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Why Optimization under Uncertainty?Why Optimization under Uncertainty?

“Planning under uncertainty. This, I feel, is the real field 

that we should be all working in.”

Decisions Decisions Decisions

Cost/Profit

George B. Dantzig (2001)

� Stochastic Optimization
� Several approaches : (Dantzig(1955), Birge and Louveaux (1997), Prekopa (2005), 

Shapiro (2005))

� Deterministic Optimization
� EXPRESS bought by Fair Isaac

� CPLEX bought by ILOG which was acquired recently by IBM

� But no commercial solver like CPLEX or EXPRESS!

Uncertain 
Events

Uncertain 
Events

Uncertain 
Events



Motivation/PhilosophyMotivation/Philosophy

• Performance analysis given that primitives Performance analysis given that primitives 

are probability distributions is often  are probability distributions is often  

intractableintractable; (Performance of ; (Performance of queueingqueueing networks)networks)

•• Combining  probability theory and optimizationCombining  probability theory and optimization
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•• Combining  probability theory and optimizationCombining  probability theory and optimization

often leads to the ``often leads to the ``Curse of dimensionalityCurse of dimensionality’’’’

• What is available in practice is data, 
not probability distributions 



Proposal Proposal 

• Replace probability distributions as primitivesReplace probability distributions as primitives

with with uncertainty setsuncertainty sets

•• Use worst case analysis: Use worst case analysis: Robust optimizationRobust optimization
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•To define the uncertainty sets use the 
conclusions of probability theory 
(CLT for example)



Concretely:Concretely:

• Let XLet Xi i be demand in period be demand in period ii. . 

•• Traditional modelingTraditional modeling: X: Xii iidiid random variables.random variables.. . 

•• Proposed modeling: (CLT based)Proposed modeling: (CLT based)
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•• Proposed modeling: (CLT based)Proposed modeling: (CLT based)

||ΣΣi=1…mi=1…m (x(xii –– µµ)/ )/ σσ || < 2 < 2 



Robust OptimizationRobust Optimization

� Uncertainty: set based, Objective: optimize worst-case

� Previous Work

� Introduced by Soyster (1973)

� Studied recently by Ben-Tal and Nemirovski (1998, 2000, 2002), 

Bertsimas and Sim (2003, 2004)Bertsimas and Sim (2003, 2004)

� Tractable Approach

� No performance bounds known

� Widely perceived to produce highly conservative solutions
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Stochastic ModelStochastic Model

(Minimize expected cost)

(Uncertainty Set)

(Uncertain Right

Hand Side)

� Two-stage Stochastic Optimization Model

7

Decision, x

b is observed 

Decision, y(b)



Inventory ManagementInventory Management

Order Quantity, x

Uncertain Demand, b

y(b): Excess
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Holding Cost Backorder Penalty



More ApplicationsMore Applications

� Capacity Planning

Capacity decisions, x Decisions, y(b)
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Uncertain demand, b

� Facility Location

Facility opening, x

Uncertain demand, b

Decisions, y(b)



Electricity Markets: Planning for Electricity Markets: Planning for 

Uncertain DemandUncertain Demand

� System operators (New England ISO) need to plan today 
for tomorrow’s uncertain demand

� Most generators have a high startup time (few hours)

� Today (1st Stage)� Today (1st Stage)

� schedule (or commit) generators for each hour tomorrow

� decide how much each with produce in each hour

� Tomorrow (2nd Stage)

� Uncertain demand is realized 

� ISO may use high cost (quick-start) generators to cover shortfall
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System Operator: Planning ProblemSystem Operator: Planning Problem

x: day-ahead generation 
schedule

Uncertain Demand, b

y(b): generation to 
cover shortfall 

Minimize c (x) + E[c (y(b))] 

11

Minimize c1(x) + E[c2(y(b))] 

: hourly demand vector for tomorrow

: day-ahead generation from plant i in period t

: generation from plant j in period t for demand is b



Stochastic ModelStochastic Model
� Two-stage Stochastic Optimization Model
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� Intractability: #P-hard



Adaptive Optimization ModelAdaptive Optimization Model

(Minimize 

worst-case cost)

� Two-stage Adaptive Optimization Model

(Uncertainty Set)

(Uncertain Right

Hand Side)
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� Studied in Literature
� Bertsekas (1970s)

� Bemporad and Morari (1999), Bemporad et al. (2003)

� Ben-Tal et al. (2003), Iyengar (2005), Bertsimas and Caramanis (2005)

� Still computationally intractable in general

� Even approximating LP within an factor of O(log m)  is NP-hard [Feige et al.’07]

Hand Side)



Robust Optimization ModelRobust Optimization Model

(Minimize Cost of a static solution)

(Uncertainty Set)

(Uncertain Right

Hand Side)
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� Computationally tractable 

� But does it give a highly conservative solution?

