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Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{cTx : Ax ≥ b, x ≥ 0, xj integer, j ∈ I}

where matrix A does not have a special structure.
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Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{cTx : Ax ≥ b, x ≥ 0, xj integer, j ∈ I}

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

• Yesterday, we have mostly insisted on two different components of MIP solvers:

1. branching and

2. cutting

and we also suggested that there is a strong relationship, very little understood, among them.

• Today, the talk discusses some new and sophisticated ideas for both components.
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1: Traditional Branching

• The traditional way of partitioning the problem into sub-problems is the so-called variable

branching. Pick a variable xj, j ∈ I whose value x∗j is fractional in the current LP relaxation

and generate two sub-MIPs:

xj ≤ bx∗jc
_

xj ≥ bx∗jc+ 1.
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result in the exponential increase of the tree itself.
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• The traditional way of partitioning the problem into sub-problems is the so-called variable

branching. Pick a variable xj, j ∈ I whose value x∗j is fractional in the current LP relaxation

and generate two sub-MIPs:

xj ≤ bx∗jc
_

xj ≥ bx∗jc+ 1. (1)

• It is easy to see that “bad” decisions at early stages of the search, i.e., high levels in the tree,

result in the exponential increase of the tree itself.

• Moreover, in the context of knapsack equality constraints with large coefficients and bounds

branching on variables is not effective.

• This is the same for other types of MIPs, like symmetric ones.

• Finally, even for 0-1 combinatorial optimization problems it is often the case that fixing a

variable to 1 is typically very strong while fixing it to 0 can have little or no effect for difficult

instances.
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1: Less Traditional Branching

• One recent line of research concerns branching on more complicated general disjunctions (in

contrast with elementary ones, i.e., variable branching):

α
T
x ≤ α0

_
α
T
x ≥ α0 + 1, (2)

where α is an integer vector with 0-entries for variables xj, j 6∈ I and α0 is an integer scalar.
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• One recent line of research concerns branching on more complicated general disjunctions (in

contrast with elementary ones, i.e., variable branching):

α
T
x ≤ α0

_
α
T
x ≥ α0 + 1, (2)

where α is an integer vector with 0-entries for variables xj, j 6∈ I and α0 is an integer scalar.

• The key question is anyway: How should we select a disjunction?

• Typically, the set of disjunctions to be considered is limited a priori: either a candidate set of

variables or a certain family of general disjunctions.

• From this limited set, one must choose the “best” disjunction by a given measure.

• The overall goal of any branching scheme is to reduce running time.

As a proxy, most branching schemes try to maximize the (estimated) bound increase resulting

from imposing the disjunction.
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1: Selecting a Disjunction and Bilevel Programming

• The problem of selecting the disjunction whose imposition results in the largest bound

improvement has a natural bilevel structure.
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• The problem of selecting the disjunction whose imposition results in the largest bound

improvement has a natural bilevel structure.

• This comes from the fact that the bound is computed by solving another optimization problem:

roughly speaking, one is solving an optimization problem over the set of optimal solutions of

another optimization problem.

• The disjunction selection problem can sometimes be formulated as a bilevel program:

– The upper-level variables can be used to model the choice of the disjunction (we’ll see an

example shortly).

– The lower-level problem models the bound computation after the disjunction has been

imposed.

• In strong branching, we are essentially solving the bilevel program by enumeration.

• For general disjunctions, different authors have suggested different quality measures either

circumventing the bilevel nature (Karamanov & Cornuéjols, and Cornuéjols, Liberti &

Nannicini) or formulating it as a single level program (Mahajan & Ralphs).
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1: Interdiction Branching

• At the price of solving the mentioned bilevel program one can be very sophisticated in selecting

the disjunction. [Lodi, Ralphs, Rossi, Smriglio, 2009]
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• At the price of solving the mentioned bilevel program one can be very sophisticated in selecting

the disjunction. [Lodi, Ralphs, Rossi, Smriglio, 2009]

• Consider, for the sake of simplicity, a binary integer program

min{cTx | x ∈ P ∩ Bn},

where c ∈ Qn is the objective function and P is a polyhedron.

