A Semidefinite Relaxation Scheme for Multivariate Quartic Polynomial Optimization With Quadratic Constraints

Zhi-Quan Luo
Department of Electrical and Computer Engineering
University of Minnesota
Shuzhong Zhang
Department of Systems Engineering and Engineering Management Chinese University of Hong Kong

2009 Lunteran MOR Conference, The Netherland

Talk Outline

- Quartic optimization: motivation
- What is SDP/SOS relaxation?
- Approximation bounds

Quartic Optimization

Maximization form

$$
\begin{array}{ll}
\text { maximize } & f(x)=\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell} \tag{1}\\
\text { subject to } & x^{\mathrm{T}} A_{i} x \leq 1, i=1, \ldots, m,
\end{array}
$$

or the minimization form

$$
\begin{array}{ll}
\text { minimize } & f(x)=\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell} \tag{2}\\
\text { subject to } & x^{\mathrm{T}} A_{i} x \geq 1, i=1, \ldots, m,
\end{array}
$$

where $A_{i} \in \mathbb{R}^{n \times(n+1) / 2}$: positive semidefinite, $i=1, \ldots, m$.

- $f_{\text {max }}$ and $f_{\text {min }}$ denote the optimal values of (1) and (2) respectively.
- To ensure $f_{\min }$ and $f_{\max }$ exist, we assume throughout that $\sum_{i}^{m} A_{i} \succ 0$.

Quartic Optimization: Motivation

Quartic optimization problems arise in various engineering applications

- Sensor localization: let \mathcal{A} and \mathcal{S} denote the anchor nodes and sensor nodes respectively

$$
\operatorname{minimize} \sum_{i, j \in \mathcal{S}}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}+\sum_{i \in \mathcal{S}, j \in \mathcal{A}}\left(\left\|\mathbf{x}_{i}-\mathbf{s}_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}
$$

\Rightarrow Quartic minimization (Known: NP-hard; constant factor approximation is also hard)

- Digital communication: blind channel equalization of constant modulus signals

$$
\mathbf{x}(t)=\mathbf{H s}(t)+\mathbf{n}(t)
$$

where \mathbf{H} is unknown, the components of $\mathbf{s}(t)$ are constant $\left(\left|s_{i}(t)\right|=1, \forall i\right)$ A channel equalizer \mathbf{g} can be found by

$$
\operatorname{minimize} \sum_{t}\left(\left|\mathbf{g}^{\mathrm{T}} \mathbf{x}(t)\right|^{2}-1\right)^{2}, \quad \Rightarrow \text { Quartic minimization }
$$

- Signal processing: independent component analysis (ICA)

$$
\mathbf{x}=\mathbf{H s}, \quad \mathbf{H} \text { full column rank, unknown }
$$

* \mathbf{s} is independent, high 4-th Kurtosis, non-Gaussian sources;
\mathbf{x} : measurement, unknown linear mixture of \mathbf{s}
* Goal: Find \mathbf{G} such that $\mathbf{G x}$ is a permutation of \mathbf{s}
$\star \mathbf{G x}$ is separate, independent \Leftrightarrow the 4-th order Kurtosis of $\mathbf{G x}$ is high
\Rightarrow maximize the 4-th order Kurtosis of $\mathbf{G x}$ (fourth order polynomial of \mathbf{G}) subject to ball constraint (power constraint)
\Rightarrow ball-constrained homogeneous quartic maximization

Quartic Optimization: Complexity

- The quartic polynomial optimization problems (1)-(2) are nonconvex, NP-hard
\Rightarrow consider polynomial time relaxation procedures that can deliver provably high quality approximate solutions (for special subclasses of quartic optimization problems).

Approximation Ratio

- \hat{x} is a c-factor approximation of quartic minimization problem (2) if

$$
f_{\min } \leq f(\hat{x}) \leq c f_{\min }
$$

with c independent of problem data. (Therefore, $f_{\min }=0 \Leftrightarrow f(\hat{x})=0$.)

- Weaker notion: $(1-\epsilon)$-approximation of quartic minimization problem (2) if

$$
f(\hat{x})-f_{\min } \leq(1-\epsilon)\left(f_{\max }-f_{\min }\right)
$$

with ϵ independent of problem data.

