Long-term and short-term decision making on the structure of the Dutch electricity network

NGB/LNMB Seminar "Operations Research and Energy"

Wil Kling

Lunteren, 17 January 2008

Organisation of the Electricity Supply System (1)

Base is:

- Directive nr. 96/92 of the European Union
- The Dutch Electricity Law of 1998
- Changes in the Law in 1999, 2004 and 2006

The aim of the Law is:

- Free market of Generation, Trade and Supply of electricity
- Non-discriminatory use and independent management of the electricity networks

Organisation electricity supply system (2)

Voltage levels and transformation steps

(including Load en Generation)

Who and what is TenneT?

- Transmission System Operator (TSO) for the Netherlands
- Independent operator of the national Dutch transmission grid: 380kV and 220kV (150kV and 110kV as well from 2008)
- Owned by the State of the Netherlands
- Number of staff: 490
- 2006 turnover: 417 million euros

Strategy TenneT TSO

Developments: What is the environment

- Formation of regional markets
- High demand for interconnection capacity
- Supply reliability is important issue

Strategy: Reinforcement and expansion

- Play an active role in North-western Europe
- Expansion of market facilitator role
- New interconnections
- Strengthening internal grid
- 'Value creation' for shareholders: efficiency

EHV and HV network as per 01-01-2007

Physical energy flows

Dutch Power System Overview Production and Load

- Thermal generation system
- ~21 GW installed
- Large share of CHP
- No storage possibilities
- Annual consumption
 115 TWh
- Annual Peak ~15 GW
- Heavy imports in recent years

	GW	%
Gas	10.3	49
Coal	4.1	19
Cokes Gas	1.0	5
Nuclear	0.4	2
DG	5.3	25
	21.1	100

Import in relation to consumption in the Netherlands

year	Consumption GWh	Import GWh	% Import
1980	55785	-15	0
1989	65010	4950	7,6
1995	89136	11393	12,8
1998	99292	11815	11,9
2000	104687	18915	18,1
2006	124300	21459	17,2

Design of the system

- Amount of installed generation capacity in relation to the demand for electricity (the load)
- The transmission way from power plants to the customers

The measure for redundancy (reserves) in the generation is not described in the Netherlands but is part of market economy → monitored by TenneT.

For the redundancy in the networks there are criteria set in the grid code (netcode) \rightarrow set by the regulator.

Planning process

<u>Planning</u> is a decision process with the aim to get the most efficient system which fulfils the <u>requirements</u> of reliability (adequate and secure).

Measures to improve adequacy are taken in the <u>planning phase</u>, while measures for improving <u>security</u> are taken both in <u>planning as in operations</u>.

Evaluation reliability of the system (1)

- On the basis of a deterministic approach
- With a probabilistic method

Going from a deterministic to a probabilistic approach means going from a <u>small set of critical situations</u> to the analysis of a <u>large set of system states (in principal all)</u>.

Evaluation reliability of the system (2)

A probabilistic approach is normally used when evaluating reliability of the generation supply system.

An N-1 or N-2 deterministic approach is mostly used evaluating network adequacy and security.

A risk evaluation might be used to support the decision process leading to overall asset management.

Results monitoring LOLE 2006-2014

Capacity plan

- Each network company is obliged to produce a capacity plan every two years
- The regulator receives this plan and makes a judgement on it, according to the rules set for it
- The plan gives the provision of the market parties for transmission capacity and shows how the network companies are going to handle the resulting transports

Results Capacity plan 2006-2012

Loading of 380 kV circuits as percentage of nominal transmission capacity

Power System Operations (1)

- Operational planning
 - evaluating transmission prognosis and energy programs
- Actual operations
 - take actions based on on-line information and computer analysis

Power System Operations (2)

- Network operators analyse whether transmission constraints might be expected. They use operating criteria for this, for instance (N-1)
- In case of constraints the network operator takes measures, for instance redispatch of generation
- In case of emergency load can be shed

Program Responsibility

- Actual purchase / production (by definition) differs
 from program: imbalance
- Imbalance becomes energy transaction with the SO (TenneT); TenneT organizes an imbalance market
- Each individual customer is program responsible for its connection to the grid, but this can be outsourced to so called Program Responsible Parties
- Program Responsible involves drafting and submitting programs and bearing the financial consequences of any discrepancy from the program (imbalance)

Deployment of control power in the years 2002-2006

Some projects

- Phase-shifters at the international borders
- Network reinforcement in the Randstad
- NorNed interconnector

Loop flows!

Transits!

Phase shifters - locations anno 2008

Randstad project

How much time does it take to build new lines?

- SEV 1-2 years
- RPP 3-4 years
- Building permits + 0.5 year
- Landowners + 0.75 year

Total 5-8 years

NorNed project

TenneT together with Norwegian TSO Statnett is constructing a 450kV interconnection between Norway and the Netherlands

- Intended for electricity imports and exports (700MW)
- EU policy: market coupling, enhancing liquidity
- Interconnection to be installed on the seabed (length of 580km)
- To be taken into operation early 2008

Wind Power in the Netherlands Installed Capacity

- Strong growth in recent years due to favorable subsidy schemes
- 1 offshore wind farm in operation, 1 under construction

Wind Power in the Netherlands Future Developments

- 2010 target recently reformulated
 - 1500 MW onshore
 - 700 MW offshore
- 3 4 GW on land and
 6 10 GW at sea may
 become a reality

Power flow constraints for large scale offshore wind power in the Netherlands

System Integration of Wind Power System-Wide Impacts

- Variability and limited predictability of wind power
- Need for regulating power because of that
- Minimum load consequences for the production
- Operation of other units in the system

Case study: 0–8 GW in the Netherlands for a given future year

System Integration of Wind Power Load minus Wind Duration Curve

System Integration of Wind Power *Unit Commitment and Dispatch with 8 GW Wind Power*

Unusable wind energy production as function of the installed wind power in the future

Installed wind powered production(GW)

Concluding remarks

- Long-term decision making for network reinforcements is hampered with uncertainties. Lead-times for investments in network infrastructure is becoming longer than lead-times for generation investments
- Congestion handling with market incentives is promising on an international level (flow based market coupling) and is a must on a national level (runback and demand response)
- Security and stability of interconnected systems should be guaranteed (enough redundancy in generation and transmission)
- Information exchange and communication with authorities, politics and customers is crucial

Thank you for your kind attention.

