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Outline

• Motivation: Wireless/Wireline Multiuser Systems

• Problem Statement: Continuous and Discrete Versions

• Game Theoretic Approach: Nash equilibriums

• Optimality of FDMA Solutions

• Complexity Analysis: NP-hardness

• Approximation Algorithms

• Numerical Experiments

• Extensions

Role of optimization:

• characterizing problem complexity and the structure of optimal solution;

• providing efficient algorithms for distributed maximization with quality assurance.
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Motivation: Spectrum Management

• With the proliferation of various radio devices and services, multiple systems sharing a

common spectrum must coexist

– Wireline: unbundled DSL – Wireless: 802.11, Bluetooth, cognitive radio, ...

• Static Spectrum Management: FDMA

– advantage: orthogonal transmission, zero interference

– drawback: high system overhead and low bandwidth utilization
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Motivation: Dynamic Spectrum Management

• Dynamic Spectrum Management: users access a common spectrum simultaneously

– Each user’s performance depends on not only the power allocation (across spectrum)

of his own, but also those of other users in the system

⇒ Proper spectrum management is needed
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Dynamic Spectrum Management - A Dangerous

Business

Multi-party Communication
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Formulation: Spectrum Management
• K users sharing a common frequency band f ∈ Ω; user k’s power spectral density

sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk

• User k’s utility:

uk =

∫

Ω

Rk(s1(f), . . . , sK(f), f)df, Rk(·) : Lesbegue measurable, non-concave

• Social optimum: maximizing total system utility H(u1, ..., uK)

max H(u1, · · · , uK)

s.t. u1 =

∫

Ω

R1(s1(f), . . . , sK(f), f)df

...

uK =

∫

Ω

RK(s1(f), . . . , sK(f), f)df

sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk, k = 1, ..., K,

(Pc)

nonconvex

infinite dimensional
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Formulation: Spectrum Management
• Discretized frequency band Ω = {1, 2, ..., N}; Lebesque measure → discrete

uniform measure; user k’s power allocation vector

s
n
k ≥ 0,

1

N

N
∑

n=1

s
n
k ≤ Pk

• User k’s utility: uk =
1

N

N
∑

n=1

Rk(s
n
1 , . . . , s

n
K, n/N), Rk(·) : non-concave

• Social optimum: maximizing total system utility H(u1, ..., uK)

max H(u1, · · · , uK)

s.t. u1 =
1

N

N
∑

n=1

R1(s
n
1 , . . . , s

n
K, n/N)

...

uK =
1

N

N
∑

n=1

RK(s
n
1 , . . . , s

n
K, n/N)

1

N

N
∑

n=1

s
n
k ≤ Pk, s

n
k ≥ 0, k = 1, ..., K,

(P N
d )

nonconvex

finite dimensional

• Intuition: (P N
d ) → (Pc) as N → ∞.

7



Optimization in Spectrum Management Luo and Zhang

System Utility Functions
• Sum-utility (arithmetic mean)

H1(u1, . . . , uK) =
1

K
(u1 + · · · + uK)

• Proportional fairness (geometric mean)

H2(u1, . . . , uK) =

(

K
∏

k=1

uk

)

1
K

⇔ 1

K
(log u1 + · · · + log uK)

• Harmonic mean utility

H3(u1, . . . , uK) =
K

u−1
1 + · · · + u−1

K

• Min-utility
H4(u1, . . . , uK) = min

1≤k≤K
uk

• Ordering of system utility functions: H1 ≥ H2 ≥ H3 ≥ H4;

Fairness ranks in reverse order.
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Channel Model

• K users, N frequency tones; channels static, frequency selective

• Each user acts both as a transmitter and as a receiver, indexed by {1, 2, ..., K}. In

this way, a physical user may act as transmitter k and receiver l, with l 6= k.

Noise σn
1

Receiver 1

Frequency n

Transmitter 1
Power sn

1

Transmitter 2

Transmitter 3

Power sn
2

Power sn
3

Interference αn
12sn

2

Interference αn
13sn

3

Assume three transmitters. Then transmitter 1’s data rate at the frequency tone n is

information rate = R
n
1 = log(1 + SNRn) = log

(

1 +
sn

1

σn
1 + αn

12s
n
2 + αn

13s
n
3

)
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Social optimum: maximization of sum-rate

Assume two users.

maximize
1

N

N
∑

n=1

log

(

1 +
sn

1

σn
1 + αn

12s
n
2

)

+
1

N

N
∑

n=1

log

(

1 +
sn

2

σn
2 + αn

21s
n
1

)

subject to
1

N

N
∑

n=1

sn
1 ≤ P1,

1

N

N
∑

n=1

sn
2 ≤ P2,

sn
1 ≥ 0, sn

2 ≥ 0, ∀n = 1, 2, ..., N,

where Pi is user i’s total available power.

