
Heavy tails Models Input process Limits

A bird-eye view of fluid queues in communication
network models: heavy tails and long memory.
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It is widely believed that various important objects associated with
modern communication networks feature extreme oscillations and
irregularity. For example:

Sizes of files oscillate between very small and huge;

throughput rates oscillate between very high and almost zero;

“think times” can be very short and very long.

The technical term for such high variability is “heavy tails”; see
e.g. Crovella and Bestavros (1996), Willinger et al. (1995), Park
and Willinger (2000), Barabasi (2005).
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The file sizes downloaded from a server at UNC Chapel Hill,
November 2008.
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In this context, when one says that a random variable X is heavy
tailed, one usually means that X has a regularly varying (right)
tail: for some α > 0

P(X > x) ∼ x−αL(x), x →∞,

where L is a slowly varying function.

Notation and terminology:

X (or its distribution FX ) is regularly varying with exponent α;

X ∈Reg(α) (or FX ∈Reg(α)).
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Important:

One or more of random quantities involved in the input to a
queuing system has heavy tails;

if X ∈Reg(α) and α < 2, then X does not have a finite
variance;

if X ∈Reg(α) and α < 1, then X does not have a finite mean;

highly irregular input processes tend to cause delays in queues.
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Therefore: it is important to understand how irregular the input
process to a queue be because of the heavy tails.

Slightly more technically: it is important to understand the
deviations of the input process to a queue from its average
behaviour.

A very influential step in this direction was taken by Mikosch,
Resnick, Rootzén and Stegeman (2002), who considered two of the
best known models for fluid input processes: the ON-OFF model
and the Infinite Source Poisson model.
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The ON-OFF model

A cycle consists of an ON-period and an OFF-period;

the lengths of ON-periods (Zi ) are iid with a common
distribution FON ∈Reg(αon) and a finite mean µon;

the lengths of OFF-periods (Yi ) are iid with a common
distribution FOFF ∈Reg(αoff) and a finite mean µoff ;

the two sequences are independent;

the work arrives at the unit rate during an ON-period (and
at rate 0 during an OFF-period);
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Heavy tails in the ON-OFF model cause long range
dependence in the sense of slowly decaying correlations.

Consider the stationary input process

N(t) = 1
(
t ∈ an ON-period

)
, t ∈ R.

Assume that αon ∈ (1, 2), αoff > αon, and the cycle-length
distribution is spread-out. Then

RN(t) := Cov
(
N(0),N(t)

)
∼

µ2
off

(αon − 1) (µon + µoff)3
t FON(t)

as t →∞ (Heath, Resnick, Samorodnitsky (1998)).
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The Infinite Source Poisson model

Beginnings of sessions arrive according to a time
homogeneous Poisson process with rate λ;

session durations are iid random variables (Xi ) independent of
the arrival Poisson process, with a common distribution
F ∈Reg(α) and a finite mean µ;

during the duration of each session, work is generated at the
unit rate.
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Heavy tails in the Infinite Source Poisson model cause long
range dependence in the sense of slowly decaying correlations.

Consider the stationary input process

N(t) = number of sessions running at time t, t ∈ R.

Assume that α > 1. Then

RN(t) := Cov
(
N(0),N(t)

)
∼ λ

α− 1
t F (t)

as t →∞.
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Let (N(t), t ∈ R) be a stationary process describing the
number of sessions running at time t. Assume the process is
ergodic.

The total amount of work brought into the system by the
time t ≥ 0 is

I (t) =

∫ t

0
N(s) ds, t ≥ 0 .

Note: both EI (t) = tEN(0) for all t ≥ 0 and
I (t)/t → EN(0) with probability 1 as t →∞.

We think of (I (t), t ∈ R) as the cumulative input process
caused by a single “user”.

Typically, one assumes that there are many “users”
contributing to the input.
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Let n denote the number of users (assumed to be large).

Let (Ij(t), t ∈ R), j = 1, . . . , n be the cumulative input
processes corresponding to different users.

We assume that the input process (Ij(t), t ∈ R), j = 1, . . . , n
are iid.

The total input by the time t is
∑n

j=1 Ij(t) and the average
input is n t EN(0), t ≥ 0.