• We are interested in a set S = {i1, . . . , i|S|} ⊆ In = {1, . . . , n}, to impose the (clearly

valid) multi-variable disjunction

xi1 = 1∨(xi2 = 1∧xi1 = 0)∨. . .∨(xi|S| = 1∧xi1 = 0∧. . . ∧xi|S|−1
= 0)∨

X
i∈S

xi = 0.
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• At the price of solving the mentioned bilevel program one can be very sophisticated in selecting

the disjunction. [Lodi, Ralphs, Rossi, Smriglio, 2009]

• Consider, for the sake of simplicity, a binary integer program

min{cTx | x ∈ P ∩ Bn},

where c ∈ Qn is the objective function and P is a polyhedron.

• We are interested in a set S = {i1, . . . , i|S|} ⊆ In = {1, . . . , n}, to impose the (clearly

valid) multi-variable disjunction

xi1 = 1∨(xi2 = 1∧xi1 = 0)∨. . .∨(xi|S| = 1∧xi1 = 0∧. . . ∧xi|S|−1
= 0)∨

X
i∈S

xi = 0.

• In particular we want sets S playing a fundamental role for improving the current incumbent

solution value, say z̄.
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1: Interdiction Branching (cont.d)

• Such a goal can be achieved by solving the Interdiction Branching Problem (IBP) (at node a):

min
X
i∈In

yi (3)

s.t.
X
i∈In

cixi ≥ z̄ (4)

y ∈ {0, 1}n (5)

x ∈ arg min
x
c
T
x
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min
X
i∈In

yi (3)

s.t.
X
i∈In

cixi ≥ z̄ (4)

y ∈ {0, 1}n (5)

x ∈ arg min
x
c
T
x (6)

s.t. xi + yi ≤ 1, i ∈ In (7)

x ∈ F(a). (8)

where F(a) denotes the set of feasible solutions of the original problem at node a of the tree.
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• Such a goal can be achieved by solving the Interdiction Branching Problem (IBP) (at node a):

min
X
i∈In

yi (3)

s.t.
X
i∈In

cixi ≥ z̄ (4)

y ∈ {0, 1}n (5)

x ∈ arg min
x
c
T
x (6)

s.t. xi + yi ≤ 1, i ∈ In (7)

x ∈ F(a). (8)

where F(a) denotes the set of feasible solutions of the original problem at node a of the tree.

• In other words,

(i) the last term of the branching disjunction does not have to be explored because it contains

NO improving solution, while,

(ii) by the minimality of (3), it follows that any other child node contains at least one

improving solution.
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1: Interdiction Branching (cont.d)

• Of course, the property (ii) is very strong and, because we are not expecting any “free lunch”,

solving IBPs MUST be very difficult.
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not solved to optimality.

• Interdiction branching takes into account both the current incumbent value and the bound

provided by the LP relaxation and can thus be seen as targeting improvements in both the

upper and lower bounds.

• As in the traditional branching on variables, child subproblems are generated by imposing

variable bounds, without introducing additional constraints.

• In all but one of the |S| children, at least two variables are fixed, often yielding a remarkable

improvement in the bound provided by the LP relaxation.
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• Of course, the property (ii) is very strong and, because we are not expecting any “free lunch”,

solving IBPs MUST be very difficult.

• However, if carefully treated, most of the good features of the method hold also if the IBP is

not solved to optimality.

• Interdiction branching takes into account both the current incumbent value and the bound

provided by the LP relaxation and can thus be seen as targeting improvements in both the

upper and lower bounds.

• As in the traditional branching on variables, child subproblems are generated by imposing

variable bounds, without introducing additional constraints.

• In all but one of the |S| children, at least two variables are fixed, often yielding a remarkable

improvement in the bound provided by the LP relaxation.

• Extensive computational experiments on difficult 0-1 knapsack instances have shown a very

favorable behavior wrt traditional branching on variables although this has to be confirmed

within state-of-the-art solvers.
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2: Traditional Cut Genetation

• Current MIP cutting plane technology is based on the following two-step heuristic:
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2: Traditional Cut Genetation

• Current MIP cutting plane technology is based on the following two-step heuristic:

1. heuristically aggregate the entire MIP into a mixed-integer set of one single (!) row

2. apply the cut separation procedure to such a mixed-integer set

(Chvátal-Gomory, Gomory Mixed-Integer, MIR, {0, 1
2}, Cover, . . . ).

• In the most natural setting, the aggregation of step 1 above is done by using a single row of the

simplex tableau as mixed-integer set.

