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The Assortment Optimization Problem

* Multinomial logit model:
#* Choice model: Luce ('59), Plackett ('75)
# Optimization: Talluri & van Ryzin (’04), Rusmevichientong et al. (*10)
and Davis et al. ("13) for cardinality constraints
* Markov chain model:
# Choice model: Zhang & Cooper ('05), Blanchet et al. ("16),
Simsek & Topaloglu (’18) for estimation
* Optimization: Blanchet et al. ('16), Feldman & Topaloglu (*17),
Désir et al. ("20) for cardinality constraints
* Preference ranking model:
* Choice model: Farias et al. ('13), van Ryzin & Volcano ('15, ’17)
* Optimization: Honhon et al. ('12), Aouad et al. ('18, ’21),
Paul et al. ('18), Bertsimas & Misic ('19)
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Uncertainty

The bias-variance tradeoff in choice models:

| MNL model ' l MC/PR models '
~ ™)

~

=
&2 large bias g5 small bias
g small variance &P large variance
- Y - Y

underfitting overfitting

Bishop (2006), Pattern Recognition and Machine Learning (Springer).
Hastie et al. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer).




Uncertainty

Combining estimation with optimization amplifies errors:

-
MC/PR models '

~ | R
g» small bias

&° large variance
- y

( “Post-decision disappointment”
“error-maximization effect of optimization”
S

g

Michaud (1989), Financial Analysts Journal 45(1):31-42. Smith & Winkler (2006), Management Science 52(3):311-322.
DeMiguel & Nogales (2009), Operations Research 57(3):560-577.
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Uncertainty

The robust optimization paradigm to combat estimation errors:

assortment
optimization

- &

uncertainty set

anticipating

Ben-Tal et al. (2009), Robust Optimization (Princeton University Press). eStl m atl orl the worsSt case

Bertsimas & den Hertog (2022), Robust and Adaptive Optimization (Dynamic ldeas).
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The Robust Assortment Optimization Problem

* Multinomial logit model:

* Rusmevichientong & Topaloglu ('12) solve robust assortment
optimization problem under uncertain product valuations;
revenue-ordered assortments remain optimal

* Markov chain model:

% Deésir et al. ('21) use robust MDP-type algorithms to solve robust
assortment optimization problem under uncertain arrival rates and
transition probabillities

* Preference ranking model:

* Farias et al. ("13) estimate worst-case revenues for fixed assortment
under uncertain preference distributions

* Bertsimas & MiSi¢C (’17) solve robust assortment optimization problem
under uncertain preference distributions
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@5.33 worst-case
expected profit

| o — 3 o — worst-case perf.ormance only
3% less than nominal performance

( 16% uplift in worst-case profits )
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Why does randomization help?

@ Mathematical Interpretation:
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Why does randomization help?

@ “Managerial’ Interpretation:

X D3

randomization = diversification




The Randomized Robust Assortment Optimization Problem

Why does randomization help?

“Managerial’ Interpretation:

I A

: M " : ! } ‘..l““,j,lgl‘:.. ‘ y
¥ SO
LRttt £AS

|

My ventures are not in one bottom trusteq,
Nor to one place; nor is my whole estate
Upon the fortune of this present year:
Therefore, my merchandise makes me not sad.

(Merchant of Venice)

But divide your investments
among many places,
for you do not know
what risks might lie ahead.

(Book of Ecclesiastes)
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When does randomization improve the worst-case profit?

—

Is in-sample improvement = out-of-sample improvement?

e —

How can we compute optimal randomized assortments?

—— — —

How can we implement optimal randomized assortments?

—— —




Agenda

@ Implementing Randomized Assortments
@ When Does Randomization Help?

@ Computing Randomized Assortments

@ Numerical Experiments



Implementation: The E-Commerce Setting

Randomization across different users:

(halr dryer]

Q)
D puc:
e

Each user’s experience can be kept consistent via cookies.

(hair dryer]




Implementation: The Brick-and-Mortar Setting

Randomization across retail stores:

Possible for larger chains, not suitable for individual stores.

https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/



https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/
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@ When Does Randomization Help?