- Similarly for quartic maximization problem.

SDP/SOS Relaxation

- the sum-of-squares (SOS) technique
* represent each nonnegative polynomial as a sum of squares of some other polynomials a given degree
* Alternatively, use matrix lifting

$$
X:=\left(\begin{array}{c}
1 \\
x_{i} \\
x_{i} x_{j} \\
x_{i} x_{j} x_{k} \\
\vdots
\end{array}\right)\left(\begin{array}{lllll}
1 & x_{i} & x_{i} x_{j} & x_{i} x_{j} x_{k} & \cdots
\end{array}\right)
$$

* Under the lifting, each polynomial inequality is relaxed to a convex, linear matrix inequality
- approximate (arbitrarily well) by a hierarchy of SDPs with increasing size
- difficulty: the size of the resulting SDPs in the hierarchy grows exponentially fast

SDP/SOS Relaxation

- The most effective use of SDP relaxation so far has been for the quadratic optimization problems whereby only the first level relaxation in the SOS hierarchy is used.
* difficulty: cannot provide arbitrarily tight approximation in general
* does lead to provably high quality approximate solution for certain type of quadratic optimization problems (e.g., Max-Cut)
- Question: find a provably good first level SOS approximation of some quartic optimization problems (1)-(2)?

SDP Relaxation of Nonconvex Quadratic Optimization Problem

- focus here on a specific class of problems: general QCQPs
- vast range of applications...
the generic QCQP can be written:
minimize $\quad x^{\mathrm{T}} A_{0} x+r_{0}$
subject to $\quad x^{\mathrm{T}} A_{i} x+r_{i} \leq 0, \quad i=1, \ldots, m$
- if all A_{i} are p.s.d., convex problem,
- here, we suppose at least one A_{i} not p.s.d.

Convex Relaxation

Using a fundamental observation:

$$
X:=x x^{\mathrm{T}} \quad \Leftrightarrow \quad X_{i j}=x_{i} x_{j} \quad \Leftrightarrow \quad X \succeq 0, \operatorname{rank}(X)=1,
$$

and noting $x^{\mathrm{T}} A_{i} x=\operatorname{Tr}\left(X A_{i}\right)$, the original QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=x^{\mathrm{T}} A_{0} x+r_{0} \\
\text { subject to } & x^{\mathrm{T}} A_{i} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

can be rewritten:

$$
\begin{array}{ll}
\operatorname{minimize} & g(X)=\operatorname{Tr}\left(X A_{0}\right)+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X A_{i}\right)+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X \succeq 0, \operatorname{rank}(X)=1
\end{array}
$$

the only nonconvex constraint is now $\operatorname{rank}(X)=1$...

Convex Relaxation: Semidefinite Relaxation

- we can directly relax this last constraint, i.e. drop the nonconvex $\operatorname{rank}(X)=1$ to keep only $X \succeq 0$
- the resulting program gives a lower bound on the optimal value

$$
\begin{array}{ll}
\text { minimize } & g(X)=\operatorname{Tr}\left(X A_{0}\right)+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X A_{i}\right)+r_{i} \leq 0, \quad i=1, \ldots, m \quad \Rightarrow \quad \text { SDP } \\
& X \succeq 0
\end{array}
$$

How to Generate a Feasible Solution?

Let X^{*} be the optimal solution of

- pick x as a Gaussian variable with $x \sim \mathcal{N}\left(0, X^{*}\right)$
- Since $\operatorname{Tr}\left(X^{*} A_{i}\right)+r_{i}=\mathrm{E}\left[x^{T} A_{i} x+r_{i}\right], x$ will solve the QCQP "on average" over this distribution

Generate a Feasible Solution

In other words, SDP is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \mathrm{E}\left[x^{T} A_{0} x+r_{0}\right] \\
\text { subject to } & \mathrm{E}\left[x^{T} A_{i} x+r_{i}\right] \leq 0, \quad i=1, \ldots, m
\end{array}
$$

a good feasible point can then be obtained by sampling enough $x \ldots$

Two observations:

- SDP finds the convariance matrix used in sampling
- The relaxed function $g(X)$ satisfies
* Consistency: $g(X)=f(x)$ when $X=x x^{T}$
* Compatibility: $g(X)=E(f(x))$ when $x \sim N(0, X)$

Key question:

- how good is the approximate solution x ?
- can we bound $f(x) / f^{*}$ by a constant?

