ABN·AMRO Asset Management

The Practice of Financial Optimization

Bart Oldenkamp ABN AMRO Asset Management January 20, 2005

Agenda

1. Optimization in asset management

2. Case study A: Modelling derivatives in strategic asset allocation

3. Case study B: Minimizing implementation costs

4. Conclusion

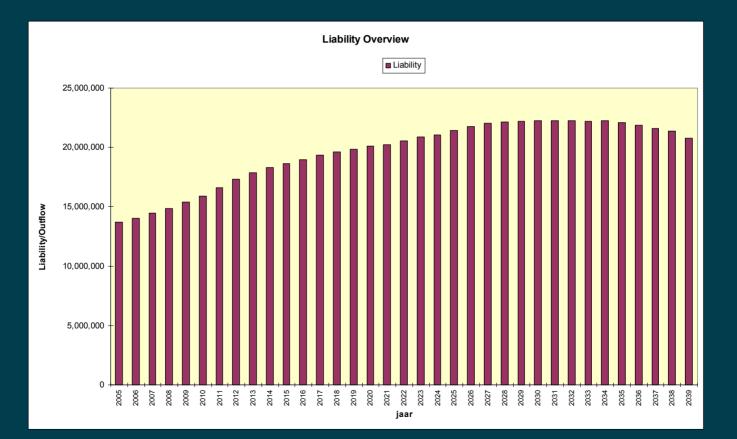
Optimization in Asset Management

- Given investor's liabilities, how to allocate money to the various asset classes (stocks, bonds, property, etc)?
- Given a targeted investment in an asset class (e.g. stocks), what mix of asset managers to choose?
- Given a portfolio, how to select the securities (e.g. which stocks to buy)?

The relevance of optimization to asset management

- Optimization issues arise at all decision levels in asset management
- But do decision makers often use optimization as a decision tool?
 - No, at least not explicitly
- Optimization more regularly used at higher levels of decision making/consulting
 - asset allocation for pension funds
 - asset allocation for insurance companies

Two cases on optimization


 First case: An area where optimization is frequently used, but may lead to undesirable outcomes

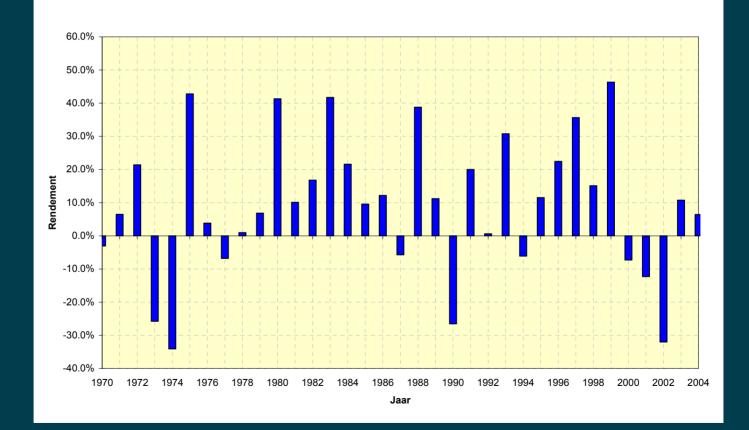
 Second case: An area where optimization is not frequently used (yet), but may be very beneficial

Case Study: Modelling derivatives in Strategic Asset Allocation

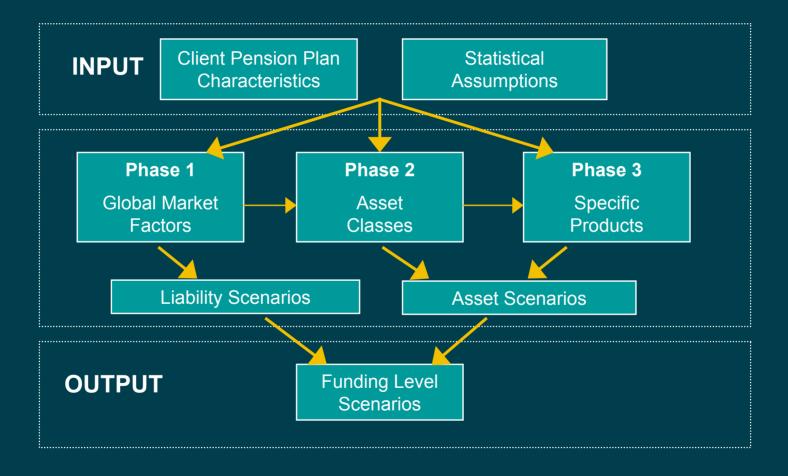
A typical nominal liability profile of a pension fund

The challenge to pension funds

Choose an asset allocation such that

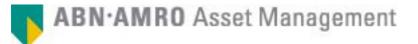

- The probability that pension payments can not be met, is kept at a minimum
- The likelihood that pension payments can be adjusted for inflation, is as high as possible
- Contributions to the pension fund are kept at an acceptable level with preferably little variation

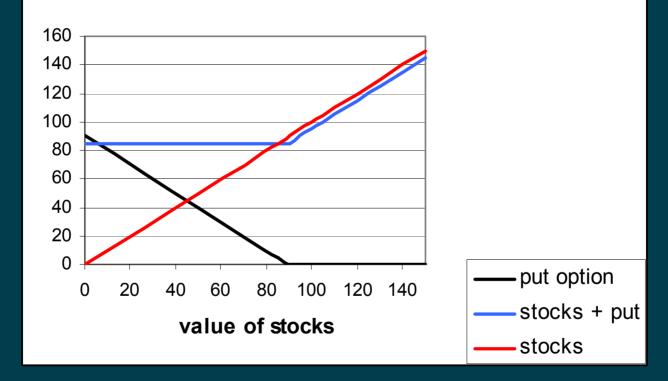
Just matching the nominal liabilities will not do the job!



