

Multi-objective fluence map optimisation for intensity-modulated radiotherapy

Aswin L. Hoffmann

Department of Radiation Oncology Radboud University Nijmegen Medical Centre Nijmegen, The Netherlands

a.hoffmann@rther.umcn.nl

Outline

S Introduction to radiation therapy

- S External radiation therapy with photon beams
- S Treatment planning optimisation problems
- **S** Fluence map optimisation for IMRT

S Mathematical aspects of fluence map optimisation

- S Definitions and terminology
- Single *versus* multi-objective optimisation
- S Finding Pareto solutions \rightarrow Pareto efficient frontier (PEF)
- S Sandwich algorithm to approximate a convex PEF

Radiation Therapy

§ Aim

S Eradicate all clonogenic tumour cells without damaging healthy normal tissues

Method

S Use ionising radiation to break DNA structures

S Two types

- S Brachytherapy : internal radioactive source irradiation
- S Teletherapy : external beam irradiation

External beam irradiation

S Linear accelerator

- S <u>Photons</u>
- § Electrons

S Degrees of freedom

. . .

S

- S Gantry angle
- S Couch angle
- S Beam modality
- S Beam intensity

Treatment planning problem

S Medical and biological parameters (*radiation oncologist*)

- S Curative/palliative tumour dose
- S Tolerance dose for normal tissues
- S Fractionation scheme

S Physics parameters (*clinical physicist*)

- S Radiation geometry: beams numbers and angles
- S Beam shapes and intensity profiles

Beam numbers and angles

"Cross-firing beams" is basic principle to add up dose in tumour and keep dose in healthy tissue low

Beam shapes and intensity profiles

§ Conventional RT

- s rectangular beam shape
- S uniform intensity distribution

§ 3D-Conformation RT (3D-CRT)

- S MLC: irregular beam shape
- S uniform intensity distribution

S Intensity-modulated RT (IMRT)

S non-uniform intensity distribution for tumour dose escalation and improved healthy tissue sparing

IMRT principle

- § Intensity modulation of beam profiles
- S Conformation of high-dose region
 to concave tumour anatomy

Optimisation problems in radiotherapy

- **Seam number problem:** How many beams should be used?
- **S** Beam direction problem: What are optimal incidence angles?
- **S** Beam intensity problem: How to find optimal beam profiles?
- **Seam aperture problem:** How to set MLC apertures?
- **Fractionation problem:** How to adapt to treatment response?

Optimisation problems in radiotherapy

- **Seam number problem:** How many beams should be used?
- **S Beam direction problem:** What are optimal incidence angles?
- **Seam intensity problem:** How to find optimal beam profiles?
- **S Beam aperture problem:** How to set MLC apertures?
- **§ Fractionation problem:** How to adapt to treatment response?

Beam shapes and intensity profiles

S Beam shaping

S Multi leaf collimator (MLC) with tungsten leafs

S Beam intensity modulation

- S "Step-and-shoot" delivery
- S Fluence map

The "Fluence Map Optimisation" problem

S Definitions and terminology

 \leq pencil beams, bixel weights (w_i), dose distribution (d_i)

Clinical example: large-scale optimisation problem

- S Head & neck tumour:
 - minimum tumour dose
 - uniform tumour dose
 - spare salivary glands
 - spare spinal cord
 - spare eye lenses
- § 9 fixed coplanar beams~5000 bixel weights
- § ~40000 dose voxels

UMC 🛞 St Radboud

Mathematics of fluence map optimisation

S Definitions and terminology

S pencil beam matrix / "influence matrix" (P)

$$d_i(\mathbf{w}) = \sum_{j=1}^n P_{ij} w_j$$

$$\mathbf{d}(\mathbf{w}) = \mathbf{P}\mathbf{w}$$

NGB/LNMB Seminar "OR and Health Care", 19/1/2006

UMC 🕀 St Radboud

Mathematics of fluence map optimisation

§ Optimisation as *engineering design proces*

Mathematics of fluence map optimisation

S Cost functions

- *forward planning*: **evaluation** of resulting treatment plan
- *inverse planning*: **steer mechanism** for optimisation

forward planning

inverse planning

Mathematics of fluence map optimisation

S Objective functions:

- S MinDose (MaxDose): ROI should receive at least (at most) a certain prescribed dose level
- S MinDVH (MaxDVH): certain fraction of ROI should receive at least (at most) a certain prescribed dose level
- S **UniformDose**: ROI should receive a dose as close as possible to a certain prescribed dose level

S Constraint functions:

- § Same as above
- S MaxUniformity: dose variation in ROI should be less than a prescribed percentage

Mathematics of fluence map optimisation

S Least square based penalty functions

§ Min(Max) Dose:
$$F_k^r(\mathbf{d}) := \sum_{i \in V_j} \mu(d_i, d_k^p) \left(\frac{d_i - d_k^p}{d_k^p}\right)^2 \Delta v_i^j$$
,

$$\mu(d_i, d_k^p) := \left\{ \begin{array}{ll} H(d_k^p - d_i) & : & Min \; Dose \; {\rm function} \\ H(d_i - d_k^p) & : & Max \; Dose \; {\rm function} \end{array} \right.$$

1

Mathematics of fluence map optimisation

S Least square based penalty functions

§ Uniform Dose:
$$F_k^r(\mathbf{d}) := \sum_{i \in V_i} \mu(d_i, d_k^p) \left(\frac{d_i - d_k^p}{d_k^p}\right)^2 \Delta v_i^j$$
,

 $\mu(d_i, d_k^p) = 1.$

Single-objective optimisation model

S Problem definition

 $\min_{\mathbf{w}} F(\mathbf{d}(\mathbf{w}))$ s.t. $\mathbf{w} \in [0, 1]^n$.

S Weighting method: $F(\mathbf{d}(\mathbf{w})) := \sum_{k=1}^{l} \lambda_k F_k(\mathbf{d}(\mathbf{w})).$ $\lambda_k \ge 0$

 $F(\mathbf{d}(\mathbf{w})) = \lambda_1 F_1(\mathbf{d}(\mathbf{w})) + \lambda_2 F_2(\mathbf{d}(\mathbf{w})) + \ldots + \lambda_l F_l(\mathbf{d}(\mathbf{w}))$

S Weighting factors express relative importance of conflicting objectives

Single-objective optimisation model

S Weighting factors

- S ... have no direct clinical meaning S ... have no direct clinical m
- S ... must be determined empirically by a trial-and-error proces
- S ... define an *a priori* choice for the trade-off between conflicting objectives

CollabORation: UvT and UMCN

§ Interactive decision-support for treatment planning

- S Handling of multiple objectives without artificial weighting factors
- S Sensitivity analysis of changes to objective functions
- S Develop tools for *a posteriori* decision-making

S Problem definition

$$\min_{\mathbf{w}} \mathbf{F}(\mathbf{d}(\mathbf{w})) = \begin{pmatrix} F_1(\mathbf{d}(\mathbf{w})) \\ F_2(\mathbf{d}(\mathbf{w})) \\ \vdots \\ F_l(\mathbf{d}(\mathbf{w})) \end{pmatrix}$$

s.t. $\mathbf{w} \in [0, 1]^n$.

TILBURG + UNIVERSITY UMC St Radboud

S Pareto optimality:

Definition 2.1. An optimization (variable) vector $\mathbf{x}^* \in \mathcal{X}$ (in our case, $\mathbf{x}^* = \mathbf{d}(\mathbf{w}^*)$) is *Pareto optimal* (PO) for problem (5) if there does not exist another optimization vector $\mathbf{x} \in \mathcal{X}$ such that $F_i(\mathbf{x}) \leq F_i(\mathbf{x}^*)$ for all i = 1, ..., l, and $F_j(\mathbf{x}) < F_j(\mathbf{x}^*)$ for at least one index j.

