

Sean Meyn

Department of Electrical and Computer Engineering University of Illinois & the Coordinated Science Laboratory

NSF support: ECS 05-23620 and DARPA ITMANET

TT	XX/	or	171	•	he
11	V V	UI	KI	U	au

Control Techniques for Complex Networks

Draft copy April 22 2007

5 Workload & Schee	luling 159 III Stability & Performance	318
5.2 Workloor	the CRW schemal Ω g model	510
5.3 Relaxations f		436
\sim	10.5 Safety stocks and trajectory tracking	. 462
Contro <mark>l Techniques fo</mark> r	Complex Networks Draft copy April 22 2007	40.5
Modeling & Control	11 Simulation & Learning	485
Scheduling		516
4.1 Controlled random-w		532
4.3 Control techniques fo		534
II Sta <mark>bility & Per</mark> orma	Models & Background	
Optimization	374	
9.4 Optimality equations	h Max/Maight Policies	34
9.0 Optimization in Letwi	<i>Il-IVIAXVVEIGITEFOIICIES</i>	1.45
	4.8 Weight and MinDriff	145
	Heavy Traffic	152
	ricavy frame	134
	E Stabile ? Performance 318	
	Conclusions	
		520
III Stability & Per		538 538
9 Optimization		540
10 ODE methods	A.5 Equilibrium equations $\dots \dots \dots$	543
10.5 Safety stocks	and trajectory tracking	560
10.6 Fluid-scale as		308

Draft copy April 22 2007

C	ontro	ol Techniques for Complex Networks	Draft copy April 22 2
Ι	Mo	deling & Control	34
4	Sche	eduling	99
	4.1	Controlled random-walk model	101
	4.2	Fluid model	109
	4.3	Control techniques for the fluid model	116
Π	I St	ability & Performance	318
9	Opt	imization	374
	9.4	Optimality equations	
	9.6	Optimization in networks	408

Models & Background

- Lippman 1975 - Henderson & M. 1997

⁻ Chen & Mandelbaum 1991, - Cruz 1991

Value Functions

$$q(t) = x + Bz(t) + \alpha t$$
 $Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$

$$J(x) = \int_0^\infty c(q(t;x)) \, dt$$

$$h(x) = \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta] \, dt$$

Fluid value function

Relative value function

$$\eta = \int c(x) \, \pi(dx)$$

= average cost

Value Functions

 $q(t) = x + Bz(t) + \alpha t$ Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)

$$J(x) = \int_0^\infty c(q(t;x)) dt$$

$$h(x) = \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta] \, dt$$

Fluid value function

Relative value function

$$\eta = \int c(x) \, \pi(dx)$$

Large-state solidarity

$$\lim_{\|x\|\to\infty} \left[\frac{J(x)}{h(x)}\right] = 1$$

Holds for wide class of stabilizing policies, including average-cost optimal policy

Myopic Policy: Fluid Model

 $q(t) = x + Bz(t) + \alpha t$

$$\frac{d^+}{dt}q(t) = B\zeta(t) + \alpha$$

Constraints: X subset of \mathbb{R}^{ℓ}_+

U(x) feasible values of $\zeta(t)$ when $x = q(t) \in X$

Given: Convex monotone cost function,

$$c\colon \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$$

Myopic Policy: Fluid Model

$$\frac{d^+}{dt}q(t) = B\zeta(t) + \alpha$$

Constraints: X subset of \mathbb{R}^{ℓ}_+ U(x) feasible values of $\zeta(t)$ when $x = q(t) \in X$

Given: Convex monotone cost function,

$$c\colon \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$$

$$\underset{u \in \mathsf{U}(x)}{\arg\min} \frac{d^+}{dt} c(q(t)) = \underset{u \in \mathsf{U}(x)}{\arg\min} \langle \nabla c(x), Bu + \alpha \rangle$$

Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)

Constraints: X_{\diamond} subset of \mathbb{R}^{ℓ}_{+} (lattice constraints, etc.) $U_{\diamond}(x)$ feasible values of U(k)when $x = Q(k) \in X_{\diamond}$

Given: Convex monotone cost function,

$$c\colon \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$$

Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)

Constraints: X_{\diamond} subset of \mathbb{R}^{ℓ}_{+} (lattice constraints, etc.) $U_{\diamond}(x)$ feasible values of U(k)when $x = Q(k) \in X_{\diamond}$

Given: Convex monotone cost function,

$$c\colon \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$$

Myopic policy:

 $\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \mathsf{E}[c(Q(k+1)) \mid Q(k) = x, \ U(k) = u]$

Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)

