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Models & Background



Controlled Random-Walk Mode
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- Lippman 1975
- Henderson & M. 1997



Fluid Model & Workload

q(t) =z + Bz(t) + at,

Fluid model
captures
mean-flow:

Workload
and
load parameters:

B = E[B(k)] =

a = E[A(k)] =

t>0
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- Newell 1982, - Vandergraft 1983
- Perkins & Kumar 1989
- Chen & Mandelbaum 1991, - Cruz 1991



Value Functions

D) = - 12 2 o
J(z) = /O ~ (gt 7)) dt

Fluid value function

Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)
h() = [~ Ele(@(t; ) — n] dt

Relative value function

n= [ e(z) n(da)

= average cost
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Value Functions

3

q(t) = x+ Bz(t) + ot Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)
J(z) = /O c(q(t; 2)) dt h(z) = /O E[e(Q(t; z)) — n] dt

Fluid value function Relative value function
n= | e(@) n(do)

J(w)l _

L arge-state solidarity lim h(z)

||| —o0
Holds for wide class of stabilizing
policies, including average-cost optimal policy

-M 96, 01, ... following
-Dai 95, - Dai & M 95



Myopic Policy: Fluid Model
q(t) = = + Bx(t) + ot

a(t) = B((D) + a
Constraints: X subset of RY

U(x) feasible values of ¢(t)
when z =q(t) € X

Given: Convex monotone cost function,

c: R — R,



Myopic Policy: Fluid Model

4q(t) = BC(t) + a

Constraints: X subset of RY

U(x) feasible values of ¢(t)
when z =¢q(t) € X

Given: Convex monotone cost function,

c: R — R,

arg min g—:c(q(t)) = arg min(Ve(x), Bu + o)
ueU(x) ueU(x)



Myopic Policy: CRW Model

Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)

Constraints: X, subset of Rﬁ (lattice constraints, etc.)

Us(z) feasible values of U(k)
when z = Q(k) € X,

Given: Convex monotone cost function,

c: R — R,



Myopic Policy: CRW Model

Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)

Constraints: X, subset of Rﬁ (lattice constraints, etc.)

U.(z) feasible values of U(k)
when z = Q(k) € X,

Given: Convex monotone cost function,
c: R — R,
Myopic policy:
arg min E[c(Q(k + 1)) | Q(k) = =, U(k) = u]

ueUq ()



Myopic Policy: CRW Model

Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)

Motivation: Average cost optimal policy is h~-myopic,

h: RY — R, is the relative value function,

h(z) = inf /O E[c(Q(#; x)) — 1] dt



Myopic Policy: CRW Model

Q(k+1) — Q(k) = B(k+1)U(k)+A(k+1)

Motivation: Average cost optimal policy is h-myopic,

h: RY — Ry is the relative value function,

h(x) = inf /O E[c(Q(#; x)) — 1] dt

Dynamic programming equation:

min ER(Q(k +1)) | Q(k) =z, Uk) =u| = h(z) — c(z) + 7

u€Us ()



Fluid Model & Myopia

q(t) =z + Bz(t) + ot

t>0

: LEl I

-—

M4

— T

[roe ——

Station 1

q(0) ==z

Given: Convex monotone cost function,

C. Rﬁ_ —>R_|_

Myopic policy for fluid model is stabilizing:

q(t) =0

t

>

1o

M2

M3

|.O.
Station 2
«

- Chen & Yao 93
-M" 01
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Myopia & Instability

Station 1 Station 2

- 7Y | T e— 13 EW

3

Myopic policy may or may not be stabilizing

Example: Two station model above with linear cost,
c(r) =x1+ 9 + 3+ 24

Myopic policy for CRW model: Priority to exit buffers

- Kumar & Seidman 89
- Rybko & Stolyar 93
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Myopic policy may or may not be stabilizing

Myopia & Instability

3

Example: Two station model above with linear cost,
c(r) =x1+ 9 + 3+ 24

Myopic policy for CRW model: Priority to exit buffers

4 Poisson Arrivals and Service 4 Fluid Arrivals and Service
800 800
600 600
400 . 400
200 / 200
Y 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Periodic starvation creates instability - Kumar & Seidman 89

- Rybko & Stolyar 93
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Myopia & Instability

Quadratic Cost R | :W

Station 1 Station 2
3

Myopic policy stabilizing for diagonal quadratic

Example: Two station model above with,
c(z) = %[az% + x% + :U% + 33421]

Myopic policy: Approximated by linear switching curves

- Tassiulas & Ephremides 92



Myopia & Instability = =

Quadratic Cost R | :W

Station 1 Station 2

Myopic policy stabilizing for diagonal quadratic

Example: Two station model above with,
c(z) = %[az% + x% + :U% + 33421]

Myopic policy: Approximated by linear switching curves

Condition (V3) holds with Lyapunov function V = ¢
For positive constants ¢ and 7

PV (z) :=E[V(Q(k +1))|IQ(k) = 2] < V(x) —el|z| + 7

- Tassiulas & Ephremides 92



MaxWeight Policy

: LEl p1
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22k
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M2