Summary of Existing Results

Assume

- $\mathbf{A}_{i}, \overline{\mathbf{A}}_{i} \succeq \mathbf{0}, i=0,1,2, \ldots, m$
- $\mathbf{B}_{j} \nsucceq \mathbf{0}$ indefinite, $j=0,1,2, \ldots, d$

	$\mathbb{R}, d=0$	$\mathbb{R}, d=1$ or $\mathbb{C}, d=0,1$	\mathbb{R} or $\mathbb{C}, d \geq 2$		
$\min \mathbf{w}^{H} \mathbf{A}_{0} \mathbf{w}$ s.t. $\mathbf{w}^{H} \mathbf{A}_{i} \mathbf{w} \geq 1, \mathbf{w}^{H} \mathbf{B}_{j} \mathbf{w} \geq 1$	$\Theta\left(m^{2}\right)$	$\Theta(m)$	∞		
$\max \mathbf{w}^{H} \mathbf{B}_{0} \mathbf{w}$ s.t. $\mathbf{w}^{H} \mathbf{A}_{i} \mathbf{w} \leq 1, \mathbf{w}^{H} \mathbf{B}_{j} \mathbf{w} \leq 1$	$\Theta\left(\log ^{-1} m\right)$	$\Theta\left(\log ^{-1} m\right)$	∞		
$\max \min _{1 \leq i \leq m} \frac{\mathbf{w}^{H} \mathbf{A}_{i} \mathbf{w}}{\mathbf{w}^{H} \overline{\mathbf{A}}_{i} \mathbf{w}+\sigma^{2}}$ $\Theta\left(m^{2}\right)$	$\Theta(m)$	N.A.			
s.t. $\\|\mathbf{w}\\|^{2} \leq P$					

Blue: NRT'99, Red: LSTZ'06, CLC'07, HLNZ'07

SDP Relaxation for Quartic Optimization

Consider the first level SOS hierarchy so that

$$
x_{i} x_{j} \mapsto X_{i j}, \quad X \succeq 0 .
$$

Under this mapping, each quartic term is mapped, non-uniquely, to a quadratic term, e.g.,

$$
x_{1} x_{2} x_{3} x_{4} \mapsto\left\{\begin{array}{l}
X_{12} X_{34} \\
X_{13} X_{24} \\
X_{14} X_{23}
\end{array}\right.
$$

- Which one should we use?
- Should we choose a convex combination of the three choices?
- Does it matter?

It Matters!

Consider the following quartic optimization problem in \mathbb{R}^{4} :

$$
\begin{array}{ll}
\text { minimize } & f(x)=\left(x_{1} x_{2}\right)^{2} \\
\text { subject to } & x_{1}^{2} \geq 1, \quad x_{2}^{2} \geq 1 \tag{3}
\end{array}
$$

Under the matrix lifting transformation $X=x x^{\mathrm{T}}$, (3) is relaxed to

$$
\begin{array}{ll}
\operatorname{minimize} & g(X)=X_{12}^{2} \\
\text { subject to } & X_{11} \geq 1, \quad X_{22} \geq 1, \quad X \succeq 0
\end{array}
$$

- It can be checked
* $f_{\text {min }}=1$
${ }^{*} g_{\text {min }}=g(I)=0$ since $X=I$ is a feasible solution.
- This shows that the approximation ratio is unbounded!

$$
\begin{equation*}
\frac{f_{\min }}{g_{\min }}=\infty \tag{4}
\end{equation*}
$$

It Matters!

