

Pricing insurance contracts: an incomplete market approach

20 January 2005 Antoon Pelsser

Setting the stage

- Arbitrage-free pricing: standard method for financial markets
- Assume complete market
 - Every payoff can be replicated
 - Every risk is hedgeable

- Insurance "markets" are *incomplete*
 - Insurance risks are un-hedgeable
 - But, financial risks are hedgeable

Aim of This Presentation

- Find pricing rule for insurance contracts consistent with arbitrage-free pricing
 - "Market-consistent valuation"
 - Basic workhorse: utility functions
 - Price = BE Repl. Portfolio + MVM

Outline

- Recap of Arbitrage-free pricing
- Utility Functions
- Optimal Wealth
- Principle of Equivalent Utility
- Pricing Insurance Contracts

Arbitrage-free Pricing-Formulas

• "Risk-neutral" formula:

$$f_0 = e^{-r} [\pi^* f_u + (1 - \pi^*) f_d]$$

 $\pi^* = (e^r - d)/(u - d); 1 - \pi^* = (u - e^r)/(u - d)$

- $f_0 = e^{-r} E^Q[f_1]$
- Deflator formula:

 f₀ = [p f_u R_u + (1-p) f_d R_d]
 R_u = e^{-r} π^{*}/p; R_d = e^{-r} (1-π^{*})/(1-p)

 f₀ = E^P[f₁ R₁]

Utility Functions

- Economic agent has to make decisions under uncertainty
- Choose "optimal" investment strategy for wealth W₀
- Decision today \Rightarrow uncertain wealth W_T
- Make a trade-off between gains and losses

Utility Functions - Examples

- •Exponential utility: •Power utility:
 - $U(W) = -e^{-aW} / a$
 - RA = a

- $U(W) = W^{(1-b)} / (1-b)$
- RA = b/W

Optimal Wealth

- Maximise expected utility $E^{P}[U(W_{T})]$
- By choosing optimal wealth W_{T}

$$\max_{W_T} \mathbf{E}^{\mathbf{P}} [U(W_T)]$$

s.t. $\mathbf{E}^{\mathbf{P}} [W_T R_T] = W_0$

First order condition for optimum

• $U'(W_T^*) = \lambda R_T$

- Solution: $W_T^* = (U')^{-1} (\lambda R_T)$
 - Intuition: buy "cheap" states & spread risk
 - Solve λ from budget constraint

Optimal Wealth - Example

- Black-Scholes economy
- Exp Utility: $U(W) = -e^{-aW} / a$
- Condition for optimal wealth:
 - $U'(W_T^*) = \lambda R_T$
 - $\exp\{-aW_T^*\} = \lambda C S_T^{-\theta}$
 - $\theta = (\mu r)/\sigma^2$ (market price of risk)
- Optimal wealth: $W_T^* = C^* + \theta/a \ln(S_T)$
 - Solve C^{*} from budget constraint

Principle of Equivalent Utility

- Economic agent thinks about selling a (hedgeable) financial risk H_{τ}
 - Wealth at time $T = W_T H_T$

- What price π_0 should agent ask?
- Agent will be *indifferent* if expected utility is unchanged:

$$\max_{W_T^*} \mathbf{E}^{\mathbf{P}} \left[U(W_T^*) \right] = \max_{W_T^{*\pi}, \pi_0} \mathbf{E}^{\mathbf{P}} \left[U(W_T^{*\pi} - H_T) \right]$$

Principle of Equivalent Utility (2)

- Principle of Equivalent Utility is consistent with arbitrage-free pricing for *hedgeable* claims
- Principle of Equivalent Utility can also be applied to insurance claims
 - Mixture of financial & insurance risk
 - Mixture of hedgeable & un-hedgeable risk
- Literature:
 - Musiela & Zariphopoulou
 - V. Young

Pricing Insurance Contracts

- Assume insurance claim: $H_T I_T$,
- Hedgeable risk H_T
 - cash amount C
 - stock-price S_T
- Insurance risk I_T
 - number of policyholders alive at time T
 - 1 / 0 if car-accident does (not) happen
 - salary development of employee

Pricing Insurance Contracts

- Apply principle of Equivalent Utility $\max_{W_T^*} \mathbf{E}^{\mathbf{P}} \Big[U(W_T^*) \Big] = \max_{W_T^{*\pi}, \pi_0} \mathbf{E}^{\mathbf{P}} \Big[U(W_T^{*\pi} - H_T I_T) \Big]$
- Find price π_0 via solving "right-hand" optimisation problem

$$\max_{W_T^{*\pi}} \mathbf{E}^{\mathbf{P}} \left[U(W_T^{*\pi} - H_T I_T) \right]$$

s.t.
$$\mathbf{E}^{\mathbf{P}} \left[W_T^{*\pi} R_T \right] = W_0 + \pi_0$$

Pricing Insurance Contracts (2)

- Consider specific example: life
 insurance contract
 - Portfolio of N policyholders
 - Survival probability p until time T
 - Pay each survivor the cash amount C
- Payoff at time T = Cn
 - *n* is (multinomial) random variable
 - E[*n*] = *Np*
 - Var[*n*] = *Np*(1-*p*)

Pricing Insurance Contracts (3)

- Solve optimisation problem: $\max_{W_T^{*\pi}} \mathbf{E}^{\mathbf{P}} \left[U(W_T^{*\pi} - Cn) \right]$ s.t. $\mathbf{E}^{\mathbf{P}} \left[W_T^{*\pi} R_T \right] = W_0 + \pi_0$
- Mixture of random variables
 - W,R are "financial" risks
 - *n* is "insurance" risk
- "Adjusted" F.O. condition

Pricing Insurance Contracts (4)

Necessary condition for optimal wealth:

$$\mathbf{E}^{\mathbf{PU}} \Big[U'(W_T^{*\pi} - Cn) \Big] = \lambda R_T$$

- E^{PU}[] does not affect "financial" W_T
- E^{PU}[] only affects "insurance" risk n
- Exponential utility:
 - $U'(W-Cn) = e^{-a(W-Cn)} = e^{-aW}e^{aCn}$

$$\mathbf{E}^{\mathbf{PU}}[e^{-a\left(W_T^{*\pi}-Cn\right)}] = e^{-aW_T^{*\pi}}\mathbf{E}^{\mathbf{PU}}[e^{aCn}] = \lambda R_T$$

Pricing Insurance Contracts (5)

- For large N: $n \rightarrow n(Np, Np(1-p))$
 - MGF of $z \sim n(m, V)$: E[e^{tz}] = exp{ $t m + \frac{1}{2}t^2V$ }

- Hence:
 - E^{PU}[e^{aCn}] = exp{ aC Np + ¹/₂(aC)² Np(1-p) }

• Equation for optimal wealth:

$$e^{-aW_T^{*\pi}}e^{aCNp+\frac{1}{2}a^2C^2Np(1-p)} = \lambda R_7$$

Pricing Insurance Contracts (6)

• Solution for optimal wealth:

- Price of insurance contract:
 - $\pi_0 = e^{-rT}(CNp + \frac{1}{2}aC^2Np(1-p))$
 - "Variance Principle" from actuarial lit.

Observations on MVM

- MVM ∝ ½ Risk-av * Var(Unhedg. Risk)
 - Note: MVM for "binomial" risk!
 - "Diversified" variance of all unhedgeable risks
- Price for *N*+1 contracts:
 - $e^{-rT}(C(N+1)p + \frac{1}{2}aC^{2}(N+1)p(1-p))$
- Price for extra contract:
 - e^{-rT}(Cp + ¹/₂aC²p(1-p))

Observations on MVM (2)

- Sell 1 contract that pays C if policyholder N dies
 - Death benefit to N's widow
 - Certain payment C + (N-1) uncertain
 - Price: $e^{-rT}(C + C(N-1)p + \frac{1}{2}aC^{2}(N-1)p(1-p))$
- Price for extra contract:
 - e^{-rT}(C(1-p) ¹/₂aC²p(1-p))
 - BE + negative MVM!
 - Give bonus for diversification benefit

Incremental Pricing of Insurance

- Existing liability portfolio L
 - Rep = $BE_L + \frac{1}{2} RA \sigma_L^2$
 - σ_L^2 is variance of unhedgeable risk of *L*
- Additional claim C
 - Correlation ρ between unhedg. risks *L*,*C*
 - Rep = (BE_L+BE_C) + $\frac{1}{2}$ RA ($\sigma_L^2 + 2\rho\sigma_L\sigma_C + \sigma_C^2$)
- Rep for contract C:
 - $BE_{C} + \frac{1}{2} RA (2\rho\sigma_{L}\sigma_{C} + \sigma_{C}^{2})$
 - MVM depends on existing portfolio L