M3

Tassiulas considers myopic policy for fluid model

where c(x)

arg min(Ve(x), Bu+ a)
u€Uq ()

|.O.
Station 2
«

A\— subject to lattice constraints

=32"Dx, D =diag(dy,...,d)

- Tassiulas & Ephremides 92
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MaxWeight Policy

3

Tassiulas considers myopic policy for fluid model

arg min(Ve(x), Bu+ a)
u€Uq ()

A\— subject to lattice constraints

ODbtains negative drift: For non-zero z,
(Ve(z), But+a) < —ellz

Implies (V3) for MaxWeight policy
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MaxWeight Policy

| | MSEW@

Station 1 Station 2

Tassiulas considers myopic policy for fluid model

arg min(Ve(x), Bu+ a)
u€Uq ()

A\— subject to lattice constraints

ODbtains negative drift: For non-zero z,
(Ve(z), But+a) < —ellz

Implies (V3) for MaxWeight policy

Implies (V3) for myopic policy

since myopic has minimum drift
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Quadratic growth for linear cost with similar asymptotes;
Policies are similar for large state-values



Questions Since 1996 im [Z Ewﬁ _

][ —o00

Value functions for fluid and stochastic models:
Quadratic growth for linear cost with similar asymptotes;
Policies are similar for large state-values

® Whatis the gap between policies?
® |Whatis the gap between value functions?
® How to translate policy for fluid model to cope with volatility?

® (Connections with heavy traffic theory?



Questions Since 1996 im [Z Ewﬁ _

][ —o00

Value functions for fluid and stochastic models:
Quadratic growth for linear cost with similar asymptotes;
Policies are similar for large state-values

® How to translate policy for fluid model to cope with volatility?

® (Connections with heavy traffic theory?

Many positive answers in new monograph, as well as new
applications for value function approximation

Today’s lecture focuses on third and fourth topics
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Why Does MW Work?

Geometric explanation

Define drift vector field (for given policy)
A(z) = E[Q(k +1) — Q(k) | Q(k) =] = Bu+a

MaxWeight policy:
arg min(Ve(z), A(z))
u€Uq ()
with ¢ diagonal quadratic



Why Does MW Work?

Example: Queuesintandem —  —=ullw | —Tww]|—r
o A
Ax) = (_z;)
\ MaxWeight policy: serve buffer 1
~A =)\
Az) = (—Mﬂa ) T



Why Does MW Work?

Example: Queues in tandem T ] e |——

T2 A

Alz) = ()
\ MaxWeight policy: serve buffer 1

Key observation: Boundaries of the state space are repelling



Why Does MW Work?

Example: Queues in tandem T ] e |——

T2 A Ax) = (_i;)
\ MaxWeight policy: serve buffer 1
o) Level sets of ¢ (diag quadratic)
_ (—m+
A) = (at) \

Key observation: Boundaries of the state space are repelling

Consequence of vanishing partial derivatives on boundary



h-MaxWeight Policy \

Given: Convex monotone function h
Boundary conditions

0
8—xjh () =0 when x; = 0.



h-MaxWeight Policy \

Aw) = (rter) \
Aw) = (M)
Given: Convex monotone function h
Boundary conditions
¢ h(x)=0 h 0
Eu— £r) = wihnen r, = u.
8xj J

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory



h-MaxWeight Policy \

Aw) = (rter) \
Aw) = (M)
Given: Convex monotone function h
Boundary conditions
¢ h(x)=0 h 0
Eu— £r) = wihnen r, = u.
8xj J

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory

Condition rarely holds, but we can fix that ...



h-MaxWeight Policy \

Given: Convex monotone function hy (perhaps violating 9 condition)
Introduce perturbation: For fixed # > 1 andany z € Rﬁ

Z; ::xi—l—H(e_“"i/@—l), and T = (21, . . . ,Z%g)TERﬂ_



h-MaxWeight Policy \

Given: Convex monotone function hy (perhaps violating 9 condition)
Introduce perturbation: For fixed # > 1 andany z € Rﬁ
10y 1= a5 —I—H(G_xi/@ —1), and = (Z1,...,34)" € Rﬁ

Perturbed function:

h(z) = ho(Z), zcRL

Convex, monotone, and boundary conditions are satisfied
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h-MaxWeight Policy T P e P
Perturbed linear function

ho linear: never satisfies O condition

h-myopic and h-MaxWeight polices stabilizing
provided 6 > 1 is sufficiently large



a1

h-MaxWeight Policy e ] —
Perturbed linear function

ho linear: never satisfies 0 condition

h-myopic and hA-MaxWeight polices stabilizing
provided 6 > 1 is sufficiently large

Example: Tandem queues
h-MaxWeight policy: serve buffer 1

Level sets of h
T2 A

\Aw) — (o) 7=~ 0log (1)
i . G, WO SO, S S
= Al) = (55T \
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h-MaxWeight Policy e e —
Perturbed value function

ho minimal fluid value function, J(z) = inf/oooc(q(t;fc))dt

h-myopic and h-MaxWeight polices stabilizing
provided 6 > 1 is sufficiently large



aq

h-MaxWeight Policy B I e
Perturbed value function

ho minimal fluid value function, J(z) = inf/oooc(q(t;x))dt

h-myopic and h-MaxWeight polices stabilizing
provided 6 > 1 is sufficiently large

Resulting policy very similar to average-cost optimal policy:

A T2
1 Optimal policy: serve buffer 1
30

20

10

10 20 30 40 50 60 70 80 90 100
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Relaxations & Asymptotic Optimality

Single example for sake of illustration:

L

> 000000

a'p

> 00

"—7_

0 T

Station 1

Model of Dai & Wang

Station 2

L




Relaxations & Asymptotic Optimality

Single example for sake of illustration:

L

> 000000

ap

Station 1

=

>

Station 2

.