• The problem is nonconvex.

• Interested in a distributed algorithm which requires little user coordination.
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Connection to the Spectrum Management Formulation

This is a special case of

max H(u1, · · · , uK)

s.t. u1 =
1

N

N
∑

n=1

R1(s
n
1 , . . . , sn

K)

...

uK =
1

N

N
∑

n=1

RK(sn
1 , . . . , sn

K)

1

N

N
∑

n=1

s
n
k ≤ Pk, s

n
k ≥ 0, k = 1, ..., K,

(P N
d )

nonconvex

finite dimensional

• Users’ utilities:

u1 =
1

N

N
∑

n=1

log

(

1 +
sn

1

σn
1 + αn

12s
n
2

)

, u2 =
1

N

N
∑

n=1

log

(

1 +
sn

2

σn
2 + αn

21s
n
1

)

.

• System utility: H(u1, u2) = u1 + u2; • Rn
k(s

n
1 , sn

2) = log
(

1 +
sn
1

σn
1 +αn

12sn
2

)
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Social Optimum: K User Case

• Upon normalizing the channel coefficients, we obtain

R
n
k(s

n
1 , . . . , s

n
K) := log

(

1 +
sn

k

σn
k +

∑

l 6=k αn
lks

n
l

)

, (1)

where σn
k = N0/|hn

k,k|2, αn
lk = |hn

l,k|2/|hn
k,k|2.

• Frequency flat: hn
l,k independent of n.

• The sum-rate maximization problem can be written as follows:

maximize
1

NK

K
∑

k=1

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

l 6=k αn
lks

n
l

)

subject to
1

N

N
∑

n=1

sn
k ≤ Pk, sn

k ≥ 0 n ∈ N , k ∈ K.

(2)

where N := {1, 2, ..., N}, K := {1, 2, ..., K}.
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Key Issues in Spectrum Management

Main challenges:

• Nonconvexity

• Problem size (N ≥ 4000, K ≥ 50)

• Distributed optimization

Main goals:

• Structural property of optimal solutions

• Complexity of optimal spectrum management

• Approximation algorithms (i.e., finding ǫ-optimal solution)

• Game theoretic formulations
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Existing Work

Mostly studied in the engineering literature

• Nash equilibrium formulation, convergence analysis

– Yu-Ginis-Cioffi (2002)

– Yamashita-L. (2004)

– L.-Pang (2006)

– Huang-Berry-Honig (2006)

– Cendrillon-Huang-Chiang-Moonen (2007)

– ...

• Sum-rate maximization

– Yu-Lui-Cendrillon, Chan-Yu (2004/2006)

– Cendrillon-Yu-Moonen-Verliden-Bostoen (2006)

– ...

• Characterizing optimal solutions, complexity analysis

– Etkin-Parekh-Tse (2006)

– Hayashi-L. (2007)
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Social Optimum: FDMA Solutions

FDMA solution set:

S =

{

{s ≥ 0 | sn
ksn

l = 0, ∀ k 6= l, ∀ n} discrete

{s(f) ≥ 0 | sk(f)sl(f) = 0, ∀ k 6= l, ∀ f} continuous.

• FDMA solutions are not necessarily the vertex solutions.
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When is FDMA Optimal?

Theorem 1 (Hayashi-L. (2007)) Suppose that K = 2, and each user uses at least

C ≥ 2 tones. If

α
n
12α

n
21 >

1

4

(

1 +
1

C − 1

)2

for all n ∈ N , then the global maximum of sum-rate maximization problem (2) is FDMA.

• The proof relies on the strict quasi-concavity of the sum-rate function at each tone.

• Etkin-Parekh-Tse (2006) showed that in the frequency flat case (αn
ij = αij,

independent of n), FDMA is optimal when

α12α21 > 1.
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When is FDMA Optimal?

Theorem 2 (Hayashi-L. (2007)) Any global maximum of problem (2) must be FDMA,

provided that

α
n
lk >

1

2
and α

n
lkα

n
kl >

1

4

(

1 +
1

C − 1

)2

for all n ∈ N and (k, l) ∈ K × K with k 6= l.

Main message: strong interference leads to FDMA.

d <2d <2d d

17
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When is FDMA Optimal?

Theorem 3 (Hayashi-L. (2007)) Let us denote

P0 := min
k∈K

Pk, σM := max
(n,k)∈N×K

σn
k ,

A0 := min
(n,k,l)∈N×K×K

k 6=l

αn
lkα

n
kl.