Question: what is the “bird-eye” behaviour of the deviation
of the total input process from its average?
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Let T > 0 be the time scale (large). Consider the deviation from
the mean input process at the scale T defined by

Dn,T (t) =
n∑

j=1

(Ij(tT )− tT EN(0)) , t ≥ 0.

How does the (properly normalized) deviation process
(Dn,T (t), t ≥ 0) behave as n,T grow to infnity?

Intuitively, the answer to this question depends on the relative rate
of growth of the number of “users” n and the time scale T .
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Case 1 Suppose that the number of “users” n grows much faster
than the time scale T .

Viewing T as, approximately, fixed, we can view the deviation

Dn,T (t) =
n∑

j=1

∫ tT

0

(
Nj(s)− EN(0)

)
ds, t ≥ 0,

as the sum of, approximately, iid random functions.

For most reasonable models these functions have a finite variance
at every point.
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Therefore, it is reasonable to expect that the properly normalized
deviation process (Dn,T (t), t ≥ 0) will converge to a Gaussian
limit.

The covariance function of the limiting Gaussian process will be
determined by the fact that the time scale T grows to zero as well.

Recall: the covariance function of the process (N(t), t ∈ R),
describing, for each “user”, the number of sessions running at time
t, is often regularly varying at infnity.
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As a consequence, the scaling by the growing time scale T can be
expected to cause a “power-like” behaviour of the covarainces of
the limiting Gaussian process.

Therefore, it is reasonable to expect a Fractional Brownian limit of
the properly normalized deviation process (Dn,T (t), t ≥ 0).

When the number of “users” n grows much faster than the time
scale T , the term “the fast growth regime” was introduced by
Mikosch, Resnick, Rootzén and Stegeman (2002).
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Case 2 Suppose that the time scale T grows much faster than
the number of “users” n.

Viewing now n as, approximately, fixed, we can view the deviation

Dn,T (t) =
n∑

j=1

∫ tT

0

(
Nj(s)− EN(0)

)
ds, t ≥ 0

by looking, separately, at each term, which contains an individual
input process at a very fast time scale.

At very fast time scales the heavy tailed sessions bring their work
in the system almost immediately.
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This means that each individual input process can be viewed as
consisting of a large number of independent work requirements.

Therefore: it is reasonable to expect that each individual process,
when properly normalized, will converge to a process with
stationary and independent increments, i.e. to a Lévy process.

If the session durations have regularly varying tails in Reg(α) with
1 < α < 2, then this Lévy process will be an α-stable Lévy process.
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The growing number of “users” n will only change the scale of the
α-stable Lévy process.

Therefore, it is reasonable to expect an α-stable Lévy limit of the
properly normalized deviation process (Dn,T (t), t ≥ 0).

When the time scale T grows much faster than the number of
“users” n, the term “the slow growth regime” was introduced by
Mikosch, Resnick, Rootzén and Stegeman (2002).
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The main result of Mikosch, Resnick, Rootzén and Stegeman
(2002) was that this intuition was valid for both the ON-OFF
input model and the Infinite Source Poisson input model.

The boundary between the fast growth regime and the slow growth
regime: {

nT F̄ON(T )→∞ the fast growth regime
nT F̄ON(T )→ 0 the slow growth regime

.

A boundary regime exists as well.
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In the fast growth regime:(
1

(nF̄ON(T ))1/2
Dn,T , t ≥ 0

)
→

(
BH(t), t ≥ 0

)
weakly in

(
D[0,∞), J1

)
. Here BH is a Fractional Brownian motion

with H = (3− α)/2.

In the slow growth regime:(
1

b(nT )
Dn,T , t ≥ 0

)
→

(
Lα(t), t ≥ 0

)
in finite-dimensional distributions. Here b(t) =

(
1/F̄ON

)←
(t) is

the left continuous tail inverse.
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The accepted wisdom, therefore, has become that, from the
bird-eye point of view, the deviations of the cumulative input to a
communication network network from the average look either like
a Fractional Brownian motion, or a Lévy stable motion.
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Fractional Brownian motion, H=0.8
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Spectrally positive stable motion, alpha=1.4
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A Fractional Brownian motion, and a Lévy stable motion are two
very different processes.

A Fractional Brownian motion with 1/2 < H < 1 has long
range dependent increments, but light tails.

A Lévy stable motion has independent increments but heavy
tails.

What behaviour is more widespread?
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