Spectrum Management: Complexity, Duality and Approximation

Zhi-Quan Luo

Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455

Shuzhong Zhang

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong

Outline

- Motivation: Wireless/Wireline Multiuser Systems
- Problem Statement: Continuous and Discrete Versions
- Game Theoretic Approach: Nash equilibriums
- Optimality of FDMA Solutions
- Complexity Analysis: NP-hardness
- Approximation Algorithms
- Numerical Experiments
- Extensions

Role of optimization:

- characterizing problem complexity and the structure of optimal solution;
- providing efficient algorithms for distributed maximization with quality assurance.

Motivation: Spectrum Management

- With the proliferation of various radio devices and services, multiple systems sharing a common spectrum must coexist
 - Wireline: unbundled DSL Wireless: 802.11, Bluetooth, cognitive radio, ...
- Static Spectrum Management: FDMA
 - advantage: orthogonal transmission, zero interference
 - drawback: high system overhead and low bandwidth utilization

Motivation: Spectrum Management

- With the proliferation of various radio devices and services, multiple systems sharing a common spectrum must coexist
 - Wireline: unbundled DSL Wireless: 802.11, Bluetooth, cognitive radio, ...
- Static Spectrum Management: FDMA
 - advantage: orthogonal transmission, zero interference
 - drawback: high system overhead and low bandwidth utilization

Motivation: Dynamic Spectrum Management

- Dynamic Spectrum Management: users access a common spectrum simultaneously
 - Each user's performance depends on not only the power allocation (across spectrum) of his own, but also those of other users in the system
 - \Rightarrow Proper spectrum management is needed

Dynamic Spectrum Management - A Dangerous Business

Multi-party Communication

Formulation: Spectrum Management

- K users sharing a common frequency band $f \in \Omega$; user k's power spectral density $s_k(f) \ge 0, \quad \int_\Omega s_k(f) df \le P_k$
- User k's utility:

$$u_k = \int_{\Omega} R_k(s_1(f), \dots, s_K(f), f) df, \ R_k(\cdot)$$
: Lesbegue measurable, non-concave

• Social optimum: maximizing total system utility $H(u_1, ..., u_K)$

$$\begin{array}{ll} \max & H(u_1,\cdots,u_K) \\ \text{s.t.} & u_1 = \int_{\Omega} R_1(s_1(f),\ldots,s_K(f),f) df \\ & \vdots \\ & u_K = \int_{\Omega} R_K(s_1(f),\ldots,s_K(f),f) df \\ & s_k(f) \ge 0, \int_{\Omega} s_k(f) df \le P_k, \ k = 1,\ldots,K, \end{array}$$

 (P_c) nonconvex infinite dimensional

Formulation: Spectrum Management

• Discretized frequency band $\Omega = \{1, 2, ..., N\}$; Lebesque measure \rightarrow discrete uniform measure; user k's power allocation vector

$$s_k^n \ge 0, \hspace{0.2cm} rac{1}{N} \sum_{n=1}^N s_k^n \le P_k$$

- User k's utility: $u_k = \frac{1}{N} \sum_{n=1}^{N} R_k(s_1^n, \dots, s_K^n, n/N), \quad R_k(\cdot)$: non-concave
- Social optimum: maximizing total system utility $H(u_1, ..., u_K)$

$$\begin{array}{ll} \max & H(u_{1},\cdots,u_{K}) \\ \text{s.t.} & u_{1} = \frac{1}{N} \sum_{n=1}^{N} R_{1}(s_{1}^{n},\ldots,s_{K}^{n},n/N) \\ & \vdots \\ & u_{K} = \frac{1}{N} \sum_{n=1}^{N} R_{K}(s_{1}^{n},\ldots,s_{K}^{n},n/N) \\ & \frac{1}{N} \sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \, s_{k}^{n} \geq 0, \, k = 1, ..., K, \end{array}$$

 (P_d^N)

nonconvex finite dimensional

• Intuition: $(P_d^N) \to (P_c)$ as $N \to \infty$.

