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MAASTRO cLINIC  (MAASTTricht Radiation Oncology)
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— Independent non-profit radiation oncology clinic & =
 emphasis: academic cancer care and research

20 radiation oncologists

7 medical physicists

5 biologists

>20 PhD students

2 CT + 1 PET/CT scanners

4 LINACs (+2 in satellite Venlo)
brachytherapy (121, 192Ir)

>4000 new patients/year ;
Dutch radiotherapy centres
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Oncology

— Main cancer treatment modalities:

* surgery
* chemotherapy (systemic/biological agents)
* radiotherapy (ionising radiation)

— Radiotherapy:

* treatment of choice in ~50% of the cases
o curative intent : sterilise spread of tumour cells
« palliative intent : alleviate pain symptoms to achieve highest quality of life
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Radiotherapy

— Aim:

* deliver therapeutic dose to tumour without damaging healthy normal tissues

— Radiation therapy modalities:
» internal radioactive source (brachytherapy)

» external particle beam accelerator  (teletherapy)
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External beam irradiation

— Particle accelerator generates high-energy rays of:
* photons

electrons

protons

neutrons

— Energetic particles:
* penetrate through the skin
* interact with matter (i.e. tissues) by electrical forces
* deposit dose (measured in J/kg) while losing kinetic energy
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External beam photon therapy

Optimized treatment
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External beam photon therapy: linear accelerator

— Degrees of freedom:

* gantry angle

» couch angle

« number of beams ——
+ beam angles ]
+ beam apertures T
* beam intensities
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Treatment planning problem

— Medical and biological parameters: (radiation oncologist)
* prescription dose level for tumour

* tolerance dose levels for normal tissues
« dose-time fractionation scheme

— Technical and physical parameters: (medical physicist)
* treatment setup geometry: patient position relative to beam
* beam arrangement: numbers, angles, ...
* beam settings: energy, shapes, intensity profiles, ...



| MAASTRO

Beam number and angles

single beam 5 equidistant beams

—_
n

centimeters
centimeters

-
N

-t
L]
-
o

B

4 8 12 16 20 q 8 12 16 20
centimeters centimeters

Cross-firing beams: basic principle to add up dose in tumour
and keep dose in healthy tissues low
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Beam shapes and intensities

= Conventional RT: T3
= rectangular beam shape — =7
= uniform radiation intensity distribution
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= |ntensity-Modulated RT (IMRT):

= non-uniform intensity distribution
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Beam shapes and intensities

Multileaf Photon
therapy

|
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— Beam shapes
o multi-leaf collimator (MLC)
* tungsten leafs
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— Beam intensity modulation
« different aperture shapes E n n E
* same radiation intensity (fluence)
« fluence map construction E I .
* beam intensity elements (bixels)
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Forward problem: beam aperature optimisation

design parameters: leaf positions

/

fluence map

/

dose distribution

discretised set of
pencil beams with
tunable intensity levels

evaluation criteria: dosimetric quality
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Mathematical model

Parameter Space X

|

Pt design parameters: leaf positions
constraints — feasible design space X’
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Evalnation Space ¥

structure: dose distribution evaluation: cost functions
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Inverse problem: beam aperature optimisation

adjustment of design parameters
A

tunable intensity levels

evaluation criteria:

S . cost functions define planning
dosimetric quality

objectives and constraints
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Large-scale optimisation problem: head & neck tumour

— Beam setup:
* 9 fixed co-planar beams
5000 bixels
100000 voxels

— Clinical aims:
* uniform tumour dose
* gpare salivary glands
* spare optical system
* spare spinal cord
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Multi-criteria optimisation problem

— Define objectives and constraints to fulfill the clinical aims:

target coverage

< normal tissue sparing
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— Clinical aims require a planning trade-off:

» contradictory goals

 mutually dependent

* cannot be perfectly achieved

* subjective and highly case specific

* “best compromise” solution is unknown beforehand
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Solving the optimisation problem

— Finding a “best compromise” solution requires:

* decision-making strategy

* user-algorithm interaction to guide the optimisation algorithm

— Use a priori information:

 planner : preferences (e.g. ranking by importance)

» algorithm : problem structure (e.g. convexity, curvature, ...)
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User-algorithm interaction

— A priori preference methods:
* weighted-sum optimisation: weight factor tuning

» constrained optimisation: priority level definition
— pre-emptive goal programming
— lexicographical ordering

— A posteriori preference method:
* Pareto optimisation
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Weighted-sum optimisation

— Should capture clinical judgement about relative importance of
target (tumour) and risk (normal tissue) objectives

— Scalarisation approach: single-objective optimisation problem

weight factors

F = Faget T Wiiska * Friskr T Wiiskz * Friskz T+ - -

— YWiarget ' target r

NS -

objective functions
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Classical approach: treatment planning workflow

Treatment plan/

Treatment plan
Planning goals
proposal

Oncologist

Physical planner

~Human iteration loop”

} Problem formulation

v

Optimization _
Plan computation
problem -

v

ser Problem modification
u
preferences

Drawbacks:

¢ several ,,human
iterations”

e delay by many
plan computations

* requires experience,
expert knowledge
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Weighting factors

— Disadvantages:

* require articulation of a priori preference information 1

are often defined on arbitrary scales

have no direct (clinical) meaning

sensitivity of result to changes is unknown beforehand

must be determined by trial-and-error process that involves multiple runs
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User-algorithm interaction

— A priori preference methods:

» constrained optimisation: priority level definition
— pre-emptive goal programming
— lexicographical ordering
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Constrained optimisation

— Objectives are handled one-by-one in a predefined order

— Solution should meet set of constraints while one objective is optimised

— Prioritised optimisation:
* decision makers have hierarchical conception of planning goals
« goals are addressed stepwise with highest order goals considered first

* in subsequent steps:
— achievements so far are turned into constraints
— single new goal is incorporated into objective function
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Constrained optimisation

— Advantages:

* simple, straightforward

* no tuning of weighting factors

— Disadvantages:
* only one solution is generated
* no trade-off information

* no option to trade-off “small losses” for “large gains”
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Limitations of a priori preference methods

— So far: a priori articulation of preference information required
* weighting factors
* priority levels

— Unclear in advance how (inter)dependent the objectives are

— User does not know whether optimal operating point is reached
* “what gain could be obtained if | was willing to accept a small loss?”

— No trade-off information available
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Let's try a posteriori preference methods

— Clinicians and treatment planners:
* ... have difficulty in defining complete representation of optimisation problem

* ... typically differ in how they define the problem
« ... are perfectly capable of ranking individual solutions  (“IKIWISI approach”)

— ldea: decouple optimisation and decision-making process

— Provide framework for (interactive) a posteriori risk/benefit balancing
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User-algorithm interaction

— A posteriori preference method:
* Pareto optimisation
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Pareto optimisation

— All objective functions are considered simultaneously:

mXin F(X) = (Fi(X), Fa(%), ..., F(X) )T

— No single best solution exists

— A set of “best compromise” solutions exists
* no objective can be further improved without deteriorating at least one other

— In objective space: Pareto efficient frontier
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Pareto approach

user

preferences

] Database of Supported real time
Planning goals . Treatment plan
plan proposal planning

Oncologist

Physical planner

Problem formulation Advantages:

i * plan computations

/ Multicriteria ~ / Multiple more goal-oriented
problem plan computations

* no delay in oncologist’s
(and planner’s) workflow
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Mathematical aspects

— How to generate a set of Pareto optimal treatment plans efficiently?

— Do different objective functions yield different Pareto efficient
frontiers?

— How to navigate through Pareto optimal solutions?



MAASTRO

Generation of Pareto efficient frontier

— Brute force strategy: generate-and-test method

35 - —®— Pareto optimal
=  dominated
30 i T
=
@, 25
o]
C
©
O
T 204
O IRRKEEKEEAEEAE ™ ™ = » e w e e e e
©
o LT
a 15 w
0 AT T
B
1044) not feasible 9
0 5 10 15 20 25 30 35

EUD Spinal Cord (Gy)
image courtesy: C. Thieke (2004)
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Generation of Pareto efficient frontier

— Discrete approximation: use sandwich algorithm for convex problems

Foo0 no derivative information F derivative information used

Hoffmann et al. Phys Med Biol (2006);  Siem et al. INFORMS J Comput (2011)
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Convexity analysis

— Sandwich algorithms rely on convex objective functions

— Convexity analysis conducted for different type of objective functions

— Results:
* most functions are already convex

* can be transformed into convex functions under Pareto invariance by applying
strictly increasing transformations

* transformation of different quality exist; some are ‘less convex’ than others
» Pareto solutions can be approximated more efficiently by using transformations

Hoffmann et al. Phys Med Biol (2008);  Siem et al. EJOR (2008)
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/? Information - Dose Distribution
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Monz et al., Phys Med Biol (2008)
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