- On the other hand, consider the symmetric mapping

$$
x_{i} x_{j} x_{\ell} x_{m} \mapsto \frac{1}{3}\left(X_{i j} X_{\ell m}+X_{i \ell} X_{j m}+X_{i m} X_{j \ell}\right)
$$

Under this mapping, the quartic objective function

$$
f(x)=x_{1}^{2} x_{2}^{2}
$$

is relaxed to

$$
h(x)=\frac{1}{3}\left(X_{11} X_{22}+2 X_{12}^{2}\right)
$$

- Let $h_{\min }:=$ minimize $h(X) \quad$ subject to $X_{11} \geq 1, \quad X_{22} \geq 1, \quad X \succeq 0$.
- Notice that $h_{\text {min }}=h(I)=\frac{1}{3}$, implying

$$
\frac{f_{\min }}{h_{\min }}=\frac{1}{\frac{1}{3}}=3
$$

which is indeed finite.

SDP Relaxation for Quartic Optimization

- Suppose $g(X)$ is a quadratic function to be used as a relaxation of the quartic function $f(x)$. Then $g(X)$ should satisfy

$$
\text { consistency property: } g(X)=f(x)=\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}, \text { whenever } X=x x^{\mathrm{T}} .
$$

- There are many quadratic functions $g(X)$ satisfying this property, e.g.

$$
x_{i} x_{j} x_{k} x_{\ell} \mapsto\left\{\begin{array}{c}
X_{i j} X_{k \ell} \\
X_{i k} X_{j \ell} \\
X_{i \ell} X_{j k}
\end{array}\right.
$$

- Which one should we pick?

Goal: pick one that ensures good approximation of quartic problem (1).

SDP Relaxation for Quartic Optimization

- Let $\hat{X} \succeq 0$ denote the optimal solution of the following quadratic SDP relaxation of (1):

$$
\begin{array}{ll}
\operatorname{maximize} & g(X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right) \leq 1, \quad i=1,2, \ldots, m, X \succeq 0 .
\end{array}
$$

- To generate a feasible solution for the original problem (1), we draw random samples x from the Gaussian distribution $N(0, \hat{X})$.
- To ensure approximate quality, we wish to maximize $\mathrm{E}[f(x)]$.
- Key observation: $\mathrm{E}[f(x)]$ is a quadratic function of X. This motivates the following
compatibility property: $g(X)=c \mathrm{E}[f(x)]$, for some $c>0$, where $X=\mathrm{E}\left(x x^{\mathrm{T}}\right)$.
- Question: Is there a positive constant c satisfying both the compatibility and the consistency conditions?

SDP Relaxation for Quartic Optimization

- Fact: Suppose $x \in \mathbb{R}^{n}$ is a random vector drawn a Gaussian distribution $N(0, X)$ where $X \succeq 0$. Then for any $1 \leq i \neq j \neq k \neq \ell \leq n$, we have

$$
\begin{aligned}
\mathrm{E}\left[x_{i}^{4}\right] & =3 X_{i i}^{2} \\
\mathrm{E}\left[x_{i}^{3} x_{j}\right] & =3 X_{i i} X_{j j} \\
\mathrm{E}\left[x_{i}^{2} x_{j}^{2}\right] & =X_{i i} X_{j j}+2 X_{i j}^{2} \\
\mathrm{E}\left[x_{i}^{2} x_{j} x_{k}\right] & =X_{i i} X_{j k}+2 X_{i j} X_{i k} \\
\mathrm{E}\left[x_{i} x_{j} x_{k} x_{\ell}\right] & =X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}
\end{aligned}
$$

- Based on this fact, we propose to relax each quartic term symmetrically as

$$
x_{i} x_{j} x_{k} x_{\ell} \mapsto \frac{1}{3}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right), \quad \forall 1 \leq i, j, \ell, m \leq n
$$

- It can be easily checked that the consistency property and the compatibility property is satisfied with $c=1 / 3$!
- Under the above symmetric mapping, the quartic polynomial maximization problem (1) is relaxed to

$$
\begin{array}{ll}
\text { maximize } & g(X)=\frac{1}{3} \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right) \tag{5}\\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right) \leq 1, i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

and the quartic polynomial minimization problem (2) can be relaxed as

$$
\begin{array}{ll}
\text { minimize } & g(X)=\frac{1}{3} \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right) \geq 1, i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

- Property:

$$
\mathrm{E}(f(x))=\mathrm{E}\left(\sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}\right)=3 g(X)
$$

- Are these good approximations?

