importance) 
 

• algorithm  :   problem structure  (e.g. convexity, curvature, …) 



User-algorithm interaction 

 

– A priori  preference methods: 

• weighted-sum optimisation: weight factor tuning 

 

• constrained optimisation:  priority level definition 

– pre-emptive goal programming 

– lexicographical ordering 

 

 

– A posteriori  preference method: 

• Pareto optimisation 



Weighted-sum optimisation 

 

– Should capture clinical judgement about relative importance of 
target (tumour) and risk (normal tissue) objectives 

 

– Scalarisation approach: single-objective optimisation problem 

 risk2risk2risk1risk1targettarget FwFwFwF

weight factors 

objective functions 



Classical approach: treatment planning workflow 

• requires experience,    

   expert knowledge 

user 

preferences 



Weighting factors 

 

– Disadvantages: 
 

• require articulation of a priori preference information 
 

• are often defined on arbitrary scales 
 

• have no direct (clinical) meaning 
 

• sensitivity of result to changes is unknown beforehand 
 

• must be determined by trial-and-error process that involves multiple runs 



User-algorithm interaction 

 

– A priori  preference methods: 

• weighted-sum optimisation: weight factor tuning 

 

• constrained optimisation:  priority level definition 

– pre-emptive goal programming 

– lexicographical ordering 

 

 

– A posteriori  preference method: 

• Pareto optimisation 



Constrained optimisation 

 

– Objectives are handled one-by-one in a predefined order 

 

– Solution should meet set of constraints while one objective is optimised 

 

– Prioritised optimisation: 

• decision makers have hierarchical conception of planning goals 

• goals are addressed stepwise with highest order goals considered first 

• in subsequent steps: 

– achievements so far are turned into constraints 

– single new goal is incorporated into objective function 



Constrained optimisation 

 

– Advantages: 
 

• simple, straightforward 
 

• no tuning of weighting factors 

 
– Disadvantages: 

 

• only one solution is generated 
 

• no trade-off information 
 

• no option to trade-off “small losses” for “large gains” 



Limitations of a priori  preference methods 

 

– So far: a priori articulation of preference information required 
• weighting factors 

• priority levels 

 

– Unclear in advance how (inter)dependent the objectives are 

 

– User does not know whether optimal operating point is reached 
• “what gain could be obtained if I was willing to accept a small loss?” 

 

– No trade-off information available 



Let‟s try a posteriori  preference methods 

 

– Clinicians and treatment planners: 

• … have difficulty in defining complete representation of optimisation problem 

• … typically differ in how they define the problem 

• … are perfectly capable of ranking individual solutions  (“IKIWISI approach”) 

 

 

– Idea: decouple optimisation and decision-making process 

 

– Provide framework for (interactive) a posteriori  risk/benefit balancing 



User-algorithm interaction 

 

– A priori  preference methods: 

• weighted-sum optimisation: weight factor tuning 

 

• constrained optimisation:  priority level definition 

– pre-emptive goal programming 

– lexicographical ordering 

 

 

– A posteriori  preference method: 

• Pareto optimisation 



Pareto optimisation 

 

– All objective functions are considered simultaneously: 
 

 

 

 

 

– No single best solution exists 

 

– A set of “best compromise” solutions exists 
• no objective can be further improved without deteriorating at least one other 

 

– In objective space: Pareto efficient frontier 

( F1(x), F2(x), …, Fk(x) )T 

 

min  F(x) = 
x 



Pareto approach 

user 

preferences 



Mathematical aspects 

 

– How to generate a set of Pareto optimal treatment plans efficiently? 

 

– Do different objective functions yield different Pareto efficient 
frontiers? 

 

– How to navigate through Pareto optimal solutions? 



Generation of Pareto efficient frontier 

 

– Brute force strategy: generate-and-test method 

image courtesy: C. Thieke (2004) 



Generation of Pareto efficient frontier 

 

– Discrete approximation: use sandwich algorithm for convex problems 

Siem et al. INFORMS J Comput (2011) 

no derivative information derivative information used 

Hoffmann et al. Phys Med Biol (2006); 



Convexity analysis 

 

– Sandwich algorithms rely on convex objective functions 

 

– Convexity analysis conducted for different type of objective functions 

 

– Results:  
• most functions are already convex  

• can be transformed into convex functions under Pareto invariance by applying 
strictly increasing transformations 

• transformation of different quality exist; some are „less convex‟ than others 

• Pareto solutions can be approximated more efficiently by using transformations 

 

 

 

 

Siem et al. EJOR (2008) Hoffmann et al. Phys Med Biol (2008); 
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Monz et al., Phys Med Biol (2008) 
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