Assume: Homogeneous model

Service rate at Station ¢ is u;
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Relaxations & Asymptotic Optimality L

Homogeneous CRW model:

O - — N~

/N /N /N /N I/

N— N N N N

Y N e e S

N— N N N N

/N /N /N /N o/

N— N N N
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Relaxations & Asymptotic Optimality L

Homogeneous CRW model:

/N N /N I/
e X2 X X
S— N N
— &  n <t
B B g B
/N /N /N I/
- - -
- + + + +
= L e

O - — N~

/N /N /N /N I/

N— N N N N

Y N e e S

N— N N N N

/N /N /N /N o/

N— N N N

/N /N /N /N I/

N— N N N

Ui(k) € {0,1}

Constituency constraints:

Us(k) + Us(k) <1

Ui(k) + Uz (k) + Us(k) <1



Relaxations & Asymptotic Optimality :
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Workload (units of inventory)

Yi(k)
Ya (k)

3Q1(k) +2Q2(k) + Q3(k) + Qu(k) + Q5(k)
2(Q1(k) + Q2(k) + Q3(k)) + Qu(k)

Station 1

Station 2




Relaxations & Asymptotic Optimality :

(%1
—> 000000

<~

Workload (units of inventory)

Yi(k) = 3Q1(k) + 2Q2(k) + Q3(k) + Qa(k) + Q5 (k)
Yo(k) = 2(Q1(k) + Qa2(k) + Q3(k)) + Qu(k)

|dleness processes:

Li(k) =1 — (Ur(k) + Ua(k) + Us(k))
La(k) =1 — (Us(k) + Us(k))

Station 1

Station 2




Relaxations & Asymptotic Optimality : T

v -
Oél_» .mZI Station 1 jJ
. . IZ
Workload (units of inventory)

Yi(k) = 3Q1(k) + 2Q2(k) + Q3(k) + Qa(k) + Q5 (k)
Yao(k) = 2(Q1(k) + Q2(k) + Q3(k)) + Qu(k)

Idleness processes:

Li(k) =1— (Ui(k) + Ua(k) + Us(k))

La(k) =1 — (Us(k) + Us(k))

Dynamics:

Vilk+1)=Yi(k)=-S1(k+1)+3A1(k+1) + Si(k+1)t1(k)

Yo(k+1) — Ya(k) = =S2(k+ 1) +2A41(k+1) + Sa(k+1)La2(k)



Relaxations & Asymptotic Optimality :
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Workload Relaxation of N. Laws

Station 1

Station 2

-
=
— |

Vitk+1)—Yi(k) = =S1(k+1)+341(k+1) + Si(k+1)L1(k)

with constraints on idleness process relaxed,

Ll(k) €{0,1,2,...}

- Laws 90
- Kelly & Laws 93



Relaxations & Asymptotic Optimality : o
oo -

S ] (
:I Station 1 IZ

Station 2

Workload Relaxation of N. Laws

Vilk+1) —Yi(k)==S1(k+1)+34A1(k+1) + Si(k+1)t1(k)
with constraints on idleness process relaxed,

Ll(k) €{0,1,2,...}

Optimization based on the effective cost,

c(y) =min c(x)

s.t. 3x1+2x2+x3+24+25=1y
- Laws 90

xr € Zi (+ buffer constraints) - Kelly & Laws 93

- Harrison, Kushner, Reiman,
Williams, Dai, Bramson, ...



Asymptotic Optimality

Optimal policy is non-idling for one-dimensional relaxation

Dynamic programing equation solved
via Pollaczek-Khintchine formula



Asymptotic Optimality

Heavy traffic assumptions

Load is unity for nominal model

Single bottleneck to define relaxation

Cost is linear, and effective cost has a unique optimizer
Model sequence:

A(k) with probability 1 — n ™1

A (k) = 1

0 with probability n~

Load less than unity for each n



Asymptotic Optimality

h-MaxWeight policy asymptotically optimal,
with logarithmic regret



Asymptotic Optimality

h-MaxWeight policy asymptotically optimal,
with logarithmic regret

n* = O(n) optimal average cost for relaxation

1 average cost under h-MW policy



Asymptotic Optimality

h-MaxWeight policy asymptotically optimal,
with logarithmic regret

n* = O(n) optimal average cost for relaxation

1 average cost under h-MW policy
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Conclusions

h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy
mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model
with single bottleneck



Conclusions

h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy
mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model
with single bottleneck

Future work
Models with multiple bottlenecks?

On-line learning for policy improvement?
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