Several Issues

- Bad news: the relaxed quadratic SDPs (5)-(6) are NP-hard!
- Good news: Let \hat{X} be an α-approximate solution of (5). Suppose we randomly generate a sample x from Gaussian distribution $N(0, \hat{X})$. Let $\hat{x}=x / \max _{1 \leq i \leq m} x^{T} A_{i} x$. Then
* \hat{x} is a feasible solution of (1)
* the probability that

$$
f_{\max } \geq f(\hat{x}) \geq \frac{3 \alpha}{4\left(\ln \frac{2 m n}{\theta}\right)^{2}} f_{\max }
$$

is at least $\theta / 2$ with $\theta:=1.443 \times 10^{-7}$, where $f_{\max }$ denotes the optimal value of (1).

- In other words, good approximation of the relaxed quadratic SDPs (5)-(6) leads to good approximation of (1)-(2).

Note: A feasible $\hat{X} \succeq 0$ is said to be an α-approximate solution of (5) if $g(\hat{X}) / g_{\max } \geq \alpha$.

Ideas in the Proof: feasibility

- Observation: the relaxed quadratic SDP (5) can be viewed as picking a covariance matrix $X \succeq 0$ for $x \sim N(0, X)$ according to

$$
\begin{array}{ll}
\text { maximize } & \mathrm{E}(f(x)) \\
\text { subject to } & \mathrm{E}\left(x^{\mathrm{T}} A_{i} x\right) \leq 1, i=1, \ldots, m
\end{array}
$$

- Suppose $\hat{X} \succeq 0$ is an α-approximate solution: $g(\hat{X}) \geq \alpha g_{\max }$.
- For random samples $x \sim N(0, \hat{X})$, the constraint $x^{\mathrm{T}} A_{i} x \leq 1$ is satisfied in expectation.
- Since $A_{i} \succeq 0$, it can be shown that $\mathrm{P}\left(x^{\mathrm{T}} A_{i} x>\gamma^{2} \mathrm{E}\left(x^{\mathrm{T}} A_{i} x\right)\right)=O\left(n \gamma^{-1} e^{-\gamma^{2} / 2}\right)$, for all $\gamma>0$. So the probability of getting a x such that

$$
\mathrm{P}\left(x^{\mathrm{T}} A_{i} x \leq \gamma^{2} \mathrm{E}\left(x^{\mathrm{T}} A_{i} x\right) \leq \gamma^{2}\right)=1-O\left(m n \gamma^{-1} e^{-\gamma^{2} / 2}\right), \quad \forall i=1,2, \ldots, m .
$$

- Choosing $\gamma=O(\ln n m) \Rightarrow x / O(\ln (n m)$ is feasible with a positive probability.

Ideas in the Proof: objective value

- Observation:

$$
\mathrm{E}(f(x))=3 g(\hat{X}) \geq 3 \alpha g_{\max } \geq 3 \alpha f_{\max }
$$

where

* the first step is due to the definition of g (compatibility property)
* the second step is due to the definition of α
* the last step is due to $g\left(x x^{\mathrm{T}}\right)=f(x)$ (consistency property)
- Question: Is there a positive (and independent of data) probability of getting a x from $N(0, \hat{X})$ such that

$$
f(x) \geq \mathrm{E}(f(x)) ?
$$

- The answer is YES!

A Key Step in the Proof

- Fact: Suppose $X \succeq 0$ and let $x \sim N(0, X)$. Suppose $f(x)$ be any homogeneous quartic polynomial in \mathbb{R}^{n}. Then

$$
\mathrm{P}\{f(x) \geq \mathrm{E}[f(x)]\} \geq 1.443 \times 10^{-7}
$$

and

$$
\mathrm{P}\{f(x) \leq \mathrm{E}[f(x)]\} \geq 1.443 \times 10^{-7}
$$

- The proof (brute force) relies on the following bound

$$
\mathrm{E}\left[(f(x)-\mathrm{E}[f(x)])^{4}\right] \leq 1732500 \operatorname{Var}^{2}(f(x))
$$

and the following fact (HLNZ'07)

* Let ξ be a random variable with bounded fourth order moment. Suppose

$$
\mathrm{E}\left[(\xi-\mathrm{E}(\xi))^{4}\right] \leq \tau \operatorname{Var}^{2}(\xi), \quad \text { for some } \tau>0
$$

Then $P\{\xi \geq \mathrm{E}(\xi)\} \geq 0.25 \tau^{-1}$ and $\mathrm{P}\{\xi \leq \mathrm{E}(\xi)\} \geq 0.25 \tau^{-1}$.