Solution y does not depend on b



Uncertainty SetsUncertainty Sets
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Symmetric SetsSymmetric Sets
Symmetric

Point of 

Symmetry
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Examples: hypercubes, ellipsoids, norm-balls



Positive SetsPositive Sets

Positive Set
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Point of 

symmetry of HHNeither Symmetric
nor Positive



Uncertainty SetsUncertainty Sets

Symmetric 

Positive
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{Hypercube,
Ellipsoid,

Norm-ball}



Our Results: Robust SolutionsOur Results: Robust Solutions

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(RHS) zRob/zStoch zRob/zAdapt

Hypercube

Symmetric

Positive

� Assumption: E[b] = where      is the point of symmetryb b 



Our Results: Robust SolutionsOur Results: Robust Solutions

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(RHS) zRob/zStoch zRob/zAdapt

Hypercube 2

Symmetric

Positive

� Assumption: E[b] = where      is the point of symmetryb b 



Our Results: Robust SolutionsOur Results: Robust Solutions

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(RHS) zRob/zStoch zRob/zAdapt

Hypercube 2 1

Symmetric

Positive

Adaptability Gap = 1 for hypercube uncertainty sets

(Intuition) Each coordinate can achieve its worst-possible simultaneously



Our Results: Robust SolutionsOur Results: Robust Solutions

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(RHS) zRob/zStoch zRob/zAdapt

Hypercube 2 1

Symmetric 2 2

Positive 2 2

� Assumption: E[b] = where      is the point of symmetryb b 



Integer VariablesInteger Variables

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(RHS) zRob/zStoch zRob/zAdapt

Hypercube 2 1

Symmetric 2 2

Positive 2 2

� Assumption: E[b] = where      is the point of symmetryb b 



Symmetric SetsSymmetric Sets

2b0
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b0

Point of 

Symmetry



Stochasticity Gap Stochasticity Gap 

(for symmetric RHS uncertainty sets)(for symmetric RHS uncertainty sets)

zStoch =
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Let x*, y*(b) be an optimal solution for the stochastic problem

Static Solution: (2x*, 2y*(b0)) where b0 is the point of symmetry



Feasibility of Static Robust SolutionFeasibility of Static Robust Solution

Static Solution: (2x*, 2y*(b0)) where b0 is the point of symmetry

zStoch =
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Static Solution: (2x*, 2y*(b )) where b is the point of symmetry

A(2x*) + B (2y*(b0)) = 2 (Ax* + B y*(b0)) 
≥ 2b0

≥ b

(2x*, 2y*(b0)) is a feasible solution for all b ε U



Cost of Static Robust SolutionCost of Static Robust Solution

zRob ≤ 2(cT x* + dT y*(b0))Cost: zStoch = (cT x* + dT Eb[y*(b)])  

Ax* + B y*(b) ≥ b

Eb[Ax* + B y*(b)] ≥ Eb[b]

Eb[y*(b)] is a feasible 
solution for scenario b0
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Eb[Ax* + B y*(b)] ≥ Eb[b]

Ax* + B(Eb[y*(b)]) ≥ b0 dT y*(b0) ≤ dT Eb[y*(b)]

zRob ≤ 2(cT x* + dT y*(b0)) 
≤ 2 (cT x* + dT Eb[y*(b)]) 
= 2 zStoch

Stochasticity Gap ≤ 2



Adaptability GapAdaptability Gap

(for symmetric RHS uncertainty)(for symmetric RHS uncertainty)

zAdapt ≥ zStoch

Worst-case cost is at least the Expected cost
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Adaptability Gap ≤ 2



Improved Parametric BoundsImproved Parametric Bounds

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Hypercube 1

Symmetric

Positive
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2
1+ ρ

2
1+ ρ

2
1+ ρ

2
1+ ρ

2
1+ ρ



Rest of the TalkRest of the Talk

� Uncertainty in both Cost and RHS

� Multi-stage problems

� Electricity Markets: Revisited
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Our Results: Cost, RHS uncertaintyOur Results: Cost, RHS uncertainty

Uncertainty Set (U)
(Cost and RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(Cost and RHS) zRob/zStoch zRob/zAdapt

Hypercube

Symmetric

Positive

Assume: Eb,d[(b,d)] =    where          is the point of symmetry(b ,d ) (b ,d )



