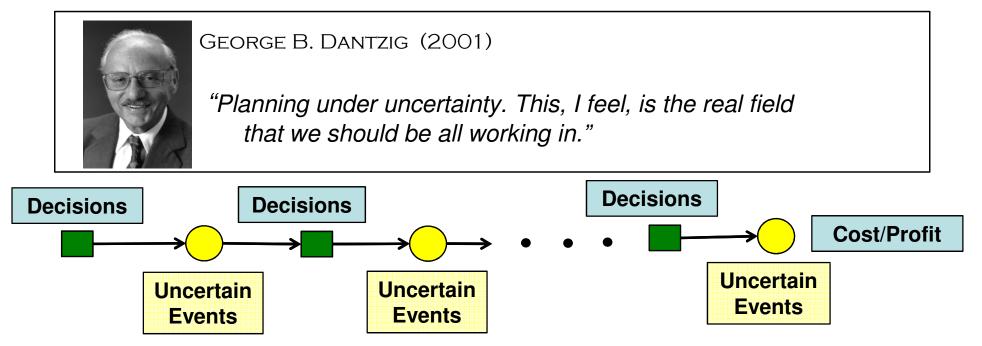
### On the Power of Robust solutions in Dynamic Optimization

Dimitris Bertsimas, MIT

Joint work with Vineet Goyal Operations Research Center, MIT

### Why Optimization under Uncertainty?



#### Stochastic Optimization

 Several approaches : (Dantzig(1955), Birge and Louveaux (1997), Prekopa (2005), Shapiro (2005))

#### Deterministic Optimization

- EXPRESS bought by Fair Isaac
- CPLEX bought by ILOG which was acquired recently by IBM

#### But no commercial solver like CPLEX or EXPRESS!

# Motivation/Philosophy

- Performance analysis given that primitives are probability distributions is often intractable; (Performance of queueing networks)
- Combining probability theory and optimization often leads to the ``Curse of dimensionality''
- What is available in practice is data, not probability distributions

## Proposal

- Replace probability distributions as primitives with uncertainty sets
- Use worst case analysis: Robust optimization
- •To define the uncertainty sets use the conclusions of probability theory (CLT for example)

## Concretely:

- Let X<sub>i</sub> be demand in period i.
- Traditional modeling: X<sub>i</sub> iid random variables.
- Proposed modeling: (CLT based)

$$|\sum_{i=1...m} (x_i - \mu) / \sigma \sqrt{m} | < 2$$

## **Robust Optimization**

• Uncertainty: set based, Objective: optimize worst-case

#### Previous Work

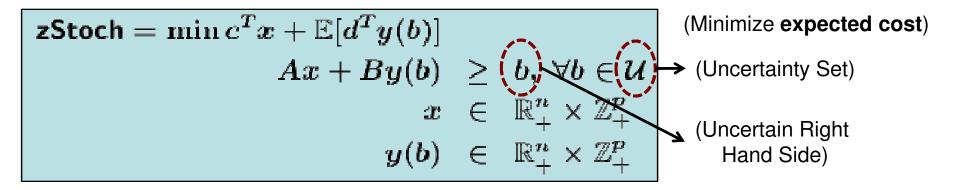
- Introduced by Soyster (1973)
- Studied recently by Ben-Tal and Nemirovski (1998, 2000, 2002), Bertsimas and Sim (2003, 2004)

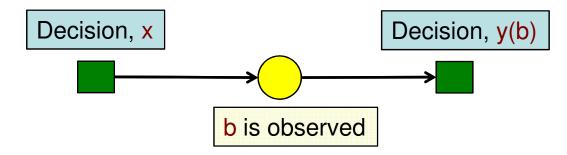
#### Tractable Approach

- No performance bounds known
  - Widely perceived to produce highly conservative solutions

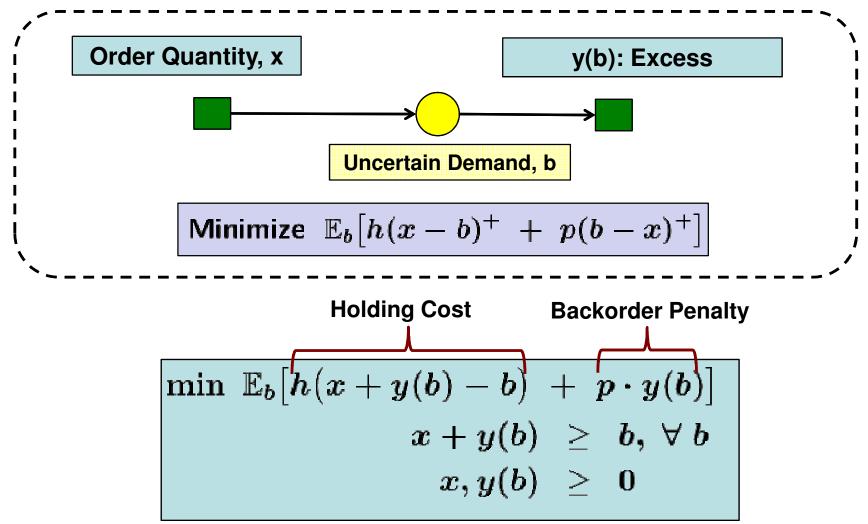
## **Stochastic Model**

Two-stage Stochastic Optimization Model



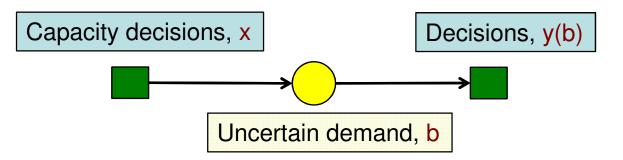


## **Inventory Management**

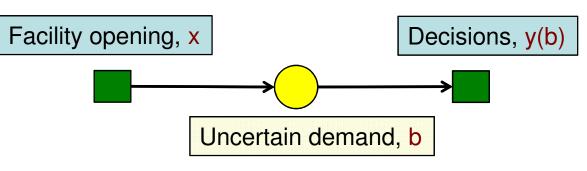


# **More Applications**

Capacity Planning



Facility Location



### Electricity Markets: Planning for Uncertain Demand

- System operators (New England ISO) need to plan today for tomorrow's uncertain demand
  - Most generators have a high startup time (few hours)

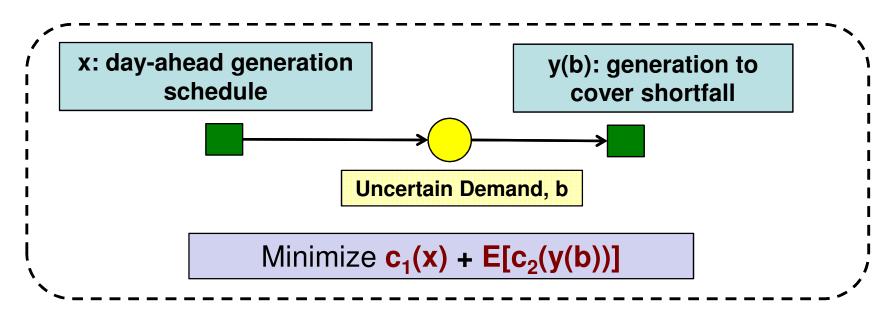
#### Today (1<sup>st</sup> Stage)

- schedule (or commit) generators for each hour tomorrow
- decide how much each with produce in each hour

#### Tomorrow (2<sup>nd</sup> Stage)

- Uncertain demand is realized
- ISO may use high cost (quick-start) generators to cover shortfall

### System Operator: Planning Problem



b : hourly demand vector for tomorrow

 $x_t^i$ : day-ahead generation from plant *i* in period *t* 

 $y_t^j(b)$ : generation from plant *j* in period *t* for demand is *b* 

## **Stochastic Model**

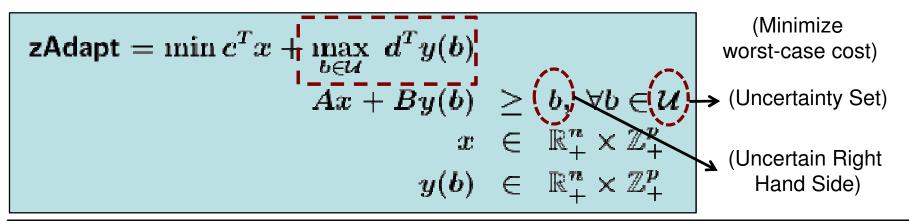
Two-stage Stochastic Optimization Model

 $egin{aligned} \mathbf{zStoch} &= \min c^T x + \mathbb{E}[d^T y(b)] \ &Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ &x &\in \ \mathbb{R}^n_+ imes \mathbb{Z}^p_+ \ &y(b) &\in \ \mathbb{R}^n_+ imes \mathbb{Z}^p_+ \end{aligned}$ 