SDP Approximation Ratio for Quartic Minimization

- Consider the following SDP relaxation of (2)

$$
\begin{align*}
& g_{\text {min }}:= \text { minimize } \tag{7}\\
& g(X)=\frac{1}{3} \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right) \\
& \text { subject to } \\
& \operatorname{Tr}\left(A_{i} X\right) \geq 1, i=1, \ldots, m, X \succeq 0 .
\end{align*}
$$

Let \hat{X} be an β-approximate solution of (7).

- Suppose we randomly generate a sample x from Gaussian distribution $N(0, \hat{X})$. Let $\hat{x}=x / \min _{1 \leq i \leq m} x^{\mathrm{T}} A_{i} x$. Then
$\star \hat{x}$ is a feasible solution of (2)
* the probability that

$$
f_{\min } \leq f(\hat{x}) \leq 12 \beta \max \left\{\frac{m^{2}}{\theta^{2}}, \frac{m(n-1)}{\theta(\pi-2)}\right\} f_{\min }
$$

is at least $\theta / 2$ with $\theta:=1.443 \times 10^{-7}$, where $f_{\min }$ denotes the optimal value of (2).

Where do we stand?

We reduce NP-hard quartic optimization problem to a quadratic SDP problem.

How to Approximate the Relaxed Quadratic SDP?

- Consider the quartic maximization problem over a ball:

$$
\begin{array}{ll}
\text { maximize } & \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell} \\
\text { subject to } & \|x\|^{2} \leq 1
\end{array}
$$

- The relaxed SDP problem is

$$
\begin{array}{ll}
\hline \text { maximize } & \frac{1}{3} \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right) \tag{8}\\
\text { subject to } & \operatorname{Tr}(X) \leq 1 \\
& X \succeq 0 .
\end{array}
$$

How to Approximate the Relaxed Quadratic SDP?

- We provide a polynomial time algorithm for the relaxed quadratic SDP problem to find an $1 / n^{2}$ approximate solution
* Idea: approximate (and replace) the SDP simplex constraint by a ball constraint:

$$
\left\{X \in \mathcal{S}^{n \times n} \mid \sqrt{n-1}\|X\|_{F} \leq \operatorname{Tr}(X)\right\} \subseteq \mathcal{S}_{+}^{n \times n} \subseteq\left\{X \in \mathcal{S}^{n \times n} \mid\|X\|_{F} \leq \operatorname{Tr}(X)\right\}
$$

* Ball constrained (nonconvex) QP is solvable in polynomial time
* If $g(I) \geq 0$, then the optimal solution of the ball constrained QP is a $1 / n^{2}$-approximate solution of (8).
- Combined with an appropriate probabilistic rounding procedure, we can find a feasible \hat{x} for the original quartic optimization problem (1) satisfying

$$
\frac{f(\hat{x})}{f_{\max }} \geq \Omega\left(\frac{1}{(n \ln n)^{2}}\right)
$$

for the quartic maximization problem (1), provided $A_{1} \succ 0$ and $m=1$.

Polynomial-Time Approximation of Quartic Minimization

- Consider the quartic maximization problem over a ball:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell} \\
\text { subject to } & \|x\|^{2} \geq 1
\end{array}
$$

- The relaxed SDP problem is

$$
\begin{array}{ll}
\hline \text { minimize } & \frac{1}{3} \sum_{1 \leq i, j, k, \ell \leq n} a_{i j k \ell}\left(X_{i j} X_{k \ell}+X_{i k} X_{j \ell}+X_{i \ell} X_{j k}\right) \tag{9}\\
\text { subject to } & \operatorname{Tr}(X) \geq 1 \\
& X \succeq 0 .
\end{array}
$$

How to Approximate the Relaxed Quadratic SDP?