Motivation: Average cost optimal policy is *h*-myopic, $h: \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$ is the relative value function,

$$h(x) = \inf_{U} \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta^*] dt$$

Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)

Motivation: Average cost optimal policy is *h*-myopic, $h: \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$ is the relative value function,

$$h(x) = \inf_{U} \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta^*] dt$$

Dynamic programming equation:

 $\min_{u \in \mathsf{U}_{\diamond}(x)} \mathsf{E}[h(Q(k+1)) \mid Q(k) = x, \ U(k) = u] = h(x) - c(x) + \eta^*$

Given: Convex monotone cost function,

 $c\colon \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$

Myopic policy for fluid model is stabilizing:

 $q(t) = 0 \qquad t \geq T_0$

- Chen & Yao 93 - M' 01

Example: Two station model above with linear cost,

 $c(x) = x_1 + x_2 + x_3 + x_4$

Myopic policy for CRW model: Priority to exit buffers

Myopic policy may or may not be stabilizing

Example: Two station model above with linear cost, $c(x) = x_1 + x_2 + x_3 + x_4$

Myopic policy for CRW model: Priority to exit buffers

Periodic starvation creates instability

- Kumar & Seidman 89 - Rybko & Stolyar 93

Example: Two station model above with,

$$c(x) = \frac{1}{2}[x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

Myopic policy: Approximated by linear switching curves

Myopic policy stabilizing for *diagonal* quadratic

Example: Two station model above with,

$$c(x) = \frac{1}{2}[x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

Myopic policy: Approximated by linear switching curves

Condition (V3) holds with Lyapunov function V = cFor positive constants ε and $\bar{\eta}$

 $PV(x) := \mathsf{E}[V(Q(k+1))|Q(k) = x] \le V(x) - \varepsilon ||x|| + \overline{\eta}$

Tassiulas considers myopic policy for fluid model

where $c(x) = \frac{1}{2}x^T Dx$, $D = \operatorname{diag}(d_1, \ldots, d_\ell)$

Tassiulas considers myopic policy for fluid model

Obtains negative drift: For non-zero x,

$$\langle \nabla c(x), Bu + \alpha \rangle \leq -\varepsilon \|x\|$$

Implies (V3) for MaxWeight policy

Tassiulas considers myopic policy for fluid model

Obtains negative drift: For non-zero x,

$$\langle \nabla c(x), Bu + \alpha \rangle \leq -\varepsilon \|x\|$$

Implies (V3) for MaxWeight policy

Implies (V3) for myopic policy

since myopic has minimum drift

Questions Since 1996

$$\lim_{\|x\|\to\infty} \left[\frac{J(x)}{h(x)}\right] = 1$$

Value functions for fluid and stochastic models: Quadratic growth for linear cost with similar asymptotes; Policies are similar for large state-values

Questions Since 1996

$$\lim_{\|x\|\to\infty} \left[\frac{J(x)}{h(x)}\right] = 1$$

Value functions for fluid and stochastic models: Quadratic growth for linear cost with similar asymptotes; Policies are similar for large state-values

- What is the gap between policies?
- What is the gap between value functions?
- How to translate policy for fluid model to cope with volatility?
- Connections with heavy traffic theory?

Questions Since 1996

$$\lim_{\|x\|\to\infty} \left[\frac{J(x)}{h(x)}\right] = 1$$

Value functions for fluid and stochastic models: Quadratic growth for linear cost with similar asymptotes; Policies are similar for large state-values

- What is the gap between policies?
- What is the gap between value functions?
- How to translate policy for fluid model to cope with volatility?
- Connections with heavy traffic theory?

Many positive answers in new monograph, as well as new applications for value function approximation

Today's lecture focuses on third and fourth topics

Control Techniques for Complex Networks

Draft copy April 22 2007

Ι	Mod	leling & Control	34
	4.8 4.9	MaxWeight and MinDrift	145 148
	4.104.11	Notes Exercises	152 154

В <i>М</i> -Мах Шерония Барыну в Регботанов	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Foster-Lyapunov Techniques8.1Lyapunov functions	319 . 324
	ال <i>h</i> -MaxWeigk <u>Stability & Performance</u> <u>Stability & Performance</u>

Geometric explanation

Define drift vector field (for given policy)

 $\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x] = Bu + \alpha$

MaxWeight policy:

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \langle \nabla c(x), \, \Delta(x) \, \rangle$$

with $c \, {\rm diagonal} \, {\rm quadratic}$

$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$

$$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$$

Example: Queues in tandem

Key observation: Boundaries of the state space are *repelling*

$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$

Key observation: Boundaries of the state space are repelling Consequence of vanishing partial derivatives on boundary

Given: Convex monotone function \boldsymbol{h}

Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.