Intractability: #P-hard

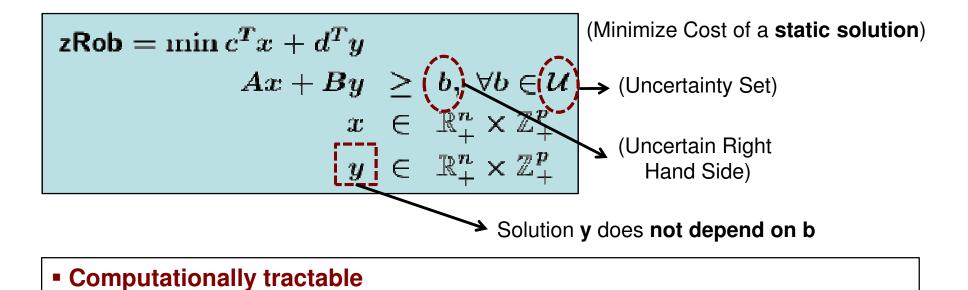
# Adaptive Optimization Model

Two-stage Adaptive Optimization Model

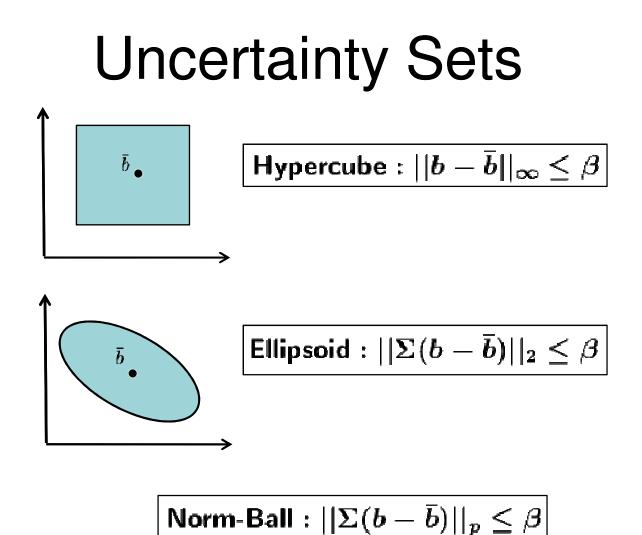


- Studied in Literature
  - Bertsekas (1970s)
  - Bemporad and Morari (1999), Bemporad et al. (2003)
  - Ben-Tal et al. (2003), Iyengar (2005), Bertsimas and Caramanis (2005)
- Still computationally intractable in general
- Even approximating LP within an factor of O(log m) is NP-hard [Feige et al.'07]

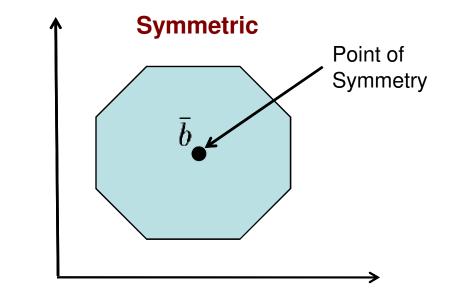
## **Robust Optimization Model**



But does it give a highly conservative solution?



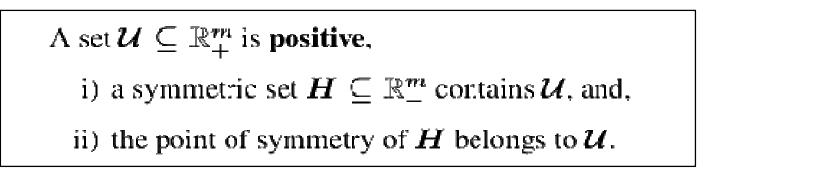


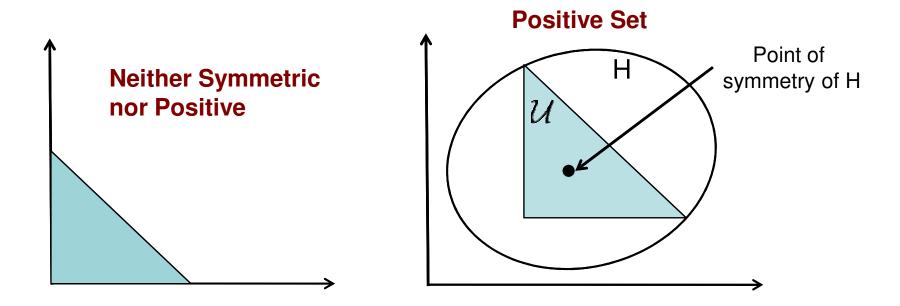


Set  $\mathcal{U}$  is symmetric if  $\exists \ \overline{b} \in \mathcal{U}$ , s.t.  $(\overline{b} - \delta) \in \mathcal{U} \iff (\overline{b} + \delta) \in \mathcal{U}, \ \forall \delta \in \mathbb{R}^m$ 

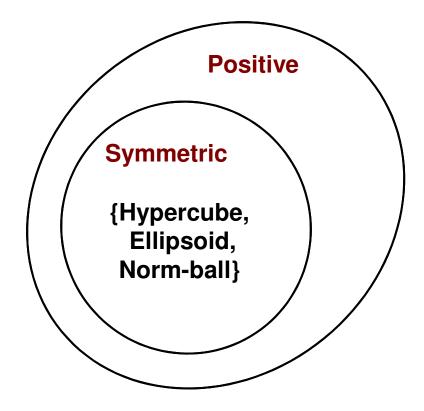
Examples: hypercubes, ellipsoids, norm-balls

## **Positive Sets**





## **Uncertainty Sets**



#### Stochastic (zStoch)

 $egin{array}{lll} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ x, y(b) &\geq 0 \end{array}$ 

Adaptive (zAdapt)

$$egin{array}{lll} \min c^T x + \max_b d^T y(b) \ Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ x, y(b) &> 0 \end{array}$$

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    |                                  |                                 |
| Symmetric                    |                                  |                                 |
| Positive                     |                                  |                                 |

• Assumption: E[b] =  $\overline{b}$  where  $\overline{b}$  is the point of symmetry

#### Stochastic (zStoch)

#### Adaptive (zAdapt)

| $\min c^T x + \mathbb{E}[d^T y(b)]$ |        |                                   |
|-------------------------------------|--------|-----------------------------------|
| Ax + By(b)                          | $\geq$ | $b, \; \forall b \in \mathcal{U}$ |
| x,y(b)                              | $\geq$ | 0                                 |

 $egin{array}{lll} \min c^Tx + \max_b d^Ty(b) \ Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ x,y(b) &\geq 0 \end{array}$ 

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    | 2                                |                                 |
| Symmetric                    |                                  |                                 |
| Positive                     |                                  |                                 |

• Assumption: E[b] =  $\overline{b}$  where  $\overline{b}$  is the point of symmetry

#### Stochastic (zStoch)

 $egin{array}{lll} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ x, y(b) &\geq 0 \end{array}$ 

Adaptive (zAdapt)

| $\min c^T x + \max_b d^T y(b)$ |        |                                   |
|--------------------------------|--------|-----------------------------------|
| Ax + By(b)                     | $\geq$ | $b, \; \forall b \in \mathcal{U}$ |
| x, y(b)                        | $\geq$ | 0                                 |

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    | 2                                | 1                               |
| Symmetric                    |                                  |                                 |
| Positive                     |                                  |                                 |