100% in Global Equity (stocks)?

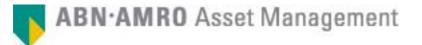
MSCI World August 2000 – March 2003: -54%

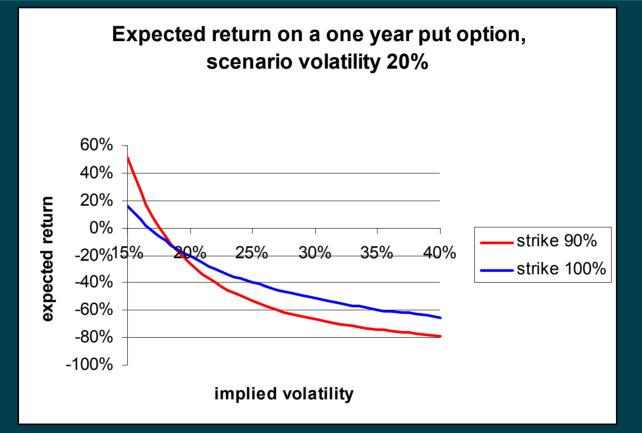

The AAAM Advisory Model


Pension funds: the case for derivatives

- A lot of pressure on short term funding risk from regulatory authorities
- Conventional asset allocation of just stocks and bonds often imply too much risk for a given expected return
- Derivatives may be used to adjust the return distribution of stock returns or decrease interest rate risk
- Let us look at a simplified strategy: adding put options to control downside risk of stocks

Payoff profile of stocks and put option




Put options become more valuable if probability of large fluctuations in value of stocks is high

How to incorporate options in the model?

- Market prices for put options reflect what the consensus is regarding the standard deviation of future stock returns
- Models usually rely on historical data to set standard deviations of stock returns and return correlations
- Usually, the market implied standard deviation and the model standard deviation do not coincide
- How does this affect the outcome of the optimization process?

The expected return of a put option

Realistically, return on put anywhere in between -50% and +50% depending on today's price and assumptions!!

How to deal with this issue?

- Just ignore it (arbitrage?)
- Base the standard deviation of stock return scenarios on market consensus (*implied volatility*)
- Reprice the option according to the empirical standard deviation of return
- Derive the entire probability distribution of returns from option prices (but still OK time series characteristics?)
- Let scenarios be based on the option's pricing model + change of measure adjustment (but still OK time series characteristics?)
- In case of option strategies starting in the future: modelling stochastic volatility

How to deal with this issue (cont.)?

- choice of strategy depends on objectives:
 - tactical use of derivatives: use current price and empirically based scenarios
 - strategic use of derivatives: use uniform methodology to generate return scenarios and price options/derivatives
- optimization may lead to maximization of spurious profits
- at least make sure that scenario structure is arbitragefree
- uniform, theoretically appealing solution an open issue
 (?)

Case Study: Minimizing Implementation Costs

Conventional portfolio management:

- fundamental analysis of companies in the benchmark
- tracking error relative to a benchmark (e.g. MSCI Europe, World)
- stocks in the portfolio for the longer term excess return
- portfolio turnover usually not too large (100%)
- limits on country and sector deviations
- often some valuation model for the various companies in universe
- otherwise a qualitative approach

Many traditional money managers fit into this framework

Quantitative approach

Framework for quantitative portfolio management:

- based on statistical approach
- statistical model used to estimate which factors determine market prices of stocks: pricing model
 - past return based factors (e.g. last month return)
 - valuation factors
 - earnings estimations by analysts

Future return = a * Factor1 + b * Factor2 + + error

Quantitative approach (cont.)

- Error distribution yields probability distribution of excess return
- pricing model sets a ranking based on predicted excess returns (possibly risk-adjusted)
- buy the top x% percentile of your list
- run your model on a regular basis (e.g. monthly)
- result: a lot of turnover (>>100%)

Implementation costs

- Implementation costs include:
 - brokerage fees
 - market impact ("moving the market" as you trade)
 - delay costs
- Assume that you replace 50% of your portfolio on a monthly basis
- Assume implementation costs equal 0.6% (assuming sizeable portfolio)
- Annual implementation costs estimated at 3.6%
- Given realistic risk levels, targeted outperformance in range of 5% to 10% already quite an achievement
- Hence, implementation costs take out a very large chunk of potential outperformance!

Potential optimization framework

- Do not always hold top x% percentile of your list, but also account for costs of getting to new portfolio
- For each stock, take prob. distribution of excess return into account and estimate implementation costs
- Account for the various portfolio constraints (e.g.sector/country weights, deviations from benchmark)
- Optimize expected excess return of portfolio
- Rely on theoretical framework, not too much on empirical data
- Model ideally used to update portfolio on a daily basis or to determine optimal holding period for each stock

The optimization challenge

- Probably a linear problem
- Stochastic coefficients
- Multi-period framework

Common practice is to use rules of thumb.

Prove (sub)optimality of rules of thumb

Concluding remarks

- Optimization relevant to all levels of decision making in finance, but infrequently used in practice
- Optimization and data: a bad relationship
- Fixing the data issue in finance: use finance theory
- Potential applications that have not been addressed yet

