Optimal outpatient appointment scheduling with emergency arrivals
 Paulien Out
 January 14, 2010
 Joint work with Ger Koole

The problem

outpatient appointment scheduling

Scheduling appointments

- Situation:
- block of time available to schedule N patients
- stochastic service times (known distribution)
- unknown number of emergency arrivals
- At what times to schedule appointments?
- What waiting time, idle time, tardiness?

Standard practice

Schedule patients at even-spaced intervals:

Sometimes Bailey-Welch rule:

Earlier work

Guido Kaandorp and Ger Koole (2007):

- exponential service times
- no emergencies
- local search method
- optimal schedule based on weighted sum of waiting times, idle time and tardiness

Earlier work (2)

Vanden Bosch, Dietz and Simeoni (1999)

- Erlang service times
- no emergencies
- efficient algorithm: number of evaluations linear in number of intervals and patients
- but less efficient then it appears due to a small error in the proof

The model

Variables:

- T intervals of length d
- N patients to be scheduled
- mean service time β
- decision variables:
x_{t} : number of patients scheduled at interval t
$t=1,2, \ldots, T$

Adding emergency patients

- Unknown number of arrivals
- mean number λ per day is known
- Arrivals according to Poisson process
- Possibly different service time distribution
- In model:
- arrive only at start of intervals
- number per interval has Poisson distribution

Service of emergencies

- All patients wait for patient in service
- Scheduled patients wait for work present upon their arrival and any emergency arriving during their waiting time
- Emergency patients wait only for each other

Objective

Schedule all N patients while minimising a weighted combination of:
 - waiting time per scheduled patient
 - idle time
 - tardiness

States

- State: number of minutes of work present
- For times 0, 1, ..., T
$p_{t}^{-}(i)=\mathrm{P}($ state $=\mathrm{i}$ just before time t$)$
$p_{t}^{+}(i)=P($ state $=\mathrm{i}$ just after time t$)$

State transitions

$$
\begin{aligned}
& p_{0}^{-}(0)=1 \\
& p_{t}^{-}(x-d)=p_{t-1}^{+}(x) \quad x>d \\
& p_{t}^{-}(0)=\sum_{i=0}^{d} p_{t-1}^{+}(i) \\
& p_{t}^{+}(x)=\sum_{i=0}^{x} p_{t-1}^{-}(i) P(\text { arriving work }=x-i)
\end{aligned}
$$

Tardiness

$L(x)=\sum_{k=0}^{\infty} k p_{T}^{-}(k)$
 expected amount of work present at end of day

Server idle time

$$
I(x)=T d+L(x)-N \beta_{1}-\lambda \beta_{2}
$$

Expected makespan minus expected total service time

Waiting time

- Waiting time consists of three parts:
- Work present upon arrival
- Patients arriving simultaneously but served earlier
- Emergencies arriving during waiting time
- Loop over following intervals and compute convolutions of waiting time and amount of emergency work arriving

Solution method: local search

- Neighbourhood: all possible combinations of 1interval shifts
- Start from any possible solution (for example ($\mathrm{N}, 0, \ldots, 0$))
- For speed: first use neighbourhood of all single 1-interval shifts

Multimodularity

- Related to convexity, for functions defined on (a subset of) Z^{m}
- Proof by coupling
- If a function is multimodular, local search always converges to optimal solution Result by Koole \& VD Sluis (2003)

Speed

- Seconds for small problems (up to 15 intervals) to a few hours for larger problems (36 intervals)
- Acceptable because not meant to be executed throughout the day
- Neighbourhood size is $2^{\top}-2$
- Not a PLS problem

Example: improving standard practice

- $\mathrm{T}=18, \mathrm{~d}=10$
- Service times exponential with mean 30

	Schedule		Waiting time	Idle time
optimal	Tardi-			
ness				

Example: influence of emergencies

- $\mathrm{T}=18, \mathrm{~d}=10$
- Service times exponential with mean 20

| Number
 scheduled
 emergen-
 cies | Nrof
 emedule | Waiting
 time | Idle
 time | Tardi-
 ness | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 0 | $2-0-1-0-1-0-1-0-1-0-0-1-0-1-0-0-0-0$ | 22.79 | 36.80 | 16.78 |
| 6 | 2 | $1-1-0-1-0-0-1-0-0-1-0-0-1-0-0-0-0-0$ | 26.41 | 41.86 | 21.85 |

Future work

- Add late and/or early arrivals
- Extension of model to more than one server
- Adding more patient types with different urgency and/or service durations
- Case study in real-world setting

Thanks for your attention

Questions? Remarks? Suggestions?
 paulien@few.vu.nl

