Randomized Assortment Optimization

Zhengchao Wang

Heikki Peura

Wolfram Wiesemann

Department of Analytics, Marketing \& Operations Imperial College Business School

The Assortment Optimization Problem

£10 profit

£1 profit

The Assortment Optimization Problem

£10 profit

£1 profit

The Assortment Optimization Problem

The Assortment Optimization Problem

The Assortment Optimization Problem

$£ 5.50$ expected profit

The Assortment Optimization Problem

Multinomial logit model：
米 Choice model：Luce（＇59），Plackett（＇75）
＊Optimization：Talluri \＆van Ryzin（＇04），Rusmevichientong et al．（＇10） and Davis et al．（＇13）for cardinality constraints
Markov chain model：
粦 Choice model：Zhang \＆Cooper（＇05），Blanchet et al．（＇16）， Simsek \＆Topaloglu（＇18）for estimation
粦 Optimization：Blanchet et al．（＇16），Feldman \＆Topaloglu（＇17）， Désir et al．（＇20）for cardinality constraints
类 Preference ranking model：
米 Choice model：Farias et al．（＇13），van Ryzin \＆Volcano（＇15，＇17）
粦 Optimization：Honhon et al．（＇12），Aouad et al．（＇18，＇21）， Paul et al．（＇18），Bertsimas \＆Mišić（＇19）

The Assortment Optimization Problem

The Assortment Optimization Problem

The Assortment Optimization Problem

The bias-variance tradeoff in choice models:

The bias-variance tradeoff in choice models:

MNL model

small variance

Uncertainty

The bias-variance tradeoff in choice models:

The bias-variance tradeoff in choice models:

underfitting

overfitting

Combining estimation with optimization amplifies errors:

"Post-decision disappointment"

"error-maximization effect of optimization"

Michaud (1989), Financial Analysts Journal 45(1):31-42. Smith \& Winkler (2006), Management Science 52(3):311-322.

The robust optimization paradigm to combat estimation errors:

The robust optimization paradigm to combat estimation errors:

Uncertainty

The robust optimization paradigm to combat estimation errors:

uncertainty set estimation

The Robust Assortment Optimization Problem

£10 profit

£1 profit

The Robust Assortment Optimization Problem

£3.25 worst-case expected profit

£3 profit

£10 profit

worst-case:
25\% : 75\%

The Robust Assortment Optimization Problem

The Robust Assortment Optimization Problem

The Robust Assortment Optimization Problem

Multinomial logit model：

类 Rusmevichientong \＆Topaloglu（＇12）solve robust assortment optimization problem under uncertain product valuations； revenue－ordered assortments remain optimal
Markov chain model：
粦 Désir et al．（＇21）use robust MDP－type algorithms to solve robust assortment optimization problem under uncertain arrival rates and transition probabilities
＊Preference ranking model：
粦 Farias et al．（＇13）estimate worst－case revenues for fixed assortment under uncertain preference distributions
＊Bertsimas \＆Mišić（＇17）solve robust assortment optimization problem under uncertain preference distributions

The Randomized Robust Assortment Optimization Problem

The Randomized Robust Assortment Optimization Problem

$£ 5.33$ worst-case expected profit

The Randomized Robust Assortment Optimization Problem

The Randomized Robust Assortment Optimization Problem

£5.33 worst-case expected profit

The Randomized Robust Assortment Optimization Problem

£5.33 worst-case expected profit

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

The Randomized Robust Assortment Optimization Problem

 Why does randomization help?1 Mathematical Interpretation:

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

1) Mathematical Interpretation:

The Randomized Robust Assortment Optimization Problem Why does randomization help?

1 Mathematical Interpretation:

The Randomized Robust Assortment Optimization Problem

Why does randomization help?
1 Mathematical Interpretation:

