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The Assortment Optimization Problem

Multinomial logit model: 
Choice model: Luce (’59), Plackett (’75)

Optimization:   Talluri & van Ryzin (’04), Rusmevichientong et al. (’10) 
                        and Davis et al. (’13) for cardinality constraints


Markov chain model: 
Choice model: Zhang & Cooper (’05), Blanchet et al. (’16), 
                        Simsek & Topaloglu (’18) for estimation

Optimization:   Blanchet et al. (’16), Feldman & Topaloglu (’17), 
                        Désir et al. (’20) for cardinality constraints


Preference ranking model: 
Choice model: Farias et al. (’13), van Ryzin & Volcano (’15, ’17)

Optimization:   Honhon et al. (’12), Aouad et al. (’18, ’21), 
                        Paul et al. (’18), Bertsimas & Mišić (’19)
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The bias-variance tradeoff in choice models:
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Bishop (2006), Pattern Recognition and Machine Learning (Springer).

Hastie et al. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer).
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Uncertainty
Combining estimation with optimization amplifies errors:
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“Post-decision disappointment” 
“error-maximization effect of optimization”

Michaud (1989), Financial Analysts Journal 45(1):31–42. Smith & Winkler (2006), Management Science 52(3):311–322. 
DeMiguel & Nogales (2009), Operations Research 57(3):560–577. 
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Uncertainty

The robust optimization paradigm to combat estimation errors:
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anticipating 
the worst caseBen-Tal et al. (2009), Robust Optimization (Princeton University Press).


Bertsimas & den Hertog (2022), Robust and Adaptive Optimization (Dynamic Ideas).
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The Robust Assortment Optimization Problem
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The Robust Assortment Optimization Problem

Multinomial logit model: 
Rusmevichientong & Topaloglu (’12) solve robust assortment 
optimization problem under uncertain product valuations; 
revenue-ordered assortments remain optimal


Markov chain model: 
Désir et al. (’21) use robust MDP-type algorithms to solve robust 
assortment optimization problem under uncertain arrival rates and 
transition probabilities


Preference ranking model: 
Farias et al. (’13) estimate worst-case revenues for fixed assortment 
under uncertain preference distributions

Bertsimas & Mišić (’17) solve robust assortment optimization problem 
under uncertain preference distributions
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The Randomized Robust Assortment Optimization Problem
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The Randomized Robust Assortment Optimization Problem

Why does randomization help?

3 “Managerial” Interpretation:

p1 p2 p3

randomization = diversification

But divide your investments 
among many places, 
for you do not know 

what risks might lie ahead.
(Book of Ecclesiastes)

My ventures are not in one bottom trusted, 
Nor to one place; nor is my whole estate 

Upon the fortune of this present year: 
Therefore, my merchandise makes me not sad.

(Merchant of Venice)
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When does randomization improve the worst-case profit?

Is in-sample improvement = out-of-sample improvement?

How can we compute optimal randomized assortments?

How can we implement optimal randomized assortments?

1.

2.

3.

4.
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Implementation: The E-Commerce Setting

hair dryer|

hair dryer|

Randomization across different users:

Each user’s experience can be kept consistent via cookies.



Implementation: The Brick-and-Mortar Setting

https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/

Randomization across retail stores:

Possible for larger chains, not suitable for individual stores.

https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/


Agenda

Implementing Randomized Assortments

When Does Randomization Help?

Computing Randomized Assortments

Numerical Experiments

1

2

3

4



Definitions

(Nominal) Assortment optimization problem: (𝒩, 𝒮, ℭ, r) where

: set of products

: set of admissible assortments


: choice model;  if 

: product prices

𝒩 = {1,…, N}
𝒮 ⊆ {S : S ⊆ 𝒩}
ℭ : 𝒮 → Δ(𝒩0) ℭ(i |S) = 0 i ∉ S
r = (r1, …, rN)



Definitions

(Nominal) Assortment optimization problem: (𝒩, 𝒮, ℭ, r) where

: set of products

: set of admissible assortments


: choice model;  if 

: product prices

𝒩 = {1,…, N}
𝒮 ⊆ {S : S ⊆ 𝒩}
ℭ : 𝒮 → Δ(𝒩0) ℭ(i |S) = 0 i ∉ S
r = (r1, …, rN)