Given: Convex monotone function \boldsymbol{h}

Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory

Given: Convex monotone function \boldsymbol{h}

Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory

Condition rarely holds, but we can fix that ...

Given: Convex monotone function h_0 (perhaps violating ∂ condition)

Introduce perturbation: For fixed $\theta \ge 1$ and any $x \in \mathbb{R}^{\ell}_+$

$$\tilde{x}_i := x_i + \theta(e^{-x_i/\theta} - 1), \text{ and } \tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_\ell)^T \in \mathbb{R}_+^\ell$$

Given: Convex monotone function h_0 (perhaps violating ∂ condition)

Introduce perturbation: For fixed $\theta \ge 1$ and any $x \in \mathbb{R}^{\ell}_+$

$$\tilde{x}_i := x_i + \theta(e^{-x_i/\theta} - 1), \text{ and } \tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_\ell)^T \in \mathbb{R}_+^\ell$$

Perturbed function:

$$h(x) = h_0(\tilde{x}), \qquad x \in \mathbb{R}_+^\ell$$

Convex, monotone, and boundary conditions are satisfied

h-MaxWeight Policy Perturbed linear function

 h_0 linear: *never* satisfies ∂ condition

h-myopic and h-MaxWeight polices stabilizing provided $\theta \ge 1$ is sufficiently large

- 000

 μ_2

h-MaxWeight Policy Perturbed linear function

 h_0 linear: *never* satisfies ∂ condition

h-myopic and *h*-MaxWeight polices stabilizing

provided $\theta \ge 1$ is sufficiently large

- 000

h-MaxWeight policy: serve buffer 1

---- Level sets of h

h-MaxWeight Policy Perturbed value function

 h_0 minimal fluid value function, $J(x) = \inf \int_0^\infty c(q(t;x)) dt$

 $\succ \bullet \bullet \bullet \mid \mu_1$

 \blacktriangleright ••• μ_2

h-myopic and *h*-MaxWeight polices stabilizing provided $\theta \ge 1$ is sufficiently large

h-MaxWeight Policy *Perturbed value function*

 h_0 minimal fluid value function, $J(x) = \inf \int_0^\infty c(q(t;x)) dt$

h-myopic and h-MaxWeight polices stabilizing provided $\theta \ge 1$ is sufficiently large

Resulting policy very similar to average-cost optimal policy:

Control Techniques for Complex Networks

Draft copy April 22 2007

Π	Wo	rkload	158
5	Wor	kload & Scheduling	15
	5.1	Single server queue	160
	5.2	Workload for the CRW scheduling model	163
	5.3	Relaxations for the fluid model	16

Π	I Stability & Performance	318
9	Optimization	374
10	ODE methods	436
	10.5 Safety stocks and trajectory tracking	. 462

Single example for sake of illustration:

Model of Dai & Wang

Single example for sake of illustration:

Service rate at Station i is μ_i

Homogeneous CRW model:

 $Q_{1}(k+1) - Q_{1}(k) = -S_{1}(k+1)U_{1}(k) + A_{1}(k+1)$ $Q_{2}(k+1) - Q_{2}(k) = -S_{1}(k+1)U_{2}(k) + S_{1}(k+1)U_{1}(k)$ $Q_{3}(k+1) - Q_{3}(k) = -S_{2}(k+1)U_{3}(k) + S_{2}(k+1)U_{2}(k)$ $Q_{4}(k+1) - Q_{4}(k) = -S_{2}(k+1)U_{4}(k) + S_{2}(k+1)U_{3}(k)$ $Q_{5}(k+1) - Q_{5}(k) = -S_{1}(k+1)U_{5}(k) + S_{2}(k+1)U_{4}(k)$

Station 2

•• -

Homogeneous CRW model:

 $Q_{1}(k+1) - Q_{1}(k) = -S_{1}(k+1)U_{1}(k) + A_{1}(k+1)$ $Q_{2}(k+1) - Q_{2}(k) = -S_{1}(k+1)U_{2}(k) + S_{1}(k+1)U_{1}(k)$ $Q_{3}(k+1) - Q_{3}(k) = -S_{2}(k+1)U_{3}(k) + S_{2}(k+1)U_{2}(k)$ $Q_{4}(k+1) - Q_{4}(k) = -S_{2}(k+1)U_{4}(k) + S_{2}(k+1)U_{3}(k)$ $Q_{5}(k+1) - Q_{5}(k) = -S_{1}(k+1)U_{5}(k) + S_{2}(k+1)U_{4}(k)$

Station 2

•• -

Constituency constraints: $U_i(k) \in \{0,1\}$

 $U_1(k) + U_2(k) + U_5(k) \le 1$ $U_3(k) + U_4(k) \le 1$

Station 2

.....