7

System Utility Functions

• Sum-utility (arithmetic mean)

$$H_1(u_1,\ldots,u_K)=rac{1}{K}(u_1+\cdots+u_K)$$

• Proportional fairness (geometric mean)

$$H_2(u_1,\ldots,u_K) = \left(\prod_{k=1}^K u_k\right)^{\frac{1}{K}} \quad \Leftrightarrow \quad \frac{1}{K}(\log u_1 + \cdots + \log u_K)$$

• Harmonic mean utility

$$H_3(u_1,\ldots,u_K) = rac{K}{u_1^{-1}+\cdots+u_K^{-1}}$$

• Min-utility

$$H_4(u_1,\ldots,u_K) = \min_{1\leq k\leq K} u_k$$

• Ordering of system utility functions: $H_1 \ge H_2 \ge H_3 \ge H_4$; Fairness ranks in reverse order.

Channel Model

- K users, N frequency tones; channels static, frequency selective
- Each user acts both as a transmitter and as a receiver, indexed by $\{1, 2, ..., K\}$. In this way, a physical user may act as transmitter k and receiver l, with $l \neq k$.

Assume three transmitters. Then transmitter 1's data rate at the frequency tone n is

information rate =
$$R_1^n = \log(1 + SNR_n) = \log\left(1 + \frac{s_1^n}{\sigma_1^n + \alpha_{12}^n s_2^n + \alpha_{13}^n s_3^n}\right)$$

Social optimum: maximization of sum-rate

Assume two users.

$$\begin{split} \text{maximize} \quad & \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \frac{s_1^n}{\sigma_1^n + \alpha_{12}^n s_2^n} \right) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \frac{s_2^n}{\sigma_2^n + \alpha_{21}^n s_1^n} \right) \\ \text{subject to} \quad & \frac{1}{N} \sum_{n=1}^{N} s_1^n \le P_1, \ & \frac{1}{N} \sum_{n=1}^{N} s_2^n \le P_2, \\ & s_1^n \ge 0, \ & s_2^n \ge 0, \ & \forall n = 1, 2, ..., N, \end{split}$$

where P_i is user *i*'s total available power.

- The problem is nonconvex.
- Interested in a distributed algorithm which requires little user coordination.

Connection to the Spectrum Management Formulation

This is a special case of

$$\begin{array}{ll} \max & H(u_{1},\cdots,u_{K}) \\ \text{s.t.} & u_{1} = \frac{1}{N} \sum_{n=1}^{N} R_{1}(s_{1}^{n},\ldots,s_{K}^{n}) \\ & \vdots \\ & u_{K} = \frac{1}{N} \sum_{n=1}^{N} R_{K}(s_{1}^{n},\ldots,s_{K}^{n}) \\ & \frac{1}{N} \sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \ s_{k}^{n} \geq 0, \ k = 1,\ldots,K, \end{array}$$

 (P_d^N) nonconvex finite dimensional

• Users' utilities:

$$u_{1} = \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \frac{s_{1}^{n}}{\sigma_{1}^{n} + \alpha_{12}^{n} s_{2}^{n}} \right), \quad u_{2} = \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \frac{s_{2}^{n}}{\sigma_{2}^{n} + \alpha_{21}^{n} s_{1}^{n}} \right).$$

• System utility: $H(u_{1}, u_{2}) = u_{1} + u_{2};$ • $R_{k}^{n}(s_{1}^{n}, s_{2}^{n}) = \log \left(1 + \frac{s_{1}^{n}}{\sigma_{1}^{n} + \alpha_{12}^{n} s_{2}^{n}} \right)$

Social Optimum: *K* **User Case**

• Upon normalizing the channel coefficients, we obtain

$$R_k^n(s_1^n, \dots, s_K^n) := \log\left(1 + \frac{s_k^n}{\sigma_k^n + \sum_{l \neq k} \alpha_{lk}^n s_l^n}\right), \quad (1)$$

where $\sigma_k^n = N_0/|h_{k,k}^n|^2$, $\alpha_{lk}^n = |h_{l,k}^n|^2/|h_{k,k}^n|^2$.

