

Health care process optimisation; Mathematics is the easy part!

Gerhard Wullink PhD

January 2006

Co-authors:

Mark Van Houdenhoven MSc, Erwin Hans PhD, and

Geert Kazemier PhD, MD

Outline

- § Framework for hospital planning and control
- S Typology of hospitals
- S Surgery planning in *practice; the Erasmus MC*
- S Surgery planning in *theory*; creating an "optimal" OR program

Optimization of health care processes

4

Managers learn by example

JIT, Focused Factory, push vs. pull, zero inventory, Lean Manufacturing, OPT, MRP, Toyota, Wal-Mart, KLM, NASA,...

S These concepts were not all as successful as sometimes claimed
S Health care is an business like no other

Health care: a business like no other

- S There are many types of hospitals
- S Uncertainty is inherent to the *product* health care: emergencies, variability, or outcome of a treatment
- S Professional organisation: Hippocratic oath, professional autonomy
- S Conflicting objectives, incentives
- S Financial system: budgets, DRGs (in Dutch: DBC's)

Managerial areas of health care P&C

- § Resource capacity
 - Scarce and "shared resources"
- § Medical planning
 - Research planning, development of new treatments, protocols, diagnosing
- § Material coordination
 - Transplants, blood, and disposables
- § Financial coordination
 - Budgets, contracts with insurance companies, DRG billing

7

Framework for health care P&C

	Medical planning	Resource capacity planning	Material coordination	Financial control	
Strategic	Research and treatment methods	Choice case mix, hospital layout, location planning	Supply chain and warehouse design	Agreements with insurance comp., investment plans	Hiera
Tactical	Definition of medical protocols	Allocation of time and resources to specialties	Supplier selection, tendering	Determining and allocating budgets, annual plans	rchical
Operational offline	Diagnosis and planning of an individual treatment	Surgery planning Patient scheduling, workforce planning	Determining order sizes, purchasing	DRG billing	decomp
Operational online	Diagnosing emergencies and complications	Day-to-day and emergency coordination	Coordination of rush orders	Billing complications, changing bills	position

Areas for hospital planning and control

Typology based on the case mix

Surgery planning in practice

The Erasmus MC

Surgery planning in practice

Structured approach to planning

- SEach specialty plans its elective surgical procedures two weeks in their *own time slots*
- SUse historical data
- SPlanned *slack* (in Dutch: "witte vlek") to deal with
 - uncertainties: emergencies and variability in duration

Allocation of OR capacity

Historical data

Planned slack

Surgery planning in theory

Robust surgery planning To appear in: *European Journal of Operational Research, E.W. Hans et al.*

Idea of the approach

Idea of the approach

- S Assume generic operating rooms; reschedule surgical procedures given flexibility scenarios
- S Optimize the required amount of reserved capacity using the *portfolio effect*
- S Use optimization heuristics to optimize an OR program

Flexibility scenarios

Reschedule:

- 1. within one day, within a specialty
- 2. within one week, within a specialty
- 3. within one year, within a specialty
- 4. within one week, over all specialties
- 5. within one day, over all specialties
- 6. within one week, over all specialties

The portfolio effect

Convright FIV

Capacity gain 2.3%, increase in unused capacity: 40%

Optimization heuristics

§ First Fit: base solution as constructed by clinicians **S** Sampling methods **SRandom sampling SBiased-random sampling SRegret-based random sampling** § Local search **SGreedy Simulated annealing** 19

A 'rescheduled' OR program

Results for maximum flexibility

1

	Base solution First Fit	Constructive heuristics			Local search	
		Random Sampling	Biased Random Sampling	Regret based random sampling	Greedy	Simulated annealing
Number of free OR days	0.0	343.2	344.5	348.3	336.0	352.5
Computation time	0.0	492.0	632.8	2226.7	1734.0	6315.6

21

_ _ _ _ _ _ _

Discussion

S Less operating rooms required to operate same amount of patients

- S Optimization of the amount of slack required to deal with uncertainty
- Similar surgical procedures are planned together (set-up times)
- § Generic operating rooms
- S Central planning approach

22

Conclusions

- S Many interesting topics in a Hospital that can benefit from OR, but
- § Position the problem in a framework
- § Hospital type and case mix
- § Sound historical data
- S Willingness of management and especially clinicians; cooperation of mathematicians, clinicians, and managers
- § Be aware: *mathematics is the easy part!*