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Setting the stage

• Arbitrage-free pricing: standard 
method for financial markets

• Assume complete market
• Every payoff can be replicated
• Every risk is hedgeable

• Insurance “markets” are incomplete
• Insurance risks are un-hedgeable
• But, financial risks are hedgeable



Aim of This Presentation

• Find pricing rule for insurance 
contracts consistent with arbitrage-free 
pricing
• “Market-consistent valuation”
• Basic workhorse: utility functions
• Price = BE Repl. Portfolio + MVM



Outline

• Recap of Arbitrage-free pricing
• Utility Functions
• Optimal Wealth
• Principle of Equivalent Utility
• Pricing Insurance Contracts



Arbitrage-free Pricing-Formulas

• “Risk-neutral” formula:
ƒ0 = e-r [π* ƒu + (1–π*) ƒd ]
π* = (er-d)/(u-d); 1-π* = (u-er)/(u-d)

• ƒ0 = e-r EQ[ ƒ1 ]

• Deflator formula:
ƒ0 = [ p ƒu Ru + (1–p) ƒd Rd ]
Ru = e-r π*/p; Rd = e-r (1-π*)/(1-p)

• ƒ0 = EP[ ƒ1 R1 ]



Utility Functions

• Economic agent has to make decisions 
under uncertainty

• Choose “optimal” investment strategy 
for wealth W0

• Decision today ⇒ uncertain wealth WT

• Make a trade-off between gains and 
losses



Utility Functions - Examples
•Exponential utility:

• U(W) = -e-aW / a
• RA = a

•Power utility:
• U(W) = W(1-b) / (1-b)
• RA = b/W
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Optimal Wealth

• Maximise expected utility EP[U(WT)]
• By choosing optimal wealth WT

• First order condition for optimum
• U’(WT*) = λRT

• Solution: WT* = (U’)-1(λRT)
• Intuition: buy “cheap” states & spread risk
• Solve λ from budget constraint
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Optimal Wealth - Example

• Black-Scholes economy
• Exp Utility: U(W) = -e-aW / a
• Condition for optimal wealth:

• U’(WT
*) = λRT

• exp{-aWT
*} = λ C ST

-θ

• θ=(µ-r)/σ2 (market price of risk)
• Optimal wealth: WT

* = C* + θ/a ln(ST)
• Solve C* from budget constraint



Principle of Equivalent Utility

• Economic agent thinks about selling a 
(hedgeable) financial risk HT
• Wealth at time T = WT - HT

• What price π0 should agent ask?
• Agent will be indifferent if expected 

utility is unchanged:
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Principle of Equivalent Utility (2)

• Principle of Equivalent Utility is 
consistent with arbitrage-free pricing 
for hedgeable claims

• Principle of Equivalent Utility can also 
be applied to insurance claims
• Mixture of financial & insurance risk
• Mixture of hedgeable & un-hedgeable risk

• Literature:
• Musiela & Zariphopoulou
• V. Young



Pricing Insurance Contracts

• Assume insurance claim: HT IT,
• Hedgeable risk HT

• cash amount C
• stock-price ST

• Insurance risk IT
• number of policyholders alive at time T
• 1 / 0 if car-accident does (not) happen
• salary development of employee



Pricing Insurance Contracts

• Apply principle of Equivalent Utility

• Find price π0 via solving “right-hand” 
optimisation problem
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Pricing Insurance Contracts (2)

• Consider specific example: life 
insurance contract
• Portfolio of N policyholders
• Survival probability p until time T
• Pay each survivor the cash amount C

• Payoff at time T = Cn
• n is (multinomial) random variable
• E[n] = Np
• Var[n] = Np(1-p)



Pricing Insurance Contracts (3)

• Solve optimisation problem:

• Mixture of random variables
• W,R are “financial” risks
• n is “insurance” risk

• “Adjusted” F.O. condition
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Pricing Insurance Contracts (4)

• Necessary condition for optimal 
wealth:

• EPU[ ] does not affect “financial” WT
• EPU[ ] only affects “insurance” risk n

• Exponential utility:
• U’(W-Cn) = e-a(W-Cn) = e-aW eaCn
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Pricing Insurance Contracts (5)

• For large N: n → n( Np , Np(1-p) )
• MGF of z~n(m,V): E[etz] = exp{ t m + ½t2V }

• Hence: 
• EPU[ eaCn ] = exp{ aC Np + ½(aC)2 Np(1-p) }

• Equation for optimal wealth:
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Pricing Insurance Contracts (6)

• Solution for optimal wealth:

Surplus W* BE MVM

• Price of insurance contract:
• π0 = e-rT(CNp + ½aC2Np(1-p))
• “Variance Principle” from actuarial lit.
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Observations on MVM

• MVM ∝ ½ Risk-av * Var(Unhedg. Risk)
• Note: MVM for “binomial” risk!
• “Diversified” variance of all unhedgeable

risks

• Price for N+1 contracts:
• e-rT(C(N+1)p + ½aC2(N+1)p(1-p))

• Price for extra contract:
• e-rT(Cp + ½aC2p(1-p))



Observations on MVM (2)

• Sell 1 contract that pays C if 
policyholder N dies
• Death benefit to N’s widow
• Certain payment C + (N-1) uncertain
• Price: e-rT(C + C(N-1)p + ½aC2(N-1)p(1-p))

• Price for extra contract:
• e-rT(C(1-p) - ½aC2p(1-p))
• BE + negative MVM!
• Give bonus for diversification benefit



Incremental Pricing of Insurance

• Existing liability portfolio L
• Rep =  BEL + ½ RA σL

2

• σL
2 is variance of unhedgeable risk of L

• Additional claim C
• Correlation ρ between unhedg. risks L,C
• Rep = (BEL+BEC) + ½ RA (σL

2+2ρσLσC+σC
2)

• Rep for contract C:
• BEC + ½ RA (2ρσLσC+σC

2)
• MVM depends on existing portfolio L
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