- Frequency flat: $h_{l,k}^n$ independent of n.
- The sum-rate maximization problem can be written as follows:

$$\begin{array}{ll} \text{maximize} & \frac{1}{NK} \sum_{k=1}^{K} \sum_{n=1}^{N} \log \left(1 + \frac{s_k^n}{\sigma_k^n + \sum_{l \neq k} \alpha_{lk}^n s_l^n} \right) \\ \text{subject to} & \frac{1}{N} \sum_{n=1}^{N} s_k^n \leq P_k, \quad s_k^n \geq 0 \quad n \in \mathcal{N}, \ k \in \mathcal{K}. \end{array}$$

$$(2)$$

where $\mathcal{N} := \{1, 2, ..., N\}$, $\mathcal{K} := \{1, 2, ..., K\}$.

Key Issues in Spectrum Management

Main challenges:

- Nonconvexity
- Problem size ($N \ge 4000, K \ge 50$)
- Distributed optimization

Main goals:

- Structural property of optimal solutions
- Complexity of optimal spectrum management
- Approximation algorithms (i.e., finding ϵ -optimal solution)
- Game theoretic formulations

Existing Work

Mostly studied in the engineering literature

- Nash equilibrium formulation, convergence analysis
 - Yu-Ginis-Cioffi (2002)
 - Yamashita-L. (2004)
 - L.-Pang (2006)
 - Huang-Berry-Honig (2006)
 - Cendrillon-Huang-Chiang-Moonen (2007)
 - ..
- Sum-rate maximization
 - Yu-Lui-Cendrillon, Chan-Yu (2004/2006)
 - Cendrillon-Yu-Moonen-Verliden-Bostoen (2006)

- ...

- Characterizing optimal solutions, complexity analysis
 - Etkin-Parekh-Tse (2006)
 - Hayashi-L. (2007)

Social Optimum: FDMA Solutions

FDMA solution set:

$$\mathcal{S} = \begin{cases} \{\mathbf{s} \ge 0 \mid s_k^n s_l^n = 0, \ \forall \ k \ne l, \ \forall \ n\} & \text{discrete} \\ \{\mathbf{s}(f) \ge 0 \mid s_k(f) s_l(f) = 0, \ \forall \ k \ne l, \ \forall \ f\} & \text{continuous.} \end{cases}$$

• FDMA solutions are *not* necessarily the vertex solutions.

When is FDMA Optimal?

Theorem 1 (Hayashi-L. (2007)) Suppose that K = 2, and each user uses at least $C \ge 2$ tones. If

$$\alpha_{12}^n \alpha_{21}^n > \frac{1}{4} \left(1 + \frac{1}{C-1} \right)^2$$

for all $n \in \mathcal{N}$, then the global maximum of sum-rate maximization problem (2) is FDMA.

- The proof relies on the strict quasi-concavity of the sum-rate function at each tone.
- Etkin-Parekh-Tse (2006) showed that in the frequency flat case ($\alpha_{ij}^n = \alpha_{ij}$, independent of n), FDMA is optimal when

 $\alpha_{12}\alpha_{21} > 1.$

When is FDMA Optimal?

Theorem 2 (Hayashi-L. (2007)) Any global maximum of problem (2) must be FDMA, provided that

$$\alpha_{lk}^n > \frac{1}{2} \quad \text{and} \quad \alpha_{lk}^n \alpha_{kl}^n > \frac{1}{4} \left(1 + \frac{1}{C-1} \right)^2$$

for all $n \in \mathcal{N}$ and $(k, l) \in \mathcal{K} \times \mathcal{K}$ with $k \neq l$.

Main message: strong interference leads to FDMA.

When is FDMA Optimal?

Theorem 3 (Hayashi-L. (2007)) Let us denote

$$\mathbf{P}_0 := \min_{k \in \mathcal{K}} P_k, \quad \sigma_M := \max_{\substack{(n,k) \in \mathcal{N} imes \mathcal{K} \ k \neq l}} \sigma_k^n, \ A_0 := \min_{\substack{(n,k,l) \in \mathcal{N} imes \mathcal{K} imes \mathcal{K} \ k \neq l}} lpha_{lk}^n lpha_{kl}^n.$$

lf

$$\mathbf{P}_0 \ge \left(N - (K-1)C\right) \left(\frac{1}{A_0} + \frac{1}{\sqrt{A_0}} + 1\right) \sigma_M,\tag{3}$$

then there exists a local maximum of sum-rate maximization problem (2) that is FDMA.