Adaptability Gap = 1 for hypercube uncertainty sets

(Intuition) Each coordinate can achieve its worst-possible simultaneously

#### Stochastic (zStoch)

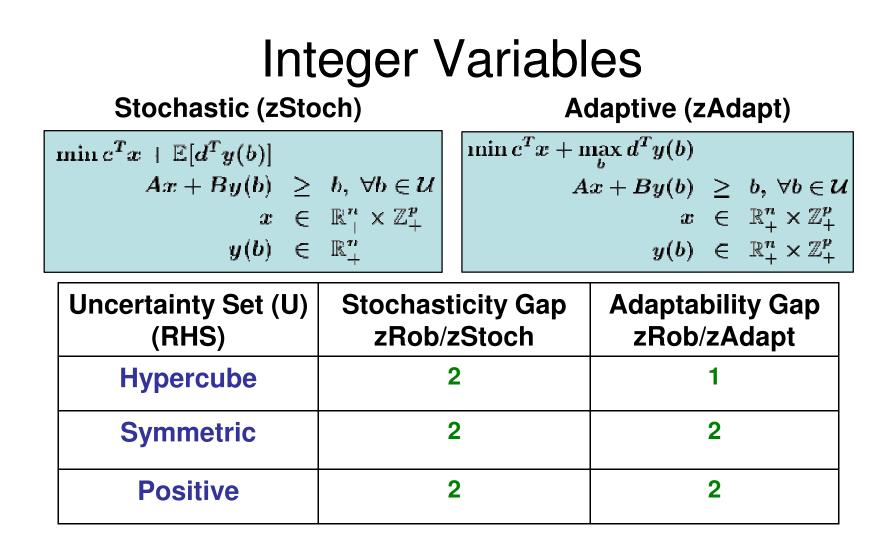
 $egin{array}{lll} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) &\geq b, \ orall b\in \mathcal{U} \ x, y(b) &\geq 0 \end{array}$ 

Adaptive (zAdapt)

| $\min c^T x + \max_b d^T y(b)$ |        |                                   |
|--------------------------------|--------|-----------------------------------|
| Ax + By(b)                     | $\geq$ | $b, \; \forall b \in \mathcal{U}$ |
| x, y(b)                        | $\geq$ | 0                                 |

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    | 2                                | 1                               |
| Symmetric                    | 2                                | 2                               |
| Positive                     | 2                                | 2                               |

• Assumption: E[b] =  $\overline{b}$  where  $\overline{b}$  is the point of symmetry



• Assumption: E[b] =  $\overline{b}$  where  $\overline{b}$  is the point of symmetry

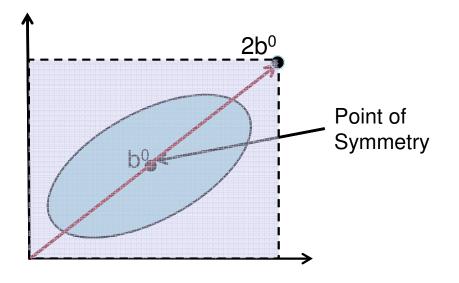
## Symmetric Sets

For any symmetric set  $\mathcal{U}$  s.t.  $b^0 \in \mathcal{U}$  is the point of symmetry,

 $b \leq 2b^0, \ orall \ b \in \mathcal{U}$ 

$$egin{aligned} b &= (b^0 + \delta) \in \mathcal{U} \ &(b^0 - \delta) \in \mathcal{U} \ &(2b^0 - b) \in \mathcal{U} \end{aligned}$$

 $(2b^0-b)\in \mathbb{R}^m_+ \Rightarrow b\leq 2b^0$ 



### Stochasticity Gap (for symmetric RHS uncertainty sets)

Let x\*, y\*(b) be an optimal solution for the stochastic problem

Static Solution: (2x\*, 2y\*(b<sup>0</sup>)) where b<sup>0</sup> is the point of symmetry

### Feasibility of Static Robust Solution

Static Solution: (2x\*, 2y\*(b<sup>0</sup>)) where b<sup>0</sup> is the point of symmetry

$$\begin{array}{l} \mathsf{A}(2x^*) + \mathsf{B} \ (2y^*(b^0)) = 2 \ (\mathsf{A}x^* + \mathsf{B} \ y^*(b^0)) \\ & \geq 2b^0 \\ & \geq b \end{array}$$

(2x<sup>\*</sup>, 2y<sup>\*</sup>(b<sup>0</sup>)) is a feasible solution for all b ε U

### Cost of Static Robust Solution

**Cost:**  $zRob \le 2(c^T x^* + d^T y^*(b^0))$ 

 $zStoch = (c^T x^* + d^T E_b[y^*(b)])$ 

 $Ax^* + B y^*(b) \ge b$ 

 $\mathsf{E}_{\mathsf{b}}[\mathsf{A}\mathsf{x}^* + \mathsf{B} \mathsf{y}^*(\mathsf{b})] \ge \mathsf{E}_{\mathsf{b}}[\mathsf{b}]$ 

 $\mathsf{A} \mathsf{x}^* + \mathsf{B}(\mathsf{E}_\mathsf{b}[\mathsf{y}^*(\mathsf{b})]) \geq \mathsf{b}^0$ 

E<sub>b</sub>[y\*(b)] is a feasible solution for scenario b<sup>0</sup>

 $d^{\top} y^{*}(b^{0}) \leq d^{\top} \mathsf{E}_{\mathsf{b}}[y^{*}(b)]$ 

 $z Rob \le 2(c^T x^* + d^T y^*(b^0))$  $\le 2 (c^T x^* + d^T E_b[y^*(b)])$ = 2 z Stoch

Stochasticity Gap ≤ 2

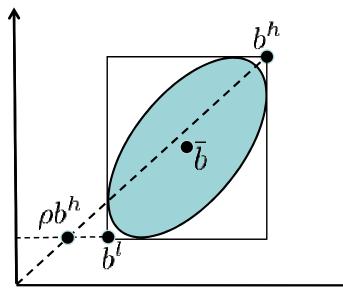
### Adaptability Gap (for symmetric RHS uncertainty)

zAdapt ≥ zStoch

Worst-case cost is at least the Expected cost

Adaptability Gap  $\leq 2$ 

## **Improved Parametric Bounds**



$$b^l \geq 
ho \cdot b^h, \; 0 \leq 
ho \leq 1$$

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    | $\frac{2}{1+\rho}$               | 1                               |
| Symmetric                    | $\frac{2}{1+\rho}$               | $2/1+\rho$                      |
| Positive                     | $\frac{2}{1+\rho}$               | $\frac{2}{1+\rho}$              |

## Rest of the Talk

- Uncertainty in both Cost and RHS
- Multi-stage problems
- Electricity Markets: Revisited

## Our Results: Cost, RHS uncertainty

#### Stochastic (zStoch)

 $egin{array}{lll} \min c^T x - \mathbb{E}_{(b,d)}[d^T y(b,d)] \ Ax + By(b,d) &\geq b, \ orall (b,d) \in \mathcal{U} \ x,y(b,d) &\in \mathbb{R}^n_+ \end{array}$ 

#### Adaptive (zAdapt)

| $\min c^T x + \max_{(b,d)} d^T y(b,d)$ |        |                                      |
|----------------------------------------|--------|--------------------------------------|
| Ax + By(b,d)                           | $\geq$ | $b, \; orall (b,d) \in \mathcal{U}$ |
| x,y(b,d)                               | ∈      | $\mathbb{R}^{n}_{+}$                 |

| Uncertainty Set (U)<br>(Cost and RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|---------------------------------------|----------------------------------|---------------------------------|
| Hypercube                             |                                  |                                 |
| Symmetric                             |                                  |                                 |
| Positive                              |                                  |                                 |

Assume:  $E_{b,d}[(b,d)] = (\overline{b},\overline{d})$  where  $(\overline{b},\overline{d})$  is the point of symmetry

## Our Results: Cost, RHS uncertainty

#### Stochastic (zStoch)

 $egin{array}{lll} \min c^T x - \mathbb{E}_{(b,d)}[d^T y(b,d)] \ Ax + By(b,d) &\geq b, \ orall (b,d) \in \mathcal{U} \ x,y(b,d) &\in \mathbb{R}^n_+ \end{array}$ 

