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Two Stage Adaptive Optimization

zAdapt = min ¢’ + M1ax d y(b)
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Affine Policies
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Why Affine?
* Tractable policies: Polynomially computable

*Extend to the multi-stage case
(also polynomially computable)

*There are special cases that are optimal

*Excellent practical performance



Affine Policies: Previous Work

= Extensively studied in literature
= Gartska and Wets (1974), Rockafellar and Wets (1978)
= Bemporad and Morari (1999)
= Bertsimas et al. (2009), Skaf and Boyd (2009)

= Perform extremely well in practice
= Kalman filtering (Kalman (1960))

* Linear decision rules for approximate DP (Bertsekas (2001), de Farias and Van
Roy (2003))

= Retailer-supplier flexible commitment contracts (Ben-Tal et al. (2005))



Affine Policies: Simplex Uncertainty Sets

Simplex |U = conv(b',... b"T)

Affine policies are optimal if the uncertainty set is a simplex
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Affine Policies: General Convex Sets

Cost of optimal affine policy is at most ./;;  times the
optimal adaptive problem (zAdapt)

Cost of optimal affine policy is at least {\/m) times the
optimal adaptive problem (zAdapt)

Performance of affine policies ©(,/m) times the optimal




Geometric Intuition
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Conclusions

» Affine policies have both power and limitations
* They are tractably computed.

e Extensions to polynomial policies seem promising.