• Sufficient power budget also leads to FDMA.

FDMA Optimality

$$\begin{array}{ll} \max & H_1(u_1,\cdots,u_K) \\ \text{s.t.} & u_1 = \int_{\Omega} R_1(s_1(f),\ldots,s_K(f)) df \\ & \vdots \\ & u_K = \int_{\Omega} R_K(s_1(f),\ldots,s_K(f)) df \\ & s_k(f) \geq 0, \int_{\Omega} s_k(f) df \leq P_k, \ k = 1,\ldots,K, \end{array}$$

$$\begin{array}{ll} \max & H_1(u_1, \cdots, u_K) \\ \text{s.t.} & u_1 = \int_{\Omega} R_1(s_1(f), \dots, s_K(f)) df \\ & \vdots \\ & u_K = \int_{\Omega} R_K(s_1(f), \dots, s_K(f)) df \\ & s_k(f) s_l(f) = 0, \, s_k(f) \ge 0, \, \int_{\Omega} s_k(f) df \le P_k, \, \forall \, k, \end{array}$$

Finding an Optimal FDMA Solution?

• Let us denote the set of FDMA solutions by

$$\mathcal{S} = \{ \mathbf{s} \ge 0 \mid s_k^n s_l^n = 0, \ \forall \ k \neq l, \ \forall \ n \}.$$

• Then, the optimal FDMA frequency allocation problem can be described as follows:

$$\begin{array}{ll} \underset{\mathbf{s}}{\text{maximize}} & \frac{1}{NK} \sum_{k=1}^{K} \sum_{n=1}^{N} \log \left(1 + \frac{s_k^n}{\sigma_k^n} \right) \\ \text{subject to} & \mathbf{s} \in \mathcal{S}, \quad \frac{1}{N} \sum_{n=1}^{N} s_k^n \leq P_k, \quad k = 1, \dots, K. \end{array}$$

where s denotes the (NK)-dimensional vector with entries equal to s_l^n .

• Note that there is no interference in the sum-rate function (5).

Complexity Analysis: NP-hardness

Theorem 4 (Hayashi-L. (2007)) For K = 2, the optimal bandwidth allocation problem (5) is NP-hard. Thus, the general sum-rate maximization problem (2) is also NP-hard, even in the two-user case.

- The proof consists of reducing the so-called **equipartition** problem to (5).
- Specifically, given a set of N (even) positive integers, $a_1, a_2, ..., a_N$, the equipartition problem asks: does there exist a subset $T \subset \{1, 2, ..., N\}$ of size |T| = N/2 such that

$$\sum_{n \in T} a_n = \sum_{n \notin T} a_n = \frac{1}{2} \sum_{n=1}^N a_n ?$$

- The **equipartition** problem is known to be NP-complete.
- Finding optimal FDMA solution is hard. What do we do now?

Further Complexity Results

Complexity of the discrete resource management problem (P_d^N) (L.-Zhang (2007))

Utility Function Problem Class	Sum-Rate H ₁ FDMA Soln	Sum-Rate H ₁ (arithmetic mean)	Proportional Fairness H ₂ (geometric mean)	Harmonic mean H ₃	Min-Rate H ₄
K=1, N arbitrary	Convex Opt (Waterfilling)	Convex Opt (Waterfilling)	Convex Opt (Waterfilling)	Convex Opt (Waterfilling)	Convex Opt (Waterfilling)
K≥2 and fixed, N arbitrary	NP-hard	NP-hard	NP-hard	NP-hard	NP-hard
N>2 and fixed, K arbitrary	Strongly NP-hard	Strongly NP-hard	NP-hard	Strongly NP-hard	Strongly NP-hard
N=1, K arbitrary	Linear time solvable	Strongly NP-hard	Convex Opt	Convex Opt	LP

- Reduction from partition problem and 3-coloring problem
- The status of N = 2 not resolved yet.

Optimal FDMA Solution?