If

P0 ≥
(

N − (K − 1)C
)

(

1

A0

+
1√
A0

+ 1

)

σM, (3)

then there exists a local maximum of sum-rate maximization problem (2) that is FDMA.

• Sufficient power budget also leads to FDMA.

18



Optimization in Spectrum Management Luo and Zhang

FDMA Optimality

max H1(u1, · · · , uK)

s.t. u1 =

∫

Ω

R1(s1(f), . . . , sK(f))df

...

uK =

∫

Ω

RK(s1(f), . . . , sK(f))df

sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk, k = 1, ..., K,

max H1(u1, · · · , uK)

s.t. u1 =

∫

Ω

R1(s1(f), . . . , sK(f))df

...

uK =

∫

Ω

RK(s1(f), . . . , sK(f))df

sk(f)sl(f) = 0, sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk, ∀ k,

19
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Finding an Optimal FDMA Solution?

• Let us denote the set of FDMA solutions by

S = {s ≥ 0 | sn
ksn

l = 0, ∀ k 6= l, ∀ n} .

• Then, the optimal FDMA frequency allocation problem can be described as follows:

maximize
s

1

NK

K
∑

k=1

N
∑

n=1

log

(

1 +
sn

k

σn
k

)

(4)

subject to s ∈ S,
1

N

N
∑

n=1

sn
k ≤ Pk, k = 1, . . . , K.

where s denotes the (NK)-dimensional vector with entries equal to sn
l .

• Note that there is no interference in the sum-rate function (5).
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Complexity Analysis: NP-hardness

Theorem 4 (Hayashi-L. (2007)) For K = 2, the optimal bandwidth allocation problem

(5) is NP-hard. Thus, the general sum-rate maximization problem (2) is also NP-hard,

even in the two-user case.

• The proof consists of reducing the so-called equipartition problem to (5).

• Specifically, given a set of N (even) positive integers, a1, a2, ..., aN , the equipartition

problem asks: does there exist a subset T ⊂ {1, 2, ..., N} of size |T | = N/2 such

that
∑

n∈T

an =
∑

n 6∈T

an =
1

2

N
∑

n=1

an ?

• The equipartition problem is known to be NP-complete.

• Finding optimal FDMA solution is hard. What do we do now?
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Further Complexity Results

Complexity of the discrete resource management problem (P N
d ) (L.-Zhang (2007))

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

K=1, N arbitrary

Linear time 
solvable

Strongly
NP-hard

NP-hard

Sum-Rate H1

FDMA Soln

LPConvex OptConvex Opt
Strongly
NP-hardN=1, K arbitrary

Strongly
NP-hard

Strongly
NP-hardNP-hard

Strongly
NP-hard

N>2 and fixed, K 
arbitrary

NP-hardNP-hardNP-hardNP-hard
K≥2 and fixed, N 
arbitrary

Min-Rate H4Harmonic 
mean H3

Proportional 
Fairness H2
(geometric mean)

Sum-Rate H1
(arithmetic mean)

Utility Function

Problem
Class

• Reduction from partition problem and 3-coloring problem

• The status of N = 2 not resolved yet.
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Optimal FDMA Solution?

• Let us denote the set of FDMA solutions by

S = {s ≥ 0 | sn
ksn

l = 0, ∀ k 6= l, ∀ n} .

• Then, the optimal FDMA frequency allocation problem can be described as follows:

maximize
s

1

NK

K
∑

k=1

N
∑

n=1

log

(

1 +
sn

k

σn
k

)

subject to s ∈ S,
N
∑

n=1

sn
k ≤ Pk, k = 1, . . . , K.

(P N
d )

where s denotes the (NK)-dimensional vector with entries equal to sn
l .

• Note that there is no interference in the sum-rate function (5).
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Finding an Approximate FDMA Solution

• Dual problem is convex and decomposes across tones

• Dual function

d(λ) := max
s∈S

(

K
∑

k=1

N
∑

n=1

log

(

1 +
sn

k

σn
k

)

−
K
∑

k=1

λk

(

N
∑

n=1

s
n
k − Pk

))

=
K
∑

k=1

λkPk +
N
∑

n=1

max
0≤sn

i
≤Pi

sn
i

sn
j
=0, i 6=j

K
∑

k=1

(

log

(

1 +
sn

k

σn
k

)

− λks
n
k

)

(5)

• The inner maximization in (5) can be solved by allocating each tone to the user which

can provide the maximum shadow rate log (1 + sn
k/σn

k ) − λks
n
k on that tone.
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Finding an Approximate FDMA Solution