• Very recently, since 2007, a new line of research (strongly connected to a very old one) has

been followed by considering multiple rows of the simplex tableau at the same time.
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2: Cuts from Multiple Rows of the Simplex Tableau

• We consider a mixed-integer set of the form

S = {x ∈ Rn : Ax = b, x ≥ 0, xj ∈ Z ∀j ∈ I}

with A ∈ Qm×n and b ∈ Qm.
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2: Cuts from Multiple Rows of the Simplex Tableau

• We consider a mixed-integer set of the form

S = {x ∈ Rn : Ax = b, x ≥ 0, xj ∈ Z ∀j ∈ I}

with A ∈ Qm×n and b ∈ Qm.

• Given a basis B ⊂ {1, . . . , n} corresponding to a vertex x∗ of the continuous relaxation of

S, the set S can be rewritten as

xB = x∗B +
P

j∈N r
jxj,

x ≥ 0,

xj ∈ Z, j ∈ I,
(9)

where N denotes the set of nonbasic variables.
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2: Cuts from Multiple Rows of the Simplex Tableau (cont.d)

• A first relaxation of S can be obtained by dropping the nonnegativity restrictions on all the

basic variables and considering a subset Q (with |Q| = q) of rows of (9) associated with basic

integer-constrained variables, thus getting

(SQ) xi = fi +
P

j∈N r
j
ixj, i ∈ Q

xj ≥ 0, j ∈ N
xj ∈ Z, j ∈ I

(10)

with fi = x∗i − bx∗ic for any i ∈ Q and fi > 0 for some i ∈ Q = {1, . . . , q}.
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• A key step is further relaxing set SQ by dropping all the integrality requirements on the

nonbasic variables, thus getting a system of the form

x = f +
Pk

j=1 r
jsj,

x ∈ Zq,
s ∈ Rk+,

(11)

where all the continuous variables have been renamed as s and |N | = k.
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basic variables and considering a subset Q (with |Q| = q) of rows of (9) associated with basic

integer-constrained variables, thus getting

(SQ) xi = fi +
P
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j
ixj, i ∈ Q

xj ≥ 0, j ∈ N
xj ∈ Z, j ∈ I

(10)

with fi = x∗i − bx∗ic for any i ∈ Q and fi > 0 for some i ∈ Q = {1, . . . , q}.

• A key step is further relaxing set SQ by dropping all the integrality requirements on the

nonbasic variables, thus getting a system of the form

x = f +
Pk

j=1 r
jsj,

x ∈ Zq,
s ∈ Rk+,

(11)

where all the continuous variables have been renamed as s and |N | = k.

• Denote as Rf(r
1, . . . , rk) the convex hull of all vectors s ∈ Rk for which there exists x ∈ Rq

such that (x, s) satisfies (11).
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2: Cuts from Multiple Rows of the Simplex Tableau (cont.d)

• Borozan & Cornuéjols considered relaxing the k-dimensional space of variables

s = (s1, . . . , sk) to an infinite-dimensional space, where the variables sr are defined for any

r ∈ Qq.
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• This is the semi-infinite relaxation and is strongly related to Gomory and Johnson’s infinite

group problem. [Gomory & Johnson, 1972]
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r ∈ Qq.

• This is the semi-infinite relaxation and is strongly related to Gomory and Johnson’s infinite

group problem. [Gomory & Johnson, 1972]

• In addition, Borozan & Cornuéjols proved that any valid inequality for Rf can be written asX
r∈Qq

ψ(r)sr ≥ 1 (12)

where ψ : Qq −→ Q ∪ {+∞} is said to be a valid function if the corresponding inequality

(12) is valid for Rf .
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ψ(r)sr ≥ 1 (12)

where ψ : Qq −→ Q ∪ {+∞} is said to be a valid function if the corresponding inequality

(12) is valid for Rf .

• Finally, Borozan & Cornuéjols provided a strong correspondence between minimal valid

inequalities and maximal lattice-free convex sets.
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2: Cuts from Multiple Rows of the Simplex Tableau (cont.d)

• Borozan & Cornuéjols considered relaxing the k-dimensional space of variables

s = (s1, . . . , sk) to an infinite-dimensional space, where the variables sr are defined for any

r ∈ Qq.