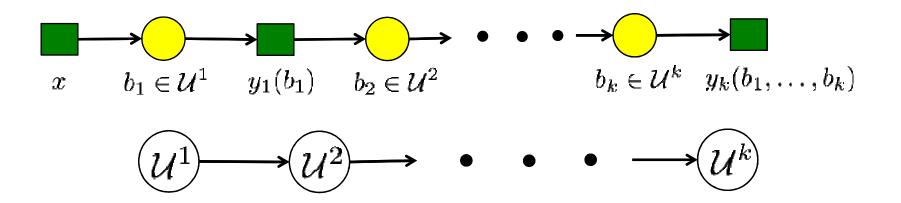
#### Adaptive (zAdapt)

| $\min c^T x + \max_{(b,d)} d^T y(b,d)$ |        |                                      |
|----------------------------------------|--------|--------------------------------------|
| Ax + By(b, d)                          | $\geq$ | $b, \; orall (b,d) \in \mathcal{U}$ |
| x,y(b,d)                               | ∈      | $\mathbb{R}^{n}_{+}$                 |

| Uncertainty Set (U)<br>(Cost and RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|---------------------------------------|----------------------------------|---------------------------------|
| Hypercube                             | Ω(m)                             | 1                               |
| Symmetric                             | <u>Ω(m)</u>                      | 4                               |
| Positive                              | Ω(m)                             | 4                               |

Assume:  $E_{b,d}[(b,d)] = (\overline{b},\overline{d})$  where  $(\overline{b},\overline{d})$  is the point of symmetry

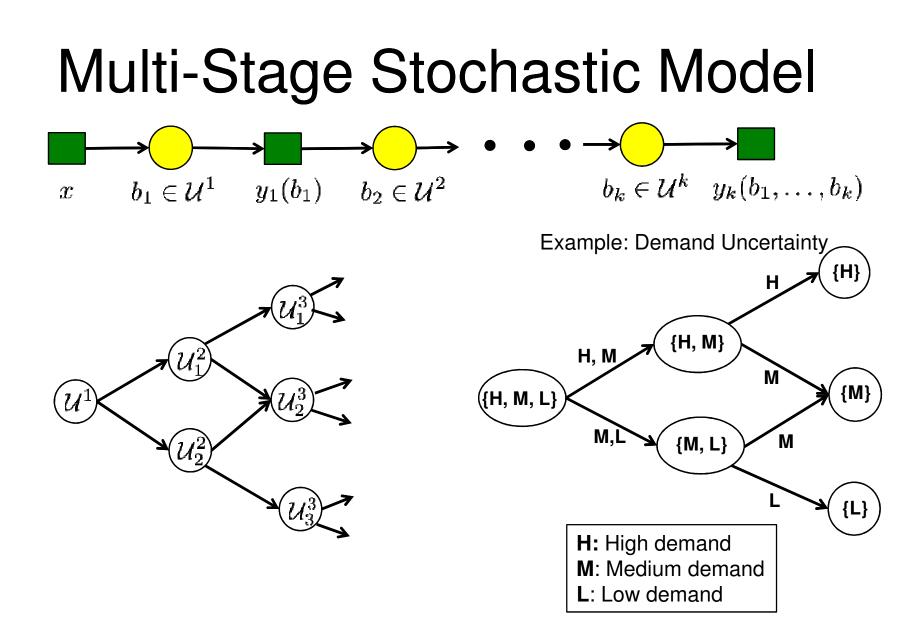
## Multi-Stage Stochastic Model

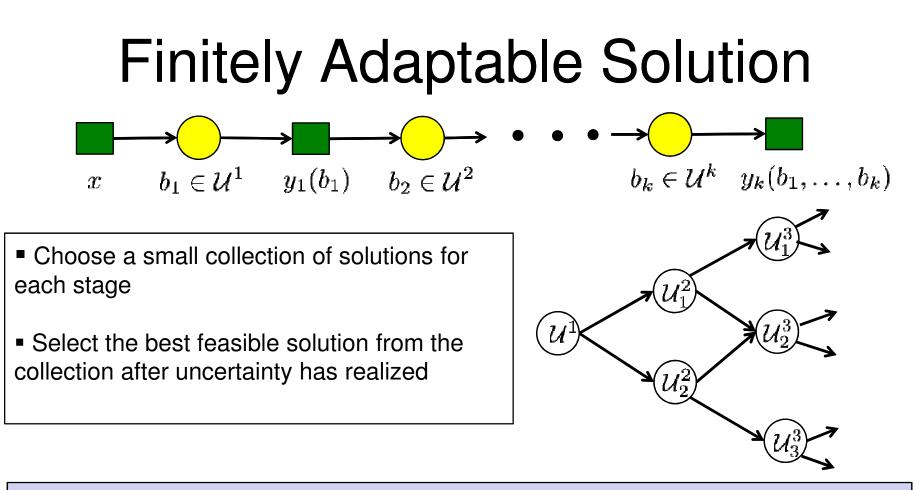


### Bounds for Multi-stage Problems

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|------------------------------|----------------------------------|---------------------------------|
| Hypercube                    | 2                                | 1                               |
| Symmetric                    | 2                                | 2                               |
| Positive                     | 2                                | 2                               |

| Uncertainty Set (U)<br>(Cost and RHS) | Stochasticity Gap<br>zRob/zStoch | Adaptability Gap<br>zRob/zAdapt |
|---------------------------------------|----------------------------------|---------------------------------|
| Hypercube                             | Ω(m)                             | 1                               |
| Symmetric                             | Ω(m)                             | 4                               |
| Positive                              | Ω(m)                             | 4                               |





• Finitely adaptable solution is a good approximation for symmetric and positive uncertainty sets

• number of solutions is equal to the number of uncertainty sets

# Outline

- Uncertainty in both Cost and RHS
- Multi-stage problems
- General Convex Uncertainty (Affine policies)
- Electricity Markets: Revisited

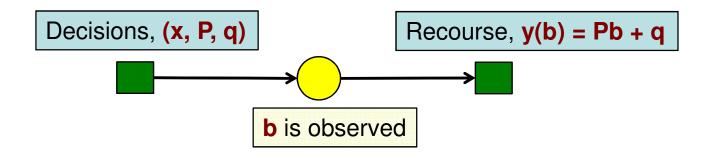
## **General Convex Uncertainty**

$$\begin{aligned} \mathbf{z} \mathbf{A} \mathbf{d} \mathbf{a} \mathbf{p} \mathbf{t} &= \min c^T x + \max_{b \in \mathcal{U}} \ d^T y(b) \\ A x + B y(b) &\geq b, \ \forall b \in \mathcal{U} \\ x, y(b) &\geq 0 \end{aligned}$$

## **Affine Policies**

$$egin{aligned} \mathbf{z} \mathbf{A} \mathbf{d} \mathbf{p} \mathbf{t} &= \min c^T x + \max_{b \in \mathcal{U}} \ d^T y(b) \ && A x + B y(b) \ &\geq \ b, \ orall b \in \mathcal{U} \ && x, y(b) \ &\geq \ 0 \end{aligned}$$

$$y(b) = Pb + q \longrightarrow$$
 (Affine function of RHS, b)



# Affine Policies: Previous Work

- Extensively studied in literature
  - Gartska and Wets (1974), Rockafellar and Wets (1978)
  - Bemporad and Morari (1999)
  - Bertsimas et al. (2009), Skaf and Boyd (2009)

#### Computationally tractable

- Perform extremely well in practice
  - Kalman filtering (Kalman (1960))
  - Linear decision rules for approximate DP (Bertsekas (2001), de Farias and Van Roy (2003))
  - Retailer-supplier flexible commitment contracts (Ben-Tal et al. (2005))

#### Affine Policies: Simplex Uncertainty Sets

Simplex 
$$\mathcal{U} = \operatorname{conv}(b^1, \dots, b^{m+1})$$

Affine policies are **optimal** if the uncertainty set is a **simplex** 

$$y(b) = \begin{bmatrix} P \\ & \end{bmatrix} b + \begin{bmatrix} q \end{bmatrix}$$
  
m columns

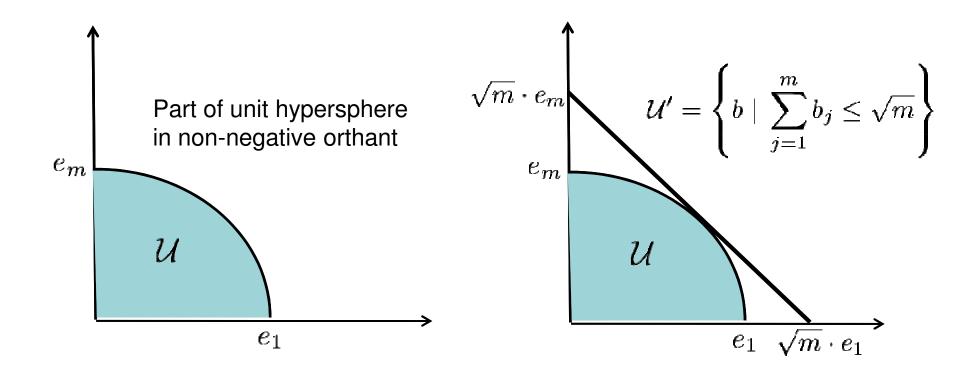
- Simplex has (m+1) extreme points
- Enough degrees of freedom to obtain an optimal solution