• Maximum shadow rate for user k at tone n is given by

max
0≤sn

k
≤Pk

(

log

(

1 +
sn

k

σn
k

)

− λks
n
k

)

=







λkσ
n
k − log(λkσ

n
k) − 1, 0 < λkσ

n
k ≤ 1,

0, λkσ
n
k > 1

∞, λk < 0,

where the optimal power level is

sn
k = Pk(λ

−1
k − σn

k). (6)

• Thus, the dual function (5) can be written analytically as

d(λ) =
K
∑

k=1

λkPk +
N
∑

n=1

max
k:λkσn

k
≤1

(λkσ
n
k − log(λkσ

n
k) − 1) . (7)
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Finding an Approximate FDMA Solution

• For each n, the maximum in (7) is attained at the user k for which λkσ
n
k is smallest.

• Then a subgradient of d(λ) is given by

∇d(λ) =



P1 −
∑

n∈N1(λ)

sn
1 , P2 −

∑

n∈N2(λ)

sn
2 , ..., PK −

∑

n∈NK(λ)

sn
K





T

where we denote the set of tones assigned to user k by Nk(λ). Notice that the

components of subgradient ∇d(λ) correspond to each user’s unused power (or deficit

power if negative).

• The dual minimization problem is given by

minimize d(λ)

subject to λ ≥ 0
(D

N
d )

which is convex and solvable in polynomial time (e.g., using ellipsoid algorithm).
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Duality Gap

• Recall the primal sum-rate maximization problem is NP-hard, implying there is a

positive duality gap.

• Dual optimality: 0 ∈ ∂d(λ).

Theorem 5 Let λ
∗ ≥ 0 and s

∗ ≥ 0 be the limit points generated by the dual

decomposition algorithm. If there holds

1

N

N
∑

n=1

sn
k ≤ Pk, λ

∗
k

(

1

N

N
∑

n=1

sn
k − Pk

)

= 0, ∀ k ∈ K,

then the duality gap is zero and s
∗ is a global optimal solution of the bandwidth

allocation problem.

In other words, primal feasibility ensures zero duality gap.

• This holds true if ∂d(λ) is singleton.
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Constructing an Approximate Primal Optimal Solution

• When ∂d(λ) is not singleton, primal feasibility cannot be attained and there is a

positive duality gap.

• However, we can further “split the tones” and construct a primal feasible solution for

a more refined discretized primal problem with zero duality gap.

Discrete dual (Dd
N)

N tones

+ duality gap

No corresponding 
primal feasible soln

Discrete primal (Pd
N)

N tones

Discrete primal (Pd
N’)

N’>N tones

Zero duality gap, primal FDMA feasibility achieved via LP

Discretization, gap O(1/    )

FDMA structure

Zero duality gap Continuous dual (Dc)
N= tones

FDMA
∞

∞N

Continuous primal (Pc)
N =      tones

FDMAGap            )'/1( NO
∞
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Approximation Quality
Main Consequences (L.-Zhang, (2007)):

• The nonconvex continuous optimal FDMA spectrum allocation problem and its dual

are equivalent. The duality gap is zero.

• For each ǫ > 0, we can find an ǫ-optimal solution in Poly(K, ǫ) time.

max H1(u1, · · · , uK)

s.t. u1 =

∫

Ω
R1(s1(f), . . . , sK(f))df

...

uK =

∫

Ω
RK(s1(f), . . . , sK(f))df

sk(f)sl(f) = 0, sk(f) ≥ 0,

∫

Ω
sk(f)df ≤ Pk, ∀ k,

(Pc)

m

min
λ≥0

max
sk(f)≥0

sk(f)sl(f)=0,

K
∑

k=1

∫

Ω

((

1 +
sk(f)

σk(f) +
∑

j 6=k αkjsj(f)

)

− λksk(f)

)

df − λkPk (Dc)
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Key Step

• For a Lebesgue integrable vector function R(s(f), f), we have in general

1

N

N
∑

n=1

R(s(n/N), n/N) 6→
∫

Ω

R(s(f), f)df, N → ∞.

• However, we show there exists some piecewise constant function sn (not necessarily

equal to s(n/N), such that

∥

∥

∥

∥

∥

1

N

N
∑

n=1

R(sn, n/N) −
∫

Ω

R(s(f), f)df

∥

∥

∥

∥

∥

= O

(

1√
N

)

.

• This implies that the gap between (Pc) and (P N
d ) is O(1/

√
N).

• O(1/
√

N) can be improved to O(1/N) for frequency flat case.