• This is the semi-infinite relaxation and is strongly related to Gomory and Johnson’s infinite

group problem. [Gomory & Johnson, 1972]

• In addition, Borozan & Cornuéjols proved that any valid inequality for Rf can be written asX
r∈Qq

ψ(r)sr ≥ 1 (12)

where ψ : Qq −→ Q ∪ {+∞} is said to be a valid function if the corresponding inequality

(12) is valid for Rf .

• Finally, Borozan & Cornuéjols provided a strong correspondence between minimal valid

inequalities and maximal lattice-free convex sets.

• Zambelli proved that one does not have to worry about lattice-free convex sets with f on their

boundary.
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2: Cuts from TWO Rows of the Simplex Tableau

Andersen, Louveaux, Weismantel &

Wolsey have shown that all the facets

of Rf(r
1, . . . , rk) are intersection cuts

arising from two-dimensional lattice-free

convex sets. [Balas, 1971]

Intersection Cuts [Balas 1971]

Assume f 6∈ Zq. Want to cut off the basic solution s = 0, x = f .

f

r 1

r 2

S

intersection cut

Any convex set S with f ∈ int(S) with no integer point in int(S).
Compute intersection of the rays with the boundary of S .
Cut defined by these points is valid : ψ(r1)s1 + ψ(r2)s2 ≥ 1.

21 / 27
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Wolsey have shown that all the facets

of Rf(r
1, . . . , rk) are intersection cuts

arising from two-dimensional lattice-free

convex sets. [Balas, 1971]

Intersection Cuts [Balas 1971]

Assume f 6∈ Zq. Want to cut off the basic solution s = 0, x = f .

f

r 1

r 2

S

intersection cut

Any convex set S with f ∈ int(S) with no integer point in int(S).
Compute intersection of the rays with the boundary of S .
Cut defined by these points is valid : ψ(r1)s1 + ψ(r2)s2 ≥ 1.

21 / 27

Maximal Lattice-Free Convex Sets in the Plane Lovász 89

Split, triangles and quadrilaterals

f

f
f

generate split, triangle and quadrilateral inequalities
∑

ψ(r)sr ≥ 1.

24 / 27

Cornuéjols & Margot proved that only

three types of maximal lattice-free convex

sets are sufficient, namely, splits, triangles

and quadrilaterals.
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2: TWO Row Cuts, Possible Triangles

• Dey & Wolsey characterized the maximal lattice-free triangles. Namely,
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2: TWO Row Cuts, Possible Triangles

• Dey & Wolsey characterized the maximal lattice-free triangles. Namely,

If Π is a maximal lattice-free triangle in R2, then exactly one of the following is true:

1. All the vertices are integral and each side contains one integral point in its relative interior.

2. One side of Π contains more than one integral point in its relative interior.

3. The vertices are non-integral and each side contains one integral point in its relative interior.
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2: TWO Row Cuts, Possible Triangles

• Dey & Wolsey characterized the maximal lattice-free triangles. Namely,

If Π is a maximal lattice-free triangle in R2, then exactly one of the following is true:

1. All the vertices are integral and each side contains one integral point in its relative interior.

2. One side of Π contains more than one integral point in its relative interior.

3. The vertices are non-integral and each side contains one integral point in its relative interior.

• For the triangles of type 1 and 2 above they also defined the best possible way of lifting the

coefficients of the nonbasic integer variables.
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2: Impact of Multiple Row Cuts

• On the theoretical side, Basu, Bonami, Cornuéjols & Margot compared the strength of the

closures of the different lattice-free convex sets, i.e., splits, triangles and quadrilaterals.
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closures of the different lattice-free convex sets, i.e., splits, triangles and quadrilaterals.

First, they proved that triangle and quadrilateral closures are at least as strong as the split one.

A. Lodi, Computation in MIP 14



2: Impact of Multiple Row Cuts

• On the theoretical side, Basu, Bonami, Cornuéjols & Margot compared the strength of the
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reported by Espinoza on a large set of MIPLIB instances.

– Basu, Bonami, Cornuéjols & Margot studied special two-row cuts with either f1 or f2 is 0.

– Dey, Lodi, Tramontani & Wolsey extensively tested the impact of two-row cuts from

triangles of type 2 on multiple knapsack instances.

• Overall, the results are mixed.

Before really asserting their effectiveness one has to find a clever way of doing cut selection

which also includes understanding their relationship with Mixed-Integer Gomory cuts.
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