Our Results: Cost, RHS uncertaintyOur Results: Cost, RHS uncertainty

Uncertainty Set (U)
(Cost and RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Stochastic (zStoch) Adaptive (zAdapt)
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(Cost and RHS) zRob/zStoch zRob/zAdapt

Hypercube Ω(m) 1

Symmetric Ω(m) 4

Positive Ω(m) 4

Assume: Eb,d[(b,d)] =    where          is the point of symmetry(b ,d ) (b ,d )



MultiMulti--Stage Stochastic ModelStage Stochastic Model
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Bounds for MultiBounds for Multi--stage Problemsstage Problems

Uncertainty Set (U)
(RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Hypercube 2 1

Symmetric 2 2

Positive 2 2
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Uncertainty Set (U)
(Cost and RHS)

Stochasticity Gap 
zRob/zStoch

Adaptability Gap 
zRob/zAdapt

Hypercube Ω(m) 1

Symmetric Ω(m) 4

Positive Ω(m) 4



MultiMulti--Stage Stochastic ModelStage Stochastic Model

{H, M} 

H
{H}

Example: Demand Uncertainty
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H: High demand

M: Medium demand

L: Low demand

H, M

M,L

{H, M} 

{H, M, L} 

{M, L} 

L

M

M
{M}

{L}



Finitely Adaptable SolutionFinitely Adaptable Solution

� Choose a small collection of solutions for 

each stage

� Select the best feasible solution from the 
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� Finitely adaptable solution is a good approximation for symmetric 
and positive uncertainty sets

� number of solutions is equal to the number of uncertainty sets

� Select the best feasible solution from the 

collection after uncertainty has realized  



OutlineOutline

� Uncertainty in both Cost and RHS

� Multi-stage problems

� General Convex Uncertainty (Affine policies)

� Electricity Markets: Revisited
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General Convex Uncertainty General Convex Uncertainty 
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Affine PoliciesAffine Policies

(Affine function of RHS, b)    
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(Affine function of RHS, b)    

Decisions, (x, P, q)

b is observed 

Recourse, y(b) = Pb + q



Affine Policies: Previous WorkAffine Policies: Previous Work

� Extensively studied in literature

� Gartska and Wets (1974), Rockafellar and Wets (1978)

� Bemporad and Morari (1999) 

� Bertsimas et al. (2009), Skaf and Boyd (2009)

� Computationally tractable

� Perform extremely well in practice

� Kalman filtering (Kalman (1960))

� Linear decision rules for approximate DP (Bertsekas (2001), de Farias
and Van Roy (2003))

� Retailer-supplier flexible commitment contracts (Ben-Tal et al. (2005))
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Affine Policies: Simplex Uncertainty SetsAffine Policies: Simplex Uncertainty Sets

Affine policies are optimal if the uncertainty set is a simplex

Simplex
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m columns

� Simplex has (m+1) extreme points

� Enough degrees of freedom to obtain an optimal solution 



Affine Policies: General Convex SetsAffine Policies: General Convex Sets

� Cost of optimal affine policy is at most        times the 
optimal adaptive problem (zAdapt)

� Cost of optimal affine policy is at least            times 
the optimal adaptive problem (zAdapt)the optimal adaptive problem (zAdapt)
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Performance of affine policies                times the optimal



Geometric IntuitionGeometric Intuition

Part of unit hypersphere

in non-negative orthant
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OutlineOutline

� Uncertainty in both Cost and RHS

� Multi-stage problems

� Electricity Markets: Revisited
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Electricity Markets RevisitedElectricity Markets Revisited

X: generation schedule 
of power plants

Uncertain Demand, b

Y(b): generation from 
peaking plants
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Deterministic Model Minimize c1(X) + c2(Y(b0))

� Forecast demand (b0)  treated as deterministic

� (X, Y(b0)) satisfies demand b0

� Cover shortfall in real-time using costly peaking plants



Our Model and ResultsOur Model and Results
Adaptive Model Minimize c1(X) + max b ε U c2(Y(b)) 

� Demand uncertainty modeled as hypercube

�

� b0: day-ahead forecast vector

� δ: std. dev. of forecast error
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� δ: std. dev. of forecast error

� zAdapt = zRob
� can solve the adaptive problem optimally

� Richer Model that handles uncertainty in day-ahead problem

� Adaptive model  improves cost on average ~2% as 

compared to the deterministic model



Conclusions and Future DirectionsConclusions and Future Directions

� Robust Optimization 

� Tractable approach

� Good approximation for fairly general dynamic opt. problems

� Potential for commercial success similar to � Potential for commercial success similar to 

deterministic optimization

� (Future Directions) Multi-stage problems in Operations 

Research both methodologically and practically

� Energy, supply chain management, pricing and revenue 
management
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Affine Policies: Convex SetsAffine Policies: Convex Sets