• Let us denote the set of FDMA solutions by

$$\mathcal{S} = \{ \mathbf{s} \ge 0 \mid s_k^n s_l^n = 0, \ \forall \ k \neq l, \ \forall \ n \}.$$

• Then, the optimal FDMA frequency allocation problem can be described as follows:

$$\begin{array}{ll} \underset{\mathbf{s}}{\text{maximize}} & \frac{1}{NK} \sum_{k=1}^{K} \sum_{n=1}^{N} \log\left(1 + \frac{s_k^n}{\sigma_k^n}\right) \\ \\ \text{subject to} & \mathbf{s} \in \mathcal{S}, \ \sum_{n=1}^{N} s_k^n \leq P_k, \ k = 1, \dots, K. \end{array}$$

where s denotes the (NK)-dimensional vector with entries equal to s_l^n .

• Note that there is no interference in the sum-rate function (5).

Finding an Approximate FDMA Solution

- Dual problem is convex and decomposes across tones
- Dual function

$$d(\boldsymbol{\lambda}) := \max_{\boldsymbol{s} \in \mathcal{S}} \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \log \left(1 + \frac{s_k^n}{\sigma_k^n} \right) - \sum_{k=1}^{K} \lambda_k \left(\sum_{n=1}^{N} s_k^n - P_k \right) \right)$$
$$= \sum_{k=1}^{K} \lambda_k P_k + \sum_{n=1}^{N} \max_{\substack{0 \le s_i^n \le P_i \\ s_i^n s_j^n = 0, \ i \ne j}} \sum_{k=1}^{K} \left(\log \left(1 + \frac{s_k^n}{\sigma_k^n} \right) - \lambda_k s_k^n \right)$$
(5)

• The inner maximization in (5) can be solved by allocating each tone to the user which can provide the maximum shadow rate $\log(1 + s_k^n / \sigma_k^n) - \lambda_k s_k^n$ on that tone.

Finding an Approximate FDMA Solution

• Maximum shadow rate for user k at tone n is given by

$$\max_{0 \le s_k^n \le P_k} \left(\log \left(1 + \frac{s_k^n}{\sigma_k^n} \right) - \lambda_k s_k^n \right) = \begin{cases} \lambda_k \sigma_k^n - \log(\lambda_k \sigma_k^n) - 1, & 0 < \lambda_k \sigma_k^n \le 1, \\ 0, & \lambda_k \sigma_k^n > 1 \\ \infty, & \lambda_k < 0, \end{cases}$$

where the optimal power level is

$$s_k^n = \mathcal{P}_k(\lambda_k^{-1} - \sigma_k^n). \tag{6}$$

• Thus, the dual function (5) can be written analytically as

$$d(\boldsymbol{\lambda}) = \sum_{k=1}^{K} \lambda_k P_k + \sum_{n=1}^{N} \max_{k:\lambda_k \sigma_k^n \le 1} \left(\lambda_k \sigma_k^n - \log(\lambda_k \sigma_k^n) - 1 \right).$$
(7)

Finding an Approximate FDMA Solution

- For each n, the maximum in (7) is attained at the user k for which $\lambda_k \sigma_k^n$ is smallest.
- Then a subgradient of $d(\boldsymbol{\lambda})$ is given by

$$abla d(oldsymbol{\lambda}) = \left(P_1 - \sum_{n \in \mathcal{N}_1(oldsymbol{\lambda})} s_1^n, \ P_2 - \sum_{n \in \mathcal{N}_2(oldsymbol{\lambda})} s_2^n, \ ..., \ P_K - \sum_{n \in \mathcal{N}_K(oldsymbol{\lambda})} s_K^n
ight)^T$$

where we denote the set of tones assigned to user k by $\mathcal{N}_k(\lambda)$. Notice that the components of subgradient $\nabla d(\lambda)$ correspond to each user's unused power (or deficit power if negative).

• The dual minimization problem is given by

which is convex and solvable in polynomial time (e.g., using ellipsoid algorithm).

Duality Gap

- Recall the primal sum-rate maximization problem is NP-hard, implying there is a **positive duality gap.**
- Dual optimality: $\mathbf{0} \in \partial d(\boldsymbol{\lambda})$.

Theorem 5 Let $\lambda^* \ge 0$ and $s^* \ge 0$ be the limit points generated by the dual decomposition algorithm. If there holds

$$rac{1}{N}\sum_{n=1}^N s_k^n \leq P_k, \quad oldsymbol{\lambda}_k^*\left(rac{1}{N}\sum_{n=1}^N s_k^n - P_k
ight) = 0, \quad orall \ k \in \mathcal{K},$$

then the duality gap is zero and \mathbf{s}^* is a global optimal solution of the bandwidth allocation problem.