Multi-objective optimisation model

S Pareto optimisation

Set of all solutions for which no objective can be improved without deteriorating at least one of the other objectives

TILBURG 🔶

- S There exists no single best solution, but instead there is a set of **best compromises**
- S This set is called the "Pareto efficient frontier" (PEF)

• UNIVERSITY UMC St Radboud

Multi-objective optimisation model

S How to generate Pareto efficient solutions?

S Weighted Sum method:

$$\min_{\mathbf{x}} \quad \sum_{k=1}^{l} \lambda_k F_k(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathcal{X}$.

E-constraint method:

$$\min_{\mathbf{x}} F_k(\mathbf{x})$$

s.t. $F_j(\mathbf{x}) \le \varepsilon_j$ for all $j = 1, \dots, l, \quad j \ne l,$
 $\mathbf{x} \in \mathcal{X},$

TILBURG + UNIVERSITY UMC St Radboud

S Pros & Cons

- **S** Weighted Sum (WS) method:
 - + simple and computational efficient
 - + does not change the constraint set of the problem

TILBURG 🔶

- a priori unclear how to choose the weights
- provides unique solution for convex problems only

E-constraint (EC) methode:

- + *a priori* determine where to generate new Pareto point
- + gives unique solution for non-convex problems
- changes the constraint set of the problem
- slower than WS method

• UNIVERSITY UMC St Radboud

S Clinical example

S Aim: Quantify the trade-off between *target dose heterogeneity* (TDH) and *mean parotid dose* (MPD) for a fixed *mean target dose* (46 Gy)

S Result for *E*-constraint method

Tilburg 🔶

• UNIVERSITY UMC St Radboud

- **S** Pareto Efficient Frontier (PEF)
 - S ... is convex for a **convex optimisation problem**

Tilburg 🔶

• UNIVERSITY UMC St Radboud

S Convex optimisation problem:

1. Feasible design space \mathcal{X} is convex

 $\mathbf{w} \in [0,1]^n$ is *n*-dim hypercube

• UNIVERSITY UMC () St Radboud

2. Objective functions are convex

Lemma 1. A real-valued function f is convex (concave) if and only if its Hessian is positive (negative) semidefinite. It is strictly convex (concave) if and only if its Hessian is positive (negative) definite.

TILBURG 🔶

Definition. An $n \times n$ matrix P is called positive (negative) semidefinite if $x^T P x \ge (\le) 0$ for all real vectors denoted by x, and positive (negative) definite if $x^T P x > (<) 0$ for $x \ne 0$.

Sandwich algorithm for convex objective functions

TILBURG 🔶

NGB/LNMB Seminar "OR and Health Care", 19/1/2006

• UNIVERSITY UMC St Radboud

- **§** Iterative strategies to generate a new Pareto solution
- S Generate new solution where:
 - S ... difference between upper and lower bound is maximal (*MaxError*)

TILBURG 🔶

- S ... area of uncertainty triangle is maximal (*MaxArea*)
- S ... Hausdorff distance is maximal (*MaxHaus*)
 - = maximum distance between shortest distances between upper and lower bounds

• UNIVERSITY UMC () St Radboud

§ Iterative algorithm using the *MaxHaus* criterion

TILBURG 🔶

• UNIVERSITY UMC () St Radboud

S Comparison of iterative strategies

TILBURG 🔶

a.hoffmann@rther.umcn.nl

NGB/LNMB Seminar "OR and Health Care", 19/1/2006

• UNIVERSITY UMC () St Radboud

§ Fluence Map Interpolation

TILBURG + UNIVERSITY UMC St Radboud

Conclusions

S Radiotherapy & Operations Research

- S Various optimisation problems occur in RT
- S RT can benefit from OR optimisation techniques

TILBURG 🔶

- S Other RT optimisation problems to be solved ...
- S OR meets RT: $2 RT OR \neg (2 RT)$?

• UNIVERSITY UMC St Radboud

Acknowledgement

- § Henk Huizenga
- § Hans Kaanders

- § Dick den Hertog
- § Alex Siem
- § Marianne van Lent