Part of unit hypersphere

in non-negative orthant
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Cost of optimal affine policy is at most        times the optimal



OutlineOutline

� Models (Stochastic, Adaptive, and Robust)

� An Example from Electricity Markets

� Performance Bounds for Two-stage problems

� Performance bounds for Multi-stage problems

� Affine Policies and their Performance� Affine Policies and their Performance

� Electricity Problem: Revisited

� Conclusions
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Affine Policies: Lower BoundAffine Policies: Lower Bound

Cost of optimal affine policy is  at least             times the optimal
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Conclusions and Future DirectionsConclusions and Future Directions

Good Quality Solutions

Dynamic Programming

Stochastic Optimization

Computationally tractable

Robust Optimization

Affine Policies
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� Robust optimization is a practical approach to dynamic optimization

� if uncertainty is distributed symmetrically in a symmetric set

� Affine policies perform well for symmetric and simplex uncertainty sets



MultiMulti--Stage Stochastic ModelStage Stochastic Model
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Conclusions and Future DirectionsConclusions and Future Directions

Good Quality Solutions

Dynamic Programming

Stochastic Optimization

Computationally tractable

Robust Optimization

Affine Policies

More Policies?
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� Robust optimization is a practical approach to dynamic optimization

� if uncertainty is distributed symmetrically in a symmetric set

� Affine policies perform well for symmetric and simplex uncertainty sets

� More policies and more classes of problems?



Previous Work in Stochastic OptimizationPrevious Work in Stochastic Optimization

� Studied extensively in literature

� Dantzig (1955), Rockafellar and Wets (1978), Birge and 
Louveaux (1997), Prekopa (1995), Shapiro (2008)

� Combinatorial Problems: Shmoys and Swamy (2006), Ravi and 
Sinha (2004)

� Computationally intractable in general

� Dyer and Stougie (2005), Shapiro and Nemirovski (2005)
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Symmetric SetsSymmetric Sets

2b0

56

b0

Point of 

Symmetry



Stochasticity Gap Stochasticity Gap 

(for symmetric RHS uncertainty sets)(for symmetric RHS uncertainty sets)

zStoch =
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Let x*, y*(b) be an optimal solution for the stochastic problem

Static Solution: (2x*, 2y*(b0)) where b0 is the point of symmetry



Feasibility of Static Robust SolutionFeasibility of Static Robust Solution

Static Solution: (2x*, 2y*(b0)) where b0 is the point of symmetry

zStoch =
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Static Solution: (2x*, 2y*(b )) where b is the point of symmetry

A(2x*) + B (2y*(b0)) = 2 (Ax* + B y*(b0)) 
≥ 2b0

≥ b

(2x*, 2y*(b0)) is a feasible solution for all b ε U



Cost of Static Robust SolutionCost of Static Robust Solution

zRob ≤ 2(cT x* + dT y*(b0))Cost: zStoch = (cT x* + dT Eb[y*(b)])  

Ax* + B y*(b) ≥ b

Eb[Ax* + B y*(b)] ≥ Eb[b]

Eb[y*(b)] is a feasible 
solution for scenario b0
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Eb[Ax* + B y*(b)] ≥ Eb[b]

Ax* + B(Eb[y*(b)]) ≥ b0 dT y*(b0) ≤ dT Eb[y*(b)]

zRob ≤ 2(cT x* + dT y*(b0)) 
≤ 2 (cT x* + dT Eb[y*(b)]) 
= 2 zStoch

Stochasticity Gap ≤ 2



Adaptability GapAdaptability Gap

(for symmetric RHS uncertainty)(for symmetric RHS uncertainty)

zAdapt ≥ zStoch

Worst-case cost is at least the Expected cost
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Adaptability Gap ≤ 2



Dynamic OptimizationDynamic Optimization

Decisions Decisions Decisions

Uncertain 
Events

Uncertain 
Events

Uncertain 
Events

Cost
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Good Quality Solutions

Dynamic Programming

Stochastic Optimization

Computationally tractable

Robust Optimization

When can we obtain the best of both worlds? 