30



Optimization in Spectrum Management Luo and Zhang

Key Observation

max H(u1, · · · , uK)

s.t. u1 =
1

N

N
∑

n=1

R1(s
n
1 , . . . , s

n
K, n/N)

...

uK =
1

N

N
∑

n=1

RK(sn
1 , . . . , sn

K, n/N)

1

N

N
∑

n=1

sn
k ≤ Pk, sn

k ≥ 0, k = 1, ..., K,

⇓
max H(u1, · · · , uK)

s.t. u1 =

∫

Ω
R1(s1(f), . . . , sK(f), f)df

...

uK =

∫

Ω
RK(s1(f), . . . , sK(f), f)df

sk(f) ≥ 0,

∫

Ω
sk(f)df ≤ Pk, k = 1, ..., K,
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Extensions

• It is possible to show that, without FDMA constraint,

maximize

K
∑

k=1

∫ 1

0

(

1 +
sk(f)

σk(f) +
∑

j 6=k αkjsj(f)

)

df

subject to

∫ 1

0

sk(f)df ≤ Pk, sk(f) ≥ 0, ∀k ∈ K.

has the same optimal value as its dual

min
λ≥0

max
sk(f)≥0

K
∑

k=1

∫ 1

0

((

1 +
sk(f)

σk(f) +
∑

j 6=k αkjsj(f)

)

− λksk(f)

)

df − λkPk

• Asymptotic strong duality: This suggests, for the finite tone case, the duality gap

decreases to zero.
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Duality Gap → 0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
38.29

38.3

38.31

38.32

38.33

38.34

38.35

38.36

38.37

38.38

38.39
Dual and primal value of the sum−rate fdma solution

Number of tones

S
um

 ra
te

Dual Value
Primal Value

33



Optimization in Spectrum Management Luo and Zhang

Lyapunov Theorem

Let u be a non-atomic measure on a Borel field B generated from subsets of a space Ω.

Let gi(s(·), ·) : ℜ2 → ℜ+ be compatible with B-measurable function (i.e., if s(·) is

B-measurable then gi(s(·), ·) is B-measurable), i = 1, ..., m. Then,











∫

Ω
g1(s(·), ·)du

...
∫

Ω
gm(s(·), ·)du





∣

∣

∣

∣

∣

∣

x is B-measurable







is a convex set.

)s(•
Ω

∫
Ω

•• )du),g(s(

)s(•
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Implications of Lyapunov Theorem

v(P) = max 1
K(u1 + · · · + uK)

s.t. u1 =

∫

Ω

R1(s1(f), . . . , sK(f))df

...

uK =

∫

Ω

RK(s1(f), . . . , sK(f))df

sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk, k = 1, ..., K,

• v(P) is a concave function of P = (P1, ..., PK).

• This implies zero duality gap, re-establishing the result of Yu, Lui and Cendrillon

(2006).
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Implications of Lyapunov Theorem

v(P) = max H(u1, . . . , uK)

s.t. u1 =

∫

Ω

R1(s1(f), . . . , sK(f))df

...

uK =

∫

Ω

RK(s1(f), . . . , sK(f))df

sk(f) ≥ 0,

∫

Ω

sk(f)df ≤ Pk, k = 1, ..., K,

• v(P) is a concave function of P = (P1, ..., PK) if

– H(u1, . . . , uK) is jointly concave.

– H(u1, . . . , uK) is monotonically increasing wrt each argument.

• Under these assumptions, the duality gap is zero (L.-Zhang (2007)).

• H1, H2, H3 and H4 all satisfy the above two assumptions.
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Further Implication of Lyapunov Theorem

Given a powerful adversary (user 0) in the system, let us maximize the worst-case

performance

max
sk(f)≥0,

∫

Ω sk(f)df≤Pk

min
s0(f)≥0,

∫

Ω s0(f)df≤P0

H(u1, u2, ..., uK)

where H = H1, H2, H3 or H4, and

uk =

∫

Ω

log

(

1 +
sk(f)

∑

l 6=k αklsl(f) + σk(f)

)

df, k = 1, 2, ..., K.

• H is convex in s0(f). However, H is not concave in sk(f), k = 1, 2, ..., K.

• Luckily, Lyapunov Theorem ensures a hidden concavity, which together with the

convexity and compactness of the feasible sets, implies

max
sk(f)≥0,

∫

Ω sk(f)df≤Pk

min
s0(f)≥0,

∫

Ω s0(f)df≤P0

H(u1, ..., uK) = min
s0(f)≥0,

∫

Ω s0(f)df≤P0

max
sk(f)≥0,

∫

Ω sk(f)df≤Pk

H(u1, ..., uK)
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Thank You
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