

Utility and Usefulness of stochastic risk models for strategic pension policies

Huub van Capelleveen

Cardano Risk Management

Januari 20th 2005

www.cardano-riskmanagement.com

Investment policy and risk management:

Last effective control?

Controls within **Risk & Asset Management**

Increased interest in ...

- Corporate Governance
- Riskmanagement
- Accountancy

"I, too, bate being a greedy bastard, but we have a responsibility to our sharebolders."

Valuation techniques

Option valuation

- Black & Scholes THE innovation 20th century
- Later modifications endless
 - Bi- en Tri-nominal trees, Monte Carlo etc.
 - Multi-factor, stochastic volatility etc.
 - However, B&S "still rules" as basis
- Application in
 - Explicit options (Exchange traded, Over The Counter)
 - Embedded Options [embedded in 'normal' products or policies]
 - Real options [investment problem = option problem]
- Risk adjusted valuation of all returns (RAROC)
 - Arbitrage free principle, so B&S dominates again

Difference between ALM and Arbitrage free valuation

- Two apparently different approaches: ALM and arbitrage free
 - ALM
 - Simulationmodel, modelled with embedded VAR-model
 - Long term averages based on (subjective) expectation
 - Usually "adjusted" Normal distributions for 1 year returns
 - Arbitrage free valuation
 - Theoretical framework for valuation of derivatives
 - Compose a different hedge strategy which gives together with the derivative for all possible outcomes the same result as a riskless interest generating position (martingale)
 - Integrate over all possible solutions
 - Long term 'expectation' based on forward pricing
 - Usually lognormal distributions
- ALM and arbitrage free valuation seem to contradict

How to make ALM and Arbitrage free compatible

- Valuation of derivatives has to be consistent with ALM (VAR) model
- Requirement: arbitrage free valutation
 - Equivalent Martingale Measure (EMM): all discounted tradables are martingale
 - Change of measure is equivalent to drift adjustment (Girsanov's theorem)
 - All aspects of ALM disappear or change in arbitrage free context: mean reversion, auto correlation and cross correlation
- Based on an EMM model we can value all sorts of (embedded) options
- Challenge: very time consuming: determine on every point in time for every scenario an embedded VAR model under EMM

What can go wrong?

- If a model is not arbitrage free:
 - Money machines can easily be generated
 - Especially dangerous when optimizing
- Notionals are very big so mispricing will have large effects
- Small deviations usually blow up in ALM (error-onerror)
- Adjust prices to the market: bid-ask, liquidity etc.
 - Take into account discrepancy between theoretical price and market prices

How to optimize the strategy

- Determine the risk
 - Case: the interest rate risk in FV context
 - Nominal interest versus real interest (inflation linked)
- Determine which risks are efficient in a risk/return context
 - Case: fully hedged or under/over hedging
 - Risk and Return are multi criteria
 - Funding level vs contribution vs average indexation
 - Underfunding vs high contributions vs no indexation
 - Different ambitions at different risk levels represent the concave utility function
 - Importance of Risk and Return criteria differ per horizon
- Using an ALM model we optimize
 - Educated trial and error vs optimization shell
 - Boundary conditions from regulator

Interest rate risk: What to do and how?

- Fully hedge the interest rate risk?
 - Don't base hedge solely on duration of bonds and the liabilities
 - Take into account (cross/auto) correlation with other asset classes
 - Take the indexation ambition into account:
 - Interest rate risk partially real, partially nominal
 - Do you have to hedge the real liabilities?

→ How to optimize the interest rate hedge?

Efficiency in ALM: nominal hedge

Nominal versus real hedge (inflation swap)

Long term: Inflation swaps are a good alternative

Nominal and real hedge combined

A mix of nominal and inflation swaps is even more effective on a long horizon, and nearly as effective on a short horizon

Effective strategies for interest rate risk

- In case of low funding ratio and short horizon restrictions:
 - Nominal hedge effective
- Long term:
 - Combination nominal and inflation swaps effective
- Optimal: dynamic interest rate risk strategies
 - Mostly nominal in case of low funding
 - Increasingly real at higher funding ratios
- How to cope with different horizons in optimalization?

How to cope with different horizons

 One horizon: minimize contribution given risk budget on a long horizon (5yr, 10yr, 30yr)

Impact nFTK: 1yr solvency requirement

• Optimal solution on long horizon no longer allowed:

Alternative asset allocations

- Some sub optimal asset allocation, pass 1yrs solvency requirement
- Given the FTK-restrictions, these allocations can become optimal

- Optimize asset allocation according to risk budget, 1yr solvency requirement is a constraint
- The 1yr solvency requirement implies a new Efficient Frontier
- New asset allocations should be efficient with risk budget on a long and a short horizon
- Use a wider range of products

Robustness parameters

- Key parameters in ALM
 - Expected long term interest rate (mean reversion level)
 - Expected risk premium
 - Expected volatility
 - Long term correlations
- Optimal strategies given a set of parameters should also be robust for other sets
 - More robust nearly optimal strategies can be preferable
 - Optimize over different parameters
 - Minimax problem
 - Game theory: see key parameters as opponents

Conclusion

- Active financial risk management increasingly important for pension funds
- Derivatives can help substantially
- Optimization in ALM difficult
 - Multi criteria
 - Multi horizon
 - Multi parameters

"Winning is crucial to my retirement plans."