ConclusionsConclusions

Uncertainty Set (U) Stochasticity Gap Adaptability Gap

Uncertainty Set (U)
(RHS)

Stochasticity Gap
(zRob/zStoch )

Adaptability Gap
(zRob/zAdapt)

Hypercube 2* 1*

Symmetric 2* 2*

Positive 2* 2*

General Convex Ω(m) Ω(m)
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Uncertainty Set (U)
(Cost and RHS)

Stochasticity Gap
(zRob/zStoch )

Adaptability Gap
(zRob/zAdapt)

Hypercube Ω(m) 1*

Symmetric Ω(m) 4

Positive Ω(m) 4

General Convex Ω(m) Ω(m)

Performance of affine policies is             worse than optimal 
adaptive solution for general convex uncertainty sets



Future DirectionsFuture Directions

� Dynamic Optimization is important due to its 
wide applicability but computationally intractable

� Broad Goal

� Understand models where a good approximation is 
possible (eg. symmetric uncertainty sets)

� Also, the dual problem of identifying models where 
dynamic optimization will be intractable
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Upper Bound: Simple CaseUpper Bound: Simple Case

Part of unit hypersphere
In non-negative orthant
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Let x*, y*(b) be an optimal solution for the adaptive problem

Affine Solution



Upper Bound: Simple CaseUpper Bound: Simple Case

Affine Solution
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Feasibility



Upper Bound: Simple CaseUpper Bound: Simple Case

Affine Solution
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Cost



Uncertainty SetsUncertainty Sets

A set S is a hypercube if S = { x | l ≤ x ≤ u} for some vectors l, u

A set S is a symmetric if there exists a point u ε S such that,

(u-z) ε S if and only if (u+z) ε S for all z
Note that u is the point of symmetry
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Note that u is the point of symmetry

Symmetric

u

Not Symmetric

Point of 

Symmetry No point of 

Symmetry exists



Upper Bound: General CaseUpper Bound: General Case

� Assume     is in the unit-hypercube by scaling the 
constraint matrices

� Can partition the set [m] in to [J1; J2] such that

68

Feasible
Solution



Large Stochasticity Gap ExampleLarge Stochasticity Gap Example
(Cost and RHS uncertainty)(Cost and RHS uncertainty)

� U (cost uncertainty only): 0-1 hypercube, i.e., U = [0,1]m
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� dj: uniformly distributed between 0 and 1 independent of others

Optimal StochasticOptimal Static Robust



Adaptability GapAdaptability Gap
(Cost and RHS uncertainty)(Cost and RHS uncertainty)

zAdapt =

Let x*, y*(b,d) be an optimal solution for the adaptive problem
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Static Solution: (2x*, 2y*(b0,d0)) where (b0,d0) is the point of symmetry

Feasibility: A (2x*) + B (2y*(b0,d0)) ≥ 2b0 ≥ b, for all b ε U

Cost:



Stochasticity Gap: Tight ExampleStochasticity Gap: Tight Example

� Im: m x m identity matrix

zStoch =
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� U: 0-1 hypercube, i.e., U = [0,1]m

� bj: uniformly distributed between 0 and 1 independent of others

Optimal Static Solution: y = (1,1,…, 1) and zRob = m

Optimal Stochastic Solution: y*(b) = b,
zStoch = Eb[(1,…,1)T b] = E[b1] + …+ E[bm] = m/2

Stochasticity Gap = 2 (is tight)

Even for Hypercube uncertainty sets



Proof SketchProof Sketch

� Show that zAdapt ≤ 1

� Show existence of a “symmetric” optimal affine solution
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System Operator: Unit Commitment ProblemSystem Operator: Unit Commitment Problem

� Schedule or Commit generators for each hour of the next day to 
satisfy an uncertain demand

� Minimize total expected cost

� Operational and security constraints are not violated

� Real-time energy balance achieved by costly peaking units 

� Multi-stage optimization problem – hard to solve� Multi-stage optimization problem – hard to solve
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Receive supply, 
demand bids

Solve Unit-
commitment

Uncertain 
Demand

Cover Shortfall by 
peaking  plants

Day-Ahead Real-time



MultiMulti--Stage Stochastic ModelStage Stochastic Model

(Uncertainty Set

x b1 y1(b1) b2
yk(b1,…,bk)bk
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(Uncertainty Set

in stage t)

Decision in tth stage depend on uncertain 

parameters in the first t stages

Stochasticity Gap (zRob/zStoch) ≤ 2

for symmetric and positive uncertainty sets for RHS uncertainty



General Convex Uncertainty: Bad ExampleGeneral Convex Uncertainty: Bad Example
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� Optimal Static Solution: y = (1,1,…, 1) and zRob = m

� Optimal fully-adaptable Solution: y*(b) = b, and zAdapt = 1



Geometric IntuitionGeometric Intuition

Point of 

Symmetry
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