@ Computing Randomized Assortments

@ Numerical Experiments
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Definitions

(Robust Assortment optimization problemD (N,S,C,%,r) where

* 7/ uncertainty set
*¥C: XU — A(Ny): choice model; €[ |S,u) =0ifi € S

-
R* (7)) = max min R(S, u '
’ det( ) Se§ ue ( ) -

where R(S, 1) = Z r,- G| S, u)

€5

rand.-proof if

* — DX
Rrand(%) P Rdet(%)

2 .
@andomized Assortment optimization problemD rand.-receptive

- otherwise
R* 7/) = max min . R(S, u
fang(?/) = max mir Séps ( >|
\_




Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

A JAA )

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)
McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13-29.
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The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

A A

V2 V3 V 4

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)
McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13-29.



Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

V4

Purchase probability:

i o
T if 1 i selected assortment
" jes x|

L outside option

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)
McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13-29.
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Helpful?

Complexity

O ON

Multinomial Logit

Markov Chain

Popular Choice Models

Preference Ranking
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@andomized Assortment optimization problemD
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(Robust optimization problem with two challengesD

@ exponentially many decision variables




Computing Randomized Assortments

@andomized Assortment optimization problemD

-

R* 7/) = max min . R(S, u
fang(?/) = max mir %ps (S, 0

(Robust optimization problem with two challengesD

O
2

exponentially many decision variables

(typically) hard-to-evaluate objective function



Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

max min Z pg-R(S,u) = min max J R(S, 1) k(du)
UE

PEA(S) ue Ses KEA(YU) SeS§
\_

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems,
INFORMS Journal on Computing 34(1):333-353
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The Randomized RO problem satisfies the following strong duality:
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max min z pg-R(S,u) = min max J R(S, u) x(du)
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Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

s D
max min Z pg-R(S,u) = min max J R(S, u) x(du)
\pEA(cS)) N=y/A Ses KEA(YU) SeS§ o
Indeed: max min ZpS -R(S,#u) = max min Z J Ps - R(S, 1) k(du)
PEA(S) ue? o= PEA(S) k€A() =6 J e

min  max ) [ P - R(S, 1) k(du)
KEA(U) pelA(S) Seg Jue

min max J R(S, u) x(du)
KEA(Y) Ses§ €Y

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems,
INFORMS Journal on Computing 34(1):333-353
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Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

ol €

solve restricted primal solve restricted dual
4 (
max min Z Dg - R(S, u) min max Z K, R(S, u)
pEA(S) UEU K kEA(%) SES E
Sed ue
. .
where & C & is “small” where 7/ C 7/ is “small”

;
~ Theorem; Finite e-convergence to optimal (p™, k™). |
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Two-Layer Primal-Dual Solution Approach

( /\
Inner layer: solve restricted primal | max min ZpS-R(S, ) 'with & C & “small”
PEA(S) UEU oy
\_

@ set LB = — oo and UB = + o0; choose any p € A(og’)

(2) while LB < UB:
@ solve the evaluation problem

( .
min ZPS . R(S, u) —> LB « maX{LB, Obj}
ue Se — 522 - CZA[U {I/t*}

.




Two-Layer Primal-Dual Solution Approach

F /\
Inner layer: solve restricted primal | max min Z Ps + R(S, u) Iwith S C & “small”

A(S) UEU p
kpe (&) se&

@ set LB = — 0o and UB = + o0; choose any p € A(cgj)

(2) while LB < UB:
@ solve the evaluation problem

8 .
min ZPS . R(S, u) —> LB « maX{LB, Obj}
kuECZZ Se — 522 - CZA[ U {l/t*}

@ solve the optimization problem

( . "
max min ZPS . R(S, ) —> UB < min{UB, obj}
PEA(S) ue Seb — p (_p*

\
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Optimality gap (%)
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In-Sample = Out-of-Sample?

Data-driven experiment for MNL model:

* random MNL instances with 10 products
¥ purchase samples for random assortments under true model
* MLE estimation (with budget uncertainty set for robust approaches)
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This Presentation is Based on...

[1] Z. Wang, H. Peura and WW, Randomized Assortment Optimization, Forthcoming in
Operations Research, 2024.

ww@imperial.ac.uk