- We provide a polynomial time algorithm for the relaxed quadratic SDP problem (9) to find an $1 / n^{2}$ approximate solution
* Idea: approximate (and replace) the SDP simplex constraint by a ball constraint:

$$
\left\{X \in \mathcal{S}^{n \times n} \mid \sqrt{n-1}\|X\|_{F} \leq \operatorname{Tr}(X)\right\} \subseteq \mathcal{S}_{+}^{n \times n} \subseteq\left\{X \in \mathcal{S}^{n \times n} \mid\|X\|_{F} \leq \operatorname{Tr}(X)\right\}
$$

* Ball constrained (nonconvex) QP is solvable in polynomial time
* If $g(I) \geq 0$, then the optimal solution of the ball constrained QP is a $1 / n^{2}$-approximate solution of (8).
- Combined with an appropriate probabilistic rounding procedure, we can find a feasible \hat{x} for the original quartic optimization problem (2) satisfying

$$
\frac{f(\hat{x})-f_{\min }}{f_{\max }-f_{\min }} \leq 1-\Omega\left(\frac{1}{n^{2} m \max \{m, n\}}\right)
$$

for the quartic minimization problem (1), provided $A_{1} \succ 0$ and $m=1$.

Extensions

- Fact: if $x \in N(0, X)$, then

$$
\begin{aligned}
& \mathrm{E}\left[x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right] \\
= & X_{12} X_{34} X_{56}+X_{12} X_{35} X_{46}+X_{12} X_{36} X_{45}+X_{13} X_{24} X_{56}+X_{13} X_{25} X_{46} \\
& +X_{13} X_{26} X_{45}+X_{14} X_{23} X_{56}+X_{14} X_{25} X_{36}+X_{14} X_{26} X_{35}+X_{15} X_{23} X_{46} \\
& +X_{15} X_{24} X_{36}+X_{15} X_{26} X_{34}+X_{16} X_{23} X_{45}+X_{16} X_{24} X_{35}+X_{16} X_{25} X_{34} .
\end{aligned}
$$

- If one wishes to solve the following $2 d$-th order polynomial maximization problem

$$
\begin{array}{ll}
\operatorname{maximize} & f_{2 d}(x)=\sum_{1 \leq i_{1}, \cdots, i_{2 d} \leq n} a_{i_{1} \cdots i_{2 d}} x_{i_{1}} \cdots x_{i_{2 d}} \tag{10}\\
\text { subject to } & x^{\mathrm{T}} A_{i} x \leq 1, i=1, \ldots, m,
\end{array}
$$

then the corresponding (non-convex) SDP relaxation problem is

$$
\begin{array}{ll}
\operatorname{maximize} & p_{d}(X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right) \leq 1, i=1, \ldots, m \tag{11}\\
& X \succeq 0
\end{array}
$$

where $p_{d}(X)$ is a d-th order polynomial in X.

- Suppose that (11) has an α-approximation solution, then (10) admits an overall $O\left(\frac{\alpha}{(\ln (m n))^{d}}\right)$ approximation solution.
- Technical tool: the hyper-contractive property of Gaussian distributions:
* Suppose that f is a multivariate polynomial with degree r. Let $x \in N(0, I)$. Suppose that $p>q>0$. Then

$$
\left(\mathrm{E}|f(x)|^{p}\right)^{1 / p} \leq \kappa_{r} c_{p q}^{r}\left(\mathrm{E}|f(x)|^{q}\right)^{1 / q}
$$

where κ_{r} is a constant depending only on r, and $c_{p q}=\sqrt{(p-1)(q-1)}$.

* Proof was based on the Paley-Zygmund inequality and was non-constructive

Concluding Remarks

- An on-going research
- Provided a SDP relaxation scheme for quartic optimization, allowing approximation quality to be data-independent
- Effectively reduced the quartic optimization problem to quadratic SDP problem
- Many issues remaining: efficient algorithms to approximate nonconvex quadratic SDP over simplex? over box? etc

Thank You!