In other words, primal feasibility ensures zero duality gap.

• This holds true if $\partial d(\lambda)$ is singleton.

Constructing an Approximate Primal Optimal Solution

- When $\partial d(\lambda)$ is **not** singleton, primal feasibility cannot be attained and there is a positive duality gap.
- However, we can further "split the tones" and construct a primal feasible solution for a more refined discretized primal problem with zero duality gap.

Zero duality gap, primal FDMA feasibility achieved via LP

Approximation Quality

Main Consequences (L.-Zhang, (2007)):

- The nonconvex continuous optimal FDMA spectrum allocation problem and its dual are equivalent. The duality gap is zero.
- For each $\epsilon > 0$, we can find an ϵ -optimal solution in $Poly(K, \epsilon)$ time.

$$\begin{array}{ll} \max & H_1(u_1,\cdots,u_K) \\ \text{s.t.} & u_1 = \int_{\Omega} R_1(s_1(f),\ldots,s_K(f)) df \\ & \vdots \\ & u_K = \int_{\Omega} R_K(s_1(f),\ldots,s_K(f)) df \\ & s_k(f) s_l(f) = 0, \, s_k(f) \geq 0, \, \int_{\Omega} s_k(f) df \leq P_k, \, \forall \, k, \end{array}$$

$$\min_{\boldsymbol{\lambda} \ge 0} \max_{\substack{s_k(f) \ge 0\\s_k(f)s_l(f) = 0,}} \sum_{k=1}^K \int_{\Omega} \left(\left(1 + \frac{s_k(f)}{\sigma_k(f) + \sum_{j \ne k} \alpha_{kj} s_j(f)} \right) - \lambda_k s_k(f) \right) df - \lambda_k P_k \quad (D_c)$$

Key Step

 $\bullet\,$ For a Lebesgue integrable vector function R(s(f),f) , we have in general

$$rac{1}{N}\sum_{n=1}^N R(s(n/N),n/N)
eq \int_\Omega R(s(f),f)df,\quad N o\infty.$$

• However, we show there exists some piecewise constant function s^n (not necessarily equal to s(n/N), such that

$$\left\|\frac{1}{N}\sum_{n=1}^{N}R(\boldsymbol{s}^{n},n/N)-\int_{\Omega}R(\boldsymbol{s}(f),f)df\right\|=O\left(\frac{1}{\sqrt{N}}\right).$$

- This implies that the gap between (P_c) and (P_d^N) is $O(1/\sqrt{N})$.
- $O(1/\sqrt{N})$ can be improved to O(1/N) for frequency flat case.

Key Observation

$$\begin{array}{ll} \max & H(u_{1},\cdots,u_{K}) \\ \text{s.t.} & u_{1} = \frac{1}{N} \sum_{n=1}^{N} R_{1}(s_{1}^{n},\ldots,s_{K}^{n},n/N) \\ & \vdots \\ & u_{K} = \frac{1}{N} \sum_{n=1}^{N} R_{K}(s_{1}^{n},\ldots,s_{K}^{n},n/N) \\ & \frac{1}{N} \sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \, s_{k}^{n} \geq 0, \, k = 1,\ldots,K, \end{array}$$

 \Downarrow

$$\begin{array}{ll} \max & H(u_1,\cdots,u_K) \\ \text{s.t.} & u_1 = \int_\Omega R_1(s_1(f),\ldots,s_K(f),f)df \\ & \vdots \\ & u_K = \int_\Omega R_K(s_1(f),\ldots,s_K(f),f)df \\ & s_k(f) \geq 0, \int_\Omega s_k(f)df \leq P_k, \ k=1,\ldots,K, \end{array}$$