### Affine Policies: General Convex Sets

- Cost of optimal affine policy is at most  $\sqrt{m}$  times the optimal adaptive problem (zAdapt)
- Cost of optimal affine policy is at least  $\Omega(\sqrt{m})$  times the optimal adaptive problem (zAdapt)

Performance of affine policies  $\Theta(\sqrt{m})$  times the optimal

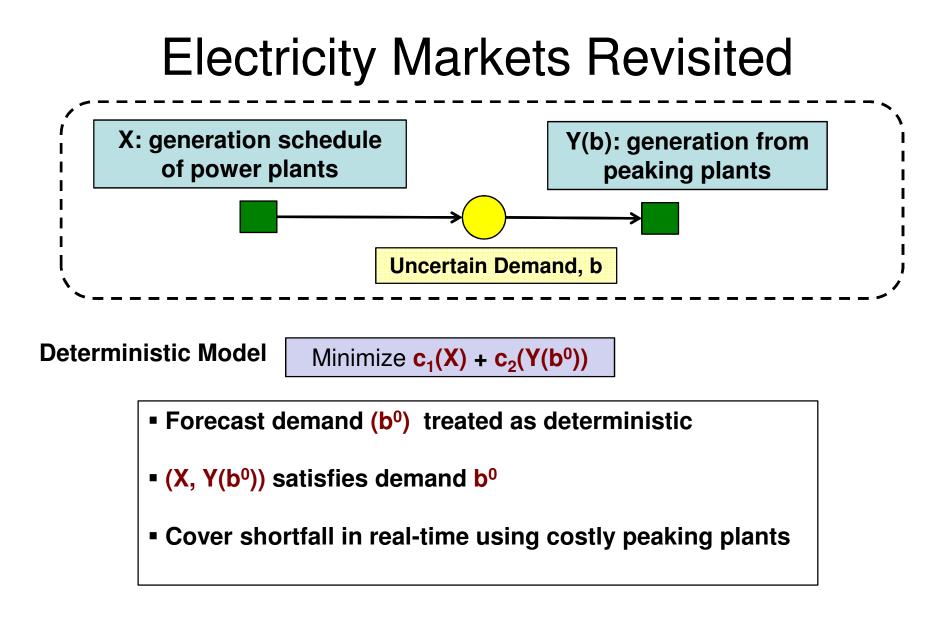
## **Geometric Intuition**



# Outline

- Uncertainty in both Cost and RHS
- Multi-stage problems

Electricity Markets: Revisited



### Our Model and Results

Adaptive Model

Minimize  $c_1(X) + max_{b \in U} c_2(Y(b))$ 

#### Demand uncertainty modeled as hypercube

- $\mathcal{U} = [b^0 \delta e, b^0 + \delta e]$ 
  - b<sup>0</sup>: day-ahead forecast vector
  - δ: std. dev. of forecast error

zAdapt = zRob

can solve the adaptive problem optimally

Richer Model that handles uncertainty in day-ahead problem

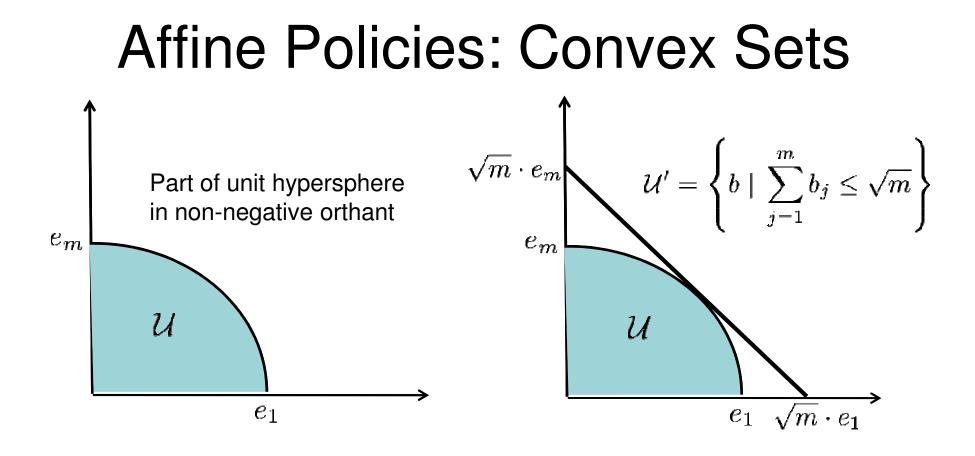
 Adaptive model improves cost on average ~2% as compared to the deterministic model

## **Conclusions and Future Directions**

- Robust Optimization
  - Tractable approach
  - **Good approximation** for fairly general dynamic opt. problems
- Potential for commercial success similar to deterministic optimization
- (Future Directions) Multi-stage problems in Operations Research both methodologically and practically
  - Energy, supply chain management, pricing and revenue management

#### **Related Papers**

- [1] D. Bertsimas and V. Goyal. On the Power of Robust Solutions in Two-stage Stochastic and Adaptive Problems. To Appear in *Math of Operations Research*
- [2] D. Bertsimas and V. Goyal. On the Power and Limitations of Affine Policies in Two-stage Adaptive Optimization. Submitted to *Math Programming*.
- [3] D. Bertsimas and V. Goyal. On the Power of Finite Adaptability in Multistage Stochastic and Adaptive Optimization Problems. *In preparation*
- [4] D. Bertsimas and V. Goyal. An Adaptive Optimization Approach to Unit-Commitment under Demand and Capacity Uncertainty. *In preparation*

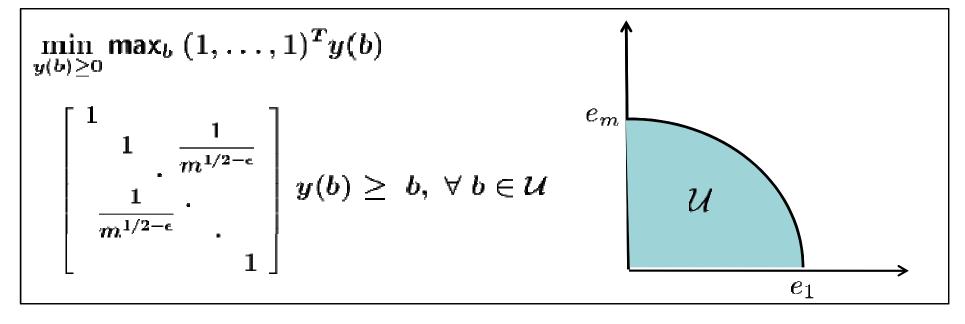


Cost of optimal affine policy is at most  $\sqrt{m}$  times the optimal

# Outline

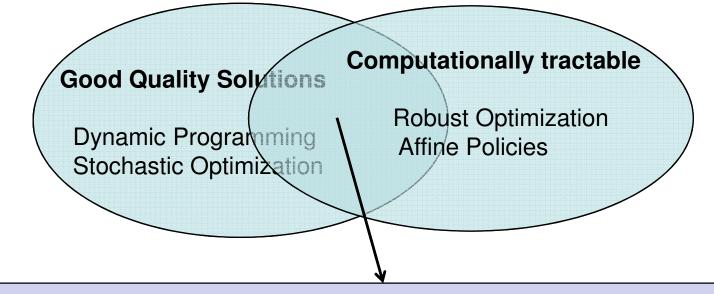
- Models (Stochastic, Adaptive, and Robust)
- An Example from Electricity Markets
- Performance Bounds for Two-stage problems
- Performance bounds for Multi-stage problems
- Affine Policies and their Performance
- Electricity Problem: Revisited
- Conclusions