R⋆
nom = max

S∈𝒮
R(S)

where R(S) = ∑
i∈S

ri ⋅ ℭ(i |S)



Definitions

Robust Assortment optimization problem: (𝒩, 𝒮, ℭ, 𝒰, r) where

: uncertainty set

: choice model;  if 

𝒰
ℭ : 𝒮 × 𝒰 → Δ(𝒩0) ℭ(i |S, u) = 0 i ∉ S



Definitions

Robust Assortment optimization problem: (𝒩, 𝒮, ℭ, 𝒰, r) where

: uncertainty set

: choice model;  if 

𝒰
ℭ : 𝒮 × 𝒰 → Δ(𝒩0) ℭ(i |S, u) = 0 i ∉ S

R⋆
det(𝒰) = max

S∈𝒮
min
u∈𝒰

R(S, u)

where R(S, u) = ∑
i∈S

ri ⋅ ℭ(i |S, u)



Definitions

Robust Assortment optimization problem: (𝒩, 𝒮, ℭ, 𝒰, r) where

: uncertainty set

: choice model;  if 

𝒰
ℭ : 𝒮 × 𝒰 → Δ(𝒩0) ℭ(i |S, u) = 0 i ∉ S

R⋆
det(𝒰) = max

S∈𝒮
min
u∈𝒰

R(S, u)

where R(S, u) = ∑
i∈S

ri ⋅ ℭ(i |S, u)

Randomized Assortment optimization problem:

R⋆
rand(𝒰) = max

p∈Δ(𝒮)
min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u)



Definitions

Robust Assortment optimization problem: (𝒩, 𝒮, ℭ, 𝒰, r) where

: uncertainty set

: choice model;  if 

𝒰
ℭ : 𝒮 × 𝒰 → Δ(𝒩0) ℭ(i |S, u) = 0 i ∉ S

R⋆
det(𝒰) = max

S∈𝒮
min
u∈𝒰

R(S, u)

where R(S, u) = ∑
i∈S

ri ⋅ ℭ(i |S, u)

Randomized Assortment optimization problem:

rand.-proof if
R⋆

rand(𝒰) = R⋆
det(𝒰)

rand.-receptive 
otherwise

R⋆
rand(𝒰) = max

p∈Δ(𝒮)
min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u)



Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)

McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13–29.
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Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

v1 v2 v3 v4

Purchase probability:     if   
vi

v0+∑j∈S vj
i ∈ S selected assortment

outside option
Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)

McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13–29.



Popular Choice Models

Multinomial Logit

H
el

pf
ul

?



Popular Choice Models

Multinomial Logit

H
el

pf
ul

?



Popular Choice Models

Multinomial Logit

H
el

pf
ul

?



Popular Choice Models

Multinomial Logit

H
el

pf
ul

?
C

om
pl

ex
ity



Popular Choice Models

Multinomial Logit

H
el

pf
ul

?
C

om
pl

ex
ity n/a



Popular Choice Models

Multinomial Logit Markov Chain Preference Ranking
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Computing Randomized Assortments

Randomized Assortment optimization problem:

R⋆
rand(𝒰) = max

p∈Δ(𝒮)
min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u)

Robust optimization problem with two challenges:

1.

2.

exponentially many decision variables

(typically) hard-to-evaluate objective function



Two-Layer Primal-Dual Solution Approach
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Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

Indeed: max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = max
p∈Δ(𝒮)

min
κ∈Δ(𝒰) ∑

S∈𝒮
∫u∈𝒰

pS ⋅ R(S, u) κ(du)

max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = min
κ∈Δ(𝒰)

max
S∈𝒮 ∫u∈𝒰

R(S, u) κ(du)

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, 
INFORMS Journal on Computing 34(1):333-353 



Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

Indeed: max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = max
p∈Δ(𝒮)

min
κ∈Δ(𝒰) ∑

S∈𝒮
∫u∈𝒰

pS ⋅ R(S, u) κ(du)

= min
κ∈Δ(𝒰)

max
p∈Δ(𝒮) ∑

S∈𝒮
∫u∈𝒰

pS ⋅ R(S, u) κ(du)

max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = min
κ∈Δ(𝒰)

max
S∈𝒮 ∫u∈𝒰

R(S, u) κ(du)

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, 
INFORMS Journal on Computing 34(1):333-353 



Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

Indeed:

= min
κ∈Δ(𝒰)

max
S∈𝒮 ∫u∈𝒰

R(S, u) κ(du)

max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = min
κ∈Δ(𝒰)

max
S∈𝒮 ∫u∈𝒰

R(S, u) κ(du)

max
p∈Δ(𝒮)

min
u∈𝒰 ∑

S∈𝒮

pS ⋅ R(S, u) = max
p∈Δ(𝒮)

min
κ∈Δ(𝒰) ∑

S∈𝒮
∫u∈𝒰

pS ⋅ R(S, u) κ(du)

= min
κ∈Δ(𝒰)

max
p∈Δ(𝒮) ∑

S∈𝒮
∫u∈𝒰

pS ⋅ R(S, u) κ(du)

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, 
INFORMS Journal on Computing 34(1):333-353 



Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

primal dual



Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

primal dual

max
p∈Δ(�̂�)

min
u∈𝒰 ∑

S∈�̂�

pS ⋅ R(S, u)

solve restricted primal

where  is “small”�̂� ⊆ 𝒮



Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

primal dual

max
p∈Δ(�̂�)

min
u∈𝒰 ∑

S∈�̂�

pS ⋅ R(S, u)

solve restricted primal solve restricted dual

where  is “small”�̂� ⊆ 𝒮 where  is “small”�̂� ⊆ 𝒰

min
κ∈Δ(�̂�)

max
S∈𝒮 ∑

u∈�̂�

κu ⋅ R(S, u)



Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

primal dual

max
p∈Δ(�̂�)

min
u∈𝒰 ∑

S∈�̂�

pS ⋅ R(S, u)

where  is “small”�̂� ⊆ 𝒮 where  is “small”�̂� ⊆ 𝒰

add worst-case 's to u⋆ �̂�

solve restricted primal solve restricted dual

min
κ∈Δ(�̂�)

max
S∈𝒮 ∑

u∈�̂�

κu ⋅ R(S, u)



Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

primal dual

max
p∈Δ(�̂�)

min
u∈𝒰 ∑

S∈�̂�

pS ⋅ R(S, u) min
κ∈Δ(�̂�)

max
S∈𝒮 ∑

u∈�̂�

κu ⋅ R(S, u)

where  is “small”�̂� ⊆ 𝒮 where  is “small”�̂� ⊆ 𝒰

add worst-case 's to S⋆ �̂�

solve restricted primal solve restricted dual
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We use this strong duality in the outer layer of our solution approach:

primal dual

max
p∈Δ(�̂�)

min
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S∈�̂�

pS ⋅ R(S, u)
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Figure 3 Data-driven experiment for the cardinality-constrained MNL problem. All optimality gaps are reported

relative to the expected revenues of the clairvoyant model that knows the true customer valuations.

size (i.e., from left to right in each graph) as well as the cardinality of the assortment (i.e.,

from the leftmost to the rightmost graph). This is expected as in both cases, the estimation

problem can rely on more data and hence becomes easier. In all cases, the randomized

robust model outperforms the deterministic robust model, which in turn outperforms the

nominal model. We emphasize that this is not a priori obvious as the deterministic and ran-

domized robust models use the available historical data for both estimation and parameter

selection, and hence have less data than the nominal model to estimate v̂. Interestingly,

for small cardinalities—where the estimation problem is most challenging—the random-

ized robust model significantly outperforms both the nominal and the deterministic robust

model. For larger cardinalities, the performance of the deterministic and randomized robust

models are becoming more similar. It is noteworthy, however, that the randomized robust

model is never performing worse than the deterministic robust model (in terms of average

optimality gap), while it is at the same time easier to solve (cf. Table 6).

7.2. The Markov Chain Problem

We next consider the MC model where the product prices are again selected uniformly

at random. We study the randomization-receptive cases of this problem identified in Sec-

tion 5, namely the cardinality-constrained problem under product-wise substitution sets,

and both the unconstrained and the constrained problem under general substitution sets.

We employ the factor model uncertainty sets outlined in Section 5.4 with K factors lead-

ing to uncertainty sets with 2K realizations under general substitution sets and (2K)n

realizations under product-wise substitution sets, respectively.

cardinality 1 cardinality 2 cardinality 3 cardinality 4

Data-driven experiment for MNL model:
random MNL instances with 10 products

purchase samples for random assortments under true model

MLE estimation (with budget uncertainty set for robust approaches)
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