Station 1

 α_1

Workload (units of inventory)

 $Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$

 $Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$

Workload (units of inventory)

 $Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$ $Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$

Idleness processes:

$$\iota_1(k) = 1 - (U_1(k) + U_2(k) + U_5(k))$$

$$\iota_2(k) = 1 - (U_3(k) + U_4(k))$$

$$Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$$
$$Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$$

Idleness processes:

$$\iota_1(k) = 1 - (U_1(k) + U_2(k) + U_5(k))$$
$$\iota_2(k) = 1 - (U_3(k) + U_4(k))$$

Dynamics:

 $Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$ $Y_2(k+1) - Y_2(k) = -S_2(k+1) + 2A_1(k+1) + S_2(k+1)\iota_2(k)$

Station 2

 $lpha_1$

Workload Relaxation of N. Laws

 $Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$

with constraints on idleness process relaxed,

 $l_1(k) \in \{0, 1, 2, \dots\}$

Workload Relaxation of N. Laws

 \overline{c}

 $Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$

with constraints on idleness process relaxed,

 $l_1(k) \in \{0, 1, 2, \dots\}$

Optimization based on the effective cost,

$$(y) = \min c(x)$$

s.t. $3x_1 + 2x_2 + x_3 + x_4 + x_5 = y$
 $x \in \mathbb{Z}^5_+$ (+ buffer constraints)

- Laws 90

- Kelly & Laws 93
- Harrison, Kushner, Reiman, Williams, Dai, Bramson, ...

Optimal policy is non-idling for one-dimensional relaxation

Dynamic programing equation solved via *Pollaczek-Khintchine* formula

Heavy traffic assumptions

Load is unity for nominal model Single bottleneck to define relaxation Cost is linear, and effective cost has a unique optimizer Model sequence:

$$A^{(n)}(k) = \begin{cases} A(k) & \text{with probability } 1 - n^{-1} \\ 0 & \text{with probability } n^{-1} \end{cases}$$

Load less than unity for each *n*

$$h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$$

h-MaxWeight policy asymptotically optimal, with logarithmic regret

 $h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$

h-MaxWeight policy asymptotically optimal, with logarithmic regret

 $\hat{\eta}^* = O(n)$ optimal average cost for relaxation

$$\eta$$
 average cost under *h*-MW policy

$$h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$$

h-MaxWeight policy asymptotically optimal, with logarithmic regret

 $\hat{\eta}^* = O(n)$ optimal average cost for relaxation

$$\eta$$
 average cost under *h*-MW policy

$$\hat{\eta}^* \le \eta \le \hat{\eta}^* + O(\log(n))$$

Control Techniques for Complex Networks Dra

Draft copy April 22 2007

III	Stability & Performance	318
10	ODE methods	436
	10.5 Safety stocks and trajectory tracking	462
	10.6 Fluid-scale asymptotic optimality	467
11	Simulation & Learning	485
	11.4 Control variates and shadow functions	503
	11.5 Estimating a value function	516
	11.6 Notes	532
	11.7 Exercises	534

Conclusions

A	Mar	kov Models	538
	A.1	Every process is (almost) Markov	538
	A.2	Generators and value functions	540
	A.3	Equilibrium equations	543
	A.4	Criteria for stability	552
	A.5	Ergodic theorems and coupling	560
	A.6	Converse theorems	568

List of Figures

h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model with single bottleneck

h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model with single bottleneck

Future work

Models with multiple bottlenecks?

On-line learning for policy improvement?

Draft copy April 22 2007

II	Workload Control Ted Stigges for Complex Networks Diaft copy A	pril 22 2007
5	References	318
	5.3 Relaxations for the fluid model	436
Contro	N. Laws. Dynamic routing in queueing networks. PhD thesis,	. 462 . 467
Mod	Cambridge University, Cambridge, UK, 1990.	485
Sched		503
4.1	L. Tassiulas. Adaptive back-pressure congestion control based on	532
4.2	<i>local information</i> . 40(2):236–250, 1995.	534
II Sta Optin 9.4 9.6	L. Tassiulas and A. Ephremides. <i>Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks</i> . 1992.	34 145 148
	S. P. Meyn. Sequencing and routing in multiclass queueing networks. Part II: Workload relaxations. 2003.	152
	S. P. Meyn. Stability and asymptotic optimality of generalized	
II	<i>MaxWeight policies</i> . Submitted for publication, 2006. (To appear)	538 538
9 10	S. P. Meyn. <i>Control techniques for complex networks</i> Cambridge University Press, 2007.	540 543 552 560
		568