Extensions

• It is possible to show that, without FDMA constraint,

$$\begin{array}{ll} \text{maximize} & \sum_{k=1}^{K} \int_{0}^{1} \left(1 + \frac{s_{k}(f)}{\sigma_{k}(f) + \sum_{j \neq k} \alpha_{kj} s_{j}(f)} \right) df \\ \text{subject to} & \int_{0}^{1} s_{k}(f) df \leq P_{k}, \ s_{k}(f) \geq 0, \ \forall k \in \mathcal{K}. \end{array}$$

has the same optimal value as its dual

$$\min_{\boldsymbol{\lambda} \ge 0} \max_{s_k(f) \ge 0} \sum_{k=1}^K \int_0^1 \left(\left(1 + \frac{s_k(f)}{\sigma_k(f) + \sum_{j \ne k} \alpha_{kj} s_j(f)} \right) - \lambda_k s_k(f) \right) df - \lambda_k P_k$$

• Asymptotic strong duality: This suggests, for the finite tone case, the duality gap decreases to zero.

Duality Gap $\rightarrow 0$

Lyapunov Theorem

Let u be a non-atomic measure on a Borel field \mathcal{B} generated from subsets of a space Ω . Let $g_i(s(\cdot), \cdot) : \Re^2 \to \Re_+$ be compatible with \mathcal{B} -measurable function (i.e., if $s(\cdot)$ is \mathcal{B} -measurable then $g_i(s(\cdot), \cdot)$ is \mathcal{B} -measurable), i = 1, ..., m. Then,

Implications of Lyapunov Theorem

$$v(\mathbf{P}) = \max \quad \frac{1}{K}(u_1 + \dots + u_K)$$

s.t.
$$u_1 = \int_{\Omega} R_1(s_1(f), \dots, s_K(f)) df$$

:
$$u_K = \int_{\Omega} R_K(s_1(f), \dots, s_K(f)) df$$
$$s_k(f) \ge 0, \int_{\Omega} s_k(f) df \le P_k, \ k = 1, \dots, K,$$

- $v(\mathbf{P})$ is a concave function of $\mathbf{P} = (P_1, ..., P_K)$.
- This implies zero duality gap, re-establishing the result of **Yu, Lui and Cendrillon** (2006).

Implications of Lyapunov Theorem

$$egin{aligned} v(\mathbf{P}) &= \max & H(u_1,\ldots,u_K) \ & ext{ s.t. } & u_1 &= \int_\Omega R_1(s_1(f),\ldots,s_K(f))df \ &dots \ & dots \ & dots$$

- $v(\mathbf{P})$ is a concave function of $\mathbf{P} = (P_1, ..., P_K)$ if
 - $H(u_1, \ldots, u_K)$ is jointly concave.
 - $H(u_1, \ldots, u_K)$ is monotonically increasing wrt each argument.
- Under these assumptions, the duality gap is zero (L.-Zhang (2007)).
- H_1 , H_2 , H_3 and H_4 all satisfy the above two assumptions.

Further Implication of Lyapunov Theorem

Given a powerful adversary (user $\mathbf{0})$ in the system, let us maximize the worst-case performance

$$\max_{\substack{s_k(f) \ge 0, \ \int_\Omega s_k(f) df \le P_k \ \int_\Omega s_0(f) df \le P_0}} \min_{\substack{s_0(f) \ge 0, \ \int_\Omega s_k(f) df \le P_k \ \int_\Omega s_0(f) df \le P_0}} H(u_1, u_2, ..., u_K)$$

where $H = H_1, H_2, H_3$ or H_4 , and

$$u_k = \int_{\Omega} \log \left(1 + \frac{s_k(f)}{\sum_{l \neq k} \alpha_{kl} s_l(f) + \sigma_k(f)} \right) df, \quad k = 1, 2, \dots, K.$$

- *H* is convex in $s_0(f)$. However, *H* is **not concave** in $s_k(f)$, k = 1, 2, ..., K.
- Luckily, Lyapunov Theorem ensures a **hidden concavity**, which together with the convexity and compactness of the feasible sets, implies

 $\max_{\substack{s_k(f) \ge 0, \\ \int_{\Omega} s_k(f) df \le P_k \\ \int_{\Omega} s_0(f) df \le P_0}} \min_{\substack{s_0(f) \ge 0, \\ \int_{\Omega} s_0(f) df \le P_0 \\ \int_{\Omega} s_k(f) df \le P_k \\ H(u_1, ..., u_K)$

Luo and Zhang

Thank You