## Affine Policies: Lower Bound



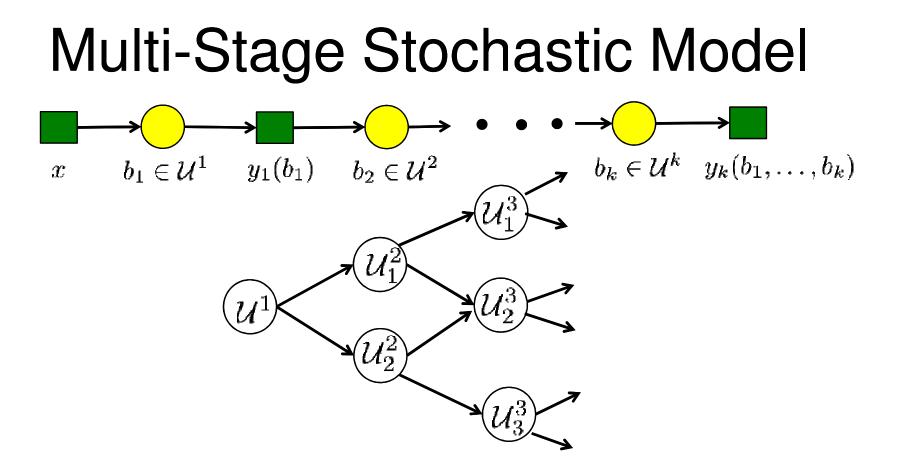
#### Cost of optimal affine policy is at least $\Omega(\sqrt{m})$ times the optimal

### **Conclusions and Future Directions**

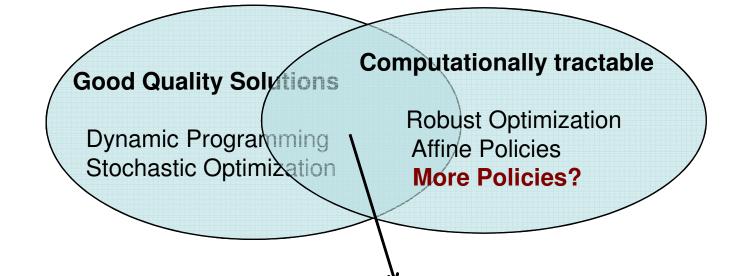


Robust optimization is a practical approach to dynamic optimization
 if uncertainty is distributed symmetrically in a symmetric set

#### • Affine policies perform well for symmetric and simplex uncertainty sets



### **Conclusions and Future Directions**



- Robust optimization is a practical approach to dynamic optimization
   if uncertainty is distributed symmetrically in a symmetric set
- Affine policies perform well for symmetric and simplex uncertainty sets
- More policies and more classes of problems?

#### Previous Work in Stochastic Optimization

- Studied extensively in literature
  - Dantzig (1955), Rockafellar and Wets (1978), Birge and Louveaux (1997), Prekopa (1995), Shapiro (2008)
  - Combinatorial Problems: Shmoys and Swamy (2006), Ravi and Sinha (2004)
- Computationally intractable in general
  - Dyer and Stougie (2005), Shapiro and Nemirovski (2005)

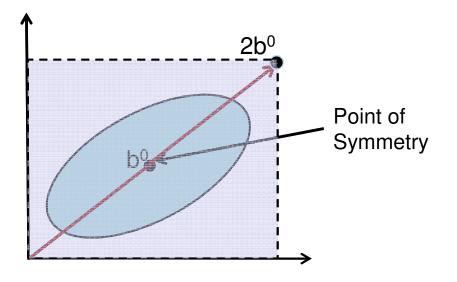
## Symmetric Sets

For any symmetric set  $\mathcal{U}$  s.t.  $b^0 \in \mathcal{U}$  is the point of symmetry,

 $b \leq 2b^0, \ orall \ b \in \mathcal{U}$ 

$$egin{aligned} b &= (b^0 + \delta) \in \mathcal{U} \ & (b^0 - \delta) \in \mathcal{U} \ & (2b^0 - b) \in \mathcal{U} \end{aligned}$$

 $(2b^0-b)\in \mathbb{R}^m_+ \Rightarrow b\leq 2b^0$ 



## Stochasticity Gap (for symmetric RHS uncertainty sets)

Let x\*, y\*(b) be an optimal solution for the stochastic problem

Static Solution: (2x\*, 2y\*(b<sup>0</sup>)) where b<sup>0</sup> is the point of symmetry

### Feasibility of Static Robust Solution

Static Solution: (2x\*, 2y\*(b<sup>0</sup>)) where b<sup>0</sup> is the point of symmetry

$$A(2x^*) + B (2y^*(b^0)) = 2 (Ax^* + B y^*(b^0))$$
  
≥ 2b<sup>0</sup>  
≥ b

(2x<sup>\*</sup>, 2y<sup>\*</sup>(b<sup>0</sup>)) is a feasible solution for all b ε U

#### Cost of Static Robust Solution

**Cost:**  $zRob \le 2(c^T x^* + d^T y^*(b^0))$ 

 $zStoch = (c^T x^* + d^T E_b[y^*(b)])$ 

 $Ax^* + B y^*(b) \ge b$ 

 $\mathsf{E}_{\mathsf{b}}[\mathsf{A}\mathsf{x}^* + \mathsf{B} \mathsf{y}^*(\mathsf{b})] \ge \mathsf{E}_{\mathsf{b}}[\mathsf{b}]$ 

 $\mathsf{A} \mathsf{x}^* + \mathsf{B}(\mathsf{E}_\mathsf{b}[\mathsf{y}^*(\mathsf{b})]) \geq \mathsf{b}^0$ 

E<sub>b</sub>[y\*(b)] is a feasible solution for scenario b<sup>0</sup>

 $d^{\top} y^{*}(b^{0}) \leq d^{\top} \mathsf{E}_{b}[y^{*}(b)]$ 

 $z Rob \le 2(c^T x^* + d^T y^*(b^0))$  $\le 2 (c^T x^* + d^T E_b[y^*(b)])$ = 2 z Stoch

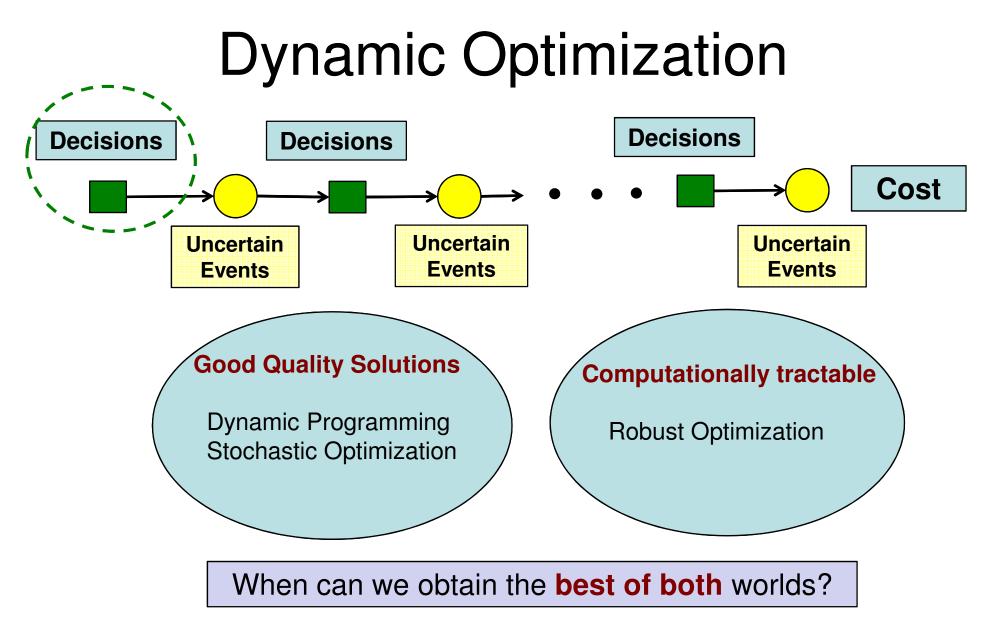
Stochasticity Gap ≤ 2

### Adaptability Gap (for symmetric RHS uncertainty)

zAdapt ≥ zStoch

Worst-case cost is at least the Expected cost

Adaptability Gap  $\leq 2$ 



### Conclusions

| Uncertainty Set (U)<br>(RHS) | Stochasticity Gap<br>(zRob/zStoch ) | Adaptability Gap<br>(zRob/zAdapt) |
|------------------------------|-------------------------------------|-----------------------------------|
| Hypercube                    | 2*                                  | 1*                                |
| Symmetric                    | 2*                                  | 2*                                |
| Positive                     | 2*                                  | 2*                                |
| General Convex               | Ω(m)                                | Ω(m)                              |

| Uncertainty Set (U)<br>(Cost and RHS) | Stochasticity Gap<br>(zRob/zStoch ) | Adaptability Gap<br>(zRob/zAdapt) |
|---------------------------------------|-------------------------------------|-----------------------------------|
| Hypercube                             | Ω(m)                                | 1*                                |
| Symmetric                             | Ω(m)                                | 4                                 |
| Positive                              | Ω(m)                                | 4                                 |
| General Convex                        | Ω(m)                                | Ω(m)                              |

Performance of affine policies is  $\Theta(m)$  worse than optimal adaptive solution for general convex uncertainty sets

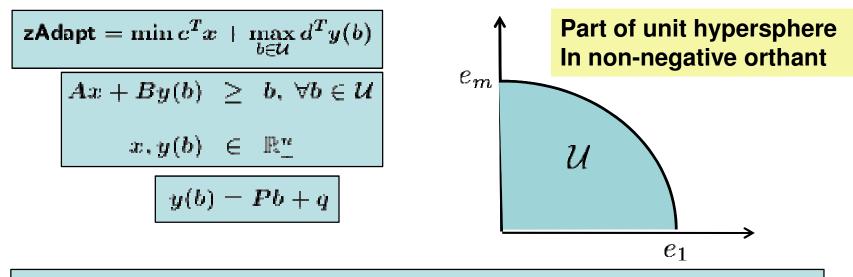
# **Future Directions**

 Dynamic Optimization is important due to its wide applicability but computationally intractable

#### Broad Goal

- Understand models where a good approximation is possible (eg. symmetric uncertainty sets)
- Also, the *dual* problem of identifying models where dynamic optimization will be intractable

### **Upper Bound: Simple Case**

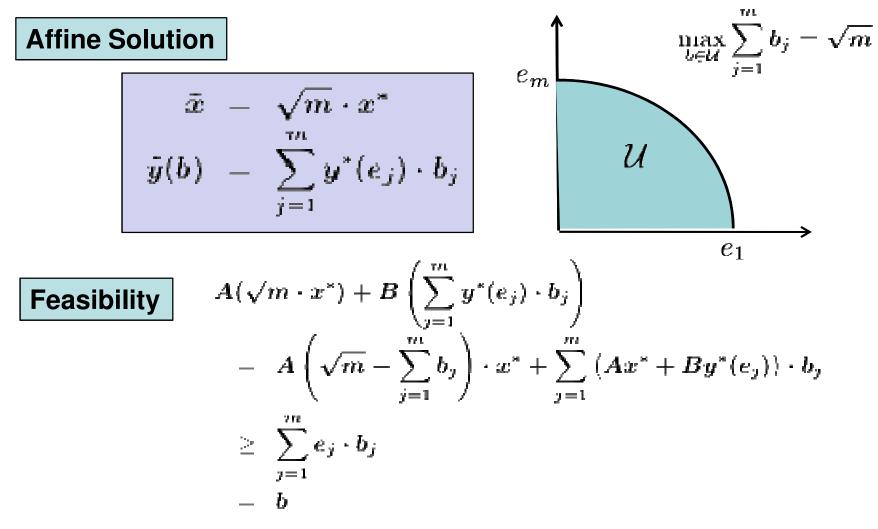


Let **x**\*, **y**\*(**b**) be an **optimal solution** for the adaptive problem

**Affine Solution** 

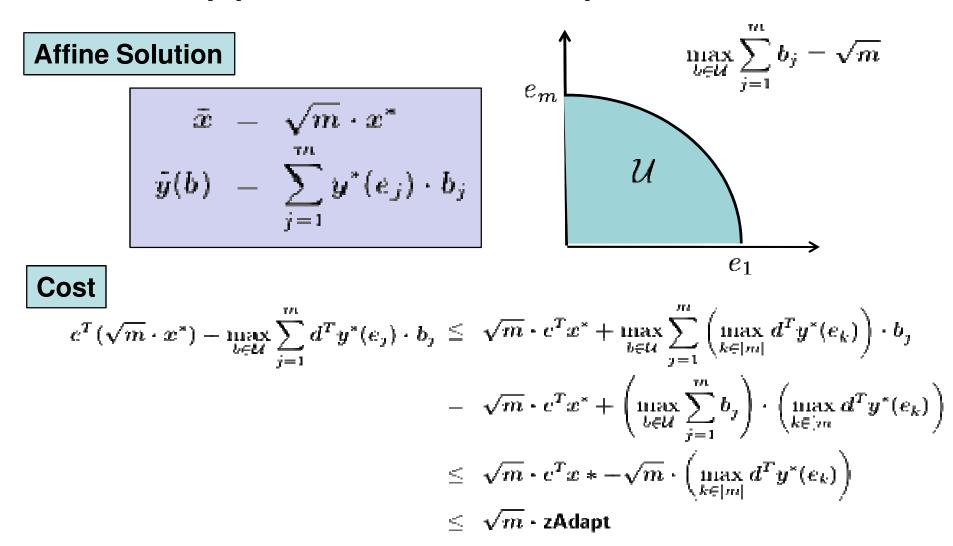
$$egin{array}{rcl} ilde{x} &=& \sqrt{m} \cdot x^* \ ilde{y}(b) &=& \sum_{j=1}^m y^*(e_j) \cdot b_j \end{array}$$

#### **Upper Bound: Simple Case**



65

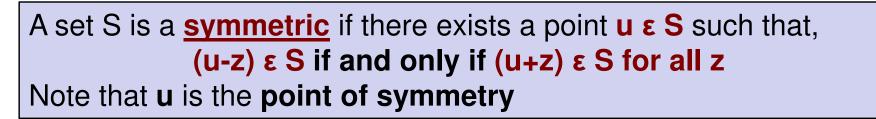
#### **Upper Bound: Simple Case**

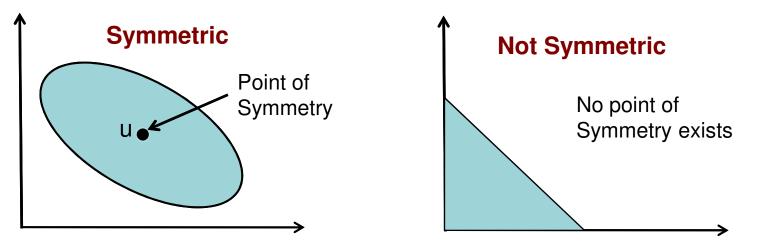


66

## **Uncertainty Sets**

A set S is a <u>hypercube</u> if  $S = \{ x \mid 1 \le x \le u \}$  for some vectors I, u





## Upper Bound: General Case

- Assume U is in the unit-hypercube by scaling the constraint matrices
- Can partition the set [m] in to [J<sub>1</sub>; J<sub>2</sub>] such that

$$\sum_{j \in J^{\perp}} b_j \leq \sqrt{m}, \; orall b \in \mathcal{U}$$

$$\exists \; \tilde{b} \in \mathcal{U} \; \text{s.t.} \; b_j \leq \sqrt{m} \cdot \tilde{b}_j, \; \forall j \in J_2, \; \forall b \in \mathcal{U}$$

Feasible Solution

$$\hat{x} = \sqrt{m} \cdot x^*, \; \hat{y}(b) = \sum_{j \in J_1} y^*(e_j) \cdot b_j + \sqrt{m} \cdot y^*(\tilde{b})$$

#### Large Stochasticity Gap Example (Cost and RHS uncertainty)

 $\begin{aligned} \mathbf{zStoch} &= \min \ \mathbb{E}_d[d^T y(d)] \\ y_1 + y_2 + \ldots + y_m &\geq 1 \\ y(d) &\in \ \mathbb{R}^m_+, \ \forall d \in U \end{aligned}$ 

■ U (cost uncertainty only): 0-1 hypercube, i.e., U = [0,1]<sup>m</sup>

#### • d<sub>i</sub>: uniformly distributed between 0 and 1 independent of others

| Optimal Static Robust |                                                                                                                                                                                       | Optimal Stochastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| zRob                  | $\begin{array}{ll} &=& \mathbb{E}_d[d^Ty]\\ &=& \mathbb{E}[d_1y_1+\ldots-d_my_m]\\ &=& \mathbb{E}[d_1]\cdot y_1-\ldots+\mathbb{E}[d_m]\cdot y_m\\ &=& (y_1+\ldots-y_m)/2 \end{array}$ | $egin{aligned} egin{aligned} egi$ |  |
|                       | $\geq -1/2$                                                                                                                                                                           | m+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

#### Adaptability Gap (Cost and RHS uncertainty)

zAdapt = 
$$\min c^T x + \max_{\substack{(b,d)}} d^T y(b,d)$$
  
 $Ax + By(b,d) \ge b, \forall (b,d) \in \mathcal{U}$   
 $x, y(b,d) \in \mathbb{R}^n_+$ 

Let **x**\*, **y**\*(**b**,**d**) be an **optimal solution** for the adaptive problem

Static Solution: (2x\*, 2y\*(b<sup>0</sup>,d<sup>0</sup>)) where (b<sup>0</sup>,d<sup>0</sup>) is the point of symmetry

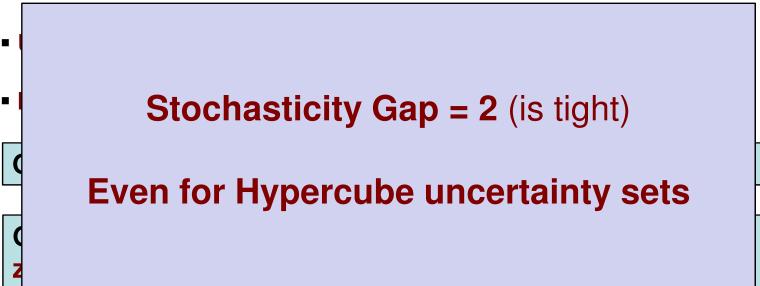
Feasibility: A  $(2x^*)$  + B  $(2y^*(b^0,d^0)) \ge 2b^0 \ge b$ , for all b  $\epsilon$  U

Cost:

$$egin{aligned} \mathsf{zRob} &\leq c^T(2x^*) + \max_{(b,d)\in U} d^T(2y^*(b^0,d^0)) \ &\leq 2c^Tx^* + (2d^0)^T(2y^*(b^0,d^0)) \ &= 2c^Tx^* + 4(d^0)^Ty^*(b^0,d^0) \ &\leq 4(c^Tx^* + 4(d^0)^Ty^*(b^0,d^0)) \leq 4\cdot \mathsf{zAdapt} \end{aligned}$$

## Stochasticity Gap: Tight Example

Im: m x m identity matrix



## **Proof Sketch**

- Show that  $zAdapt \leq 1$
- Show existence of a "symmetric" optimal affine solution

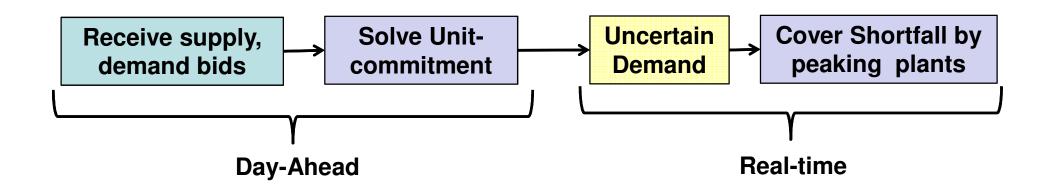
y(b) = Pb + q

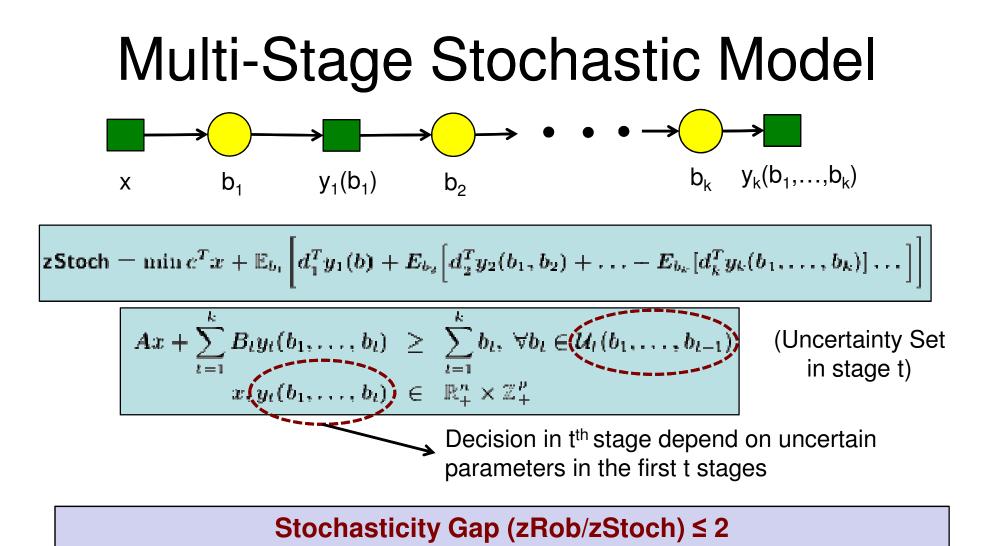
$$egin{aligned} P_{ii} &= \lambda, \ P_{ij} &= heta, \ orall i, j &= 1, \dots, m \end{aligned}$$
 $q_{j} &= eta, \ orall j &= 1, \dots, m \end{aligned}$ 

$$\mathsf{zAffine} \geq rac{m^{1/2-\delta}}{4}$$

#### System Operator: Unit Commitment Problem

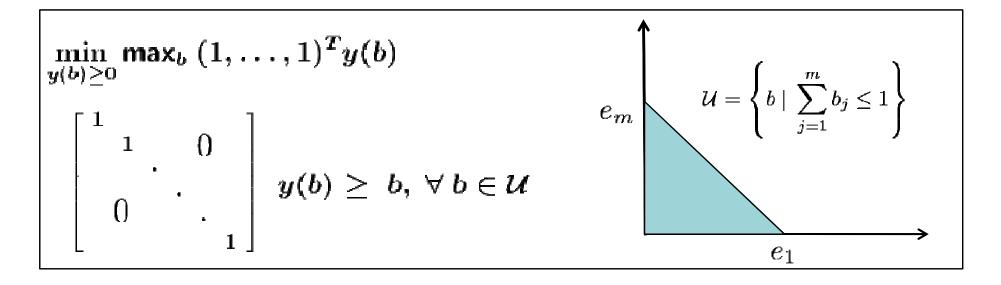
- Schedule or Commit generators for each hour of the next day to satisfy an uncertain demand
  - Minimize total expected cost
  - Operational and security constraints are not violated
  - Real-time energy balance achieved by costly peaking units
  - Multi-stage optimization problem hard to solve





for symmetric and positive uncertainty sets for RHS uncertainty

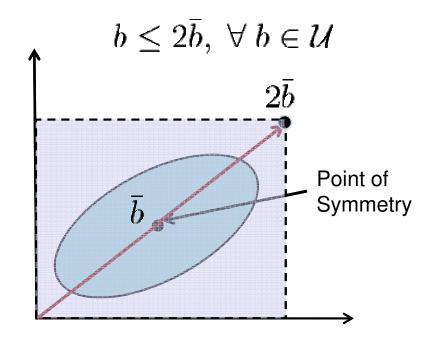
#### General Convex Uncertainty: Bad Example



Optimal Static Solution: y = (1,1,..., 1) and zRob = m

Optimal fully-adaptable Solution: y\*(b) = b, and zAdapt = 1

## **Geometric Intuition**



**zStoch**  $\geq$  Optimal cost for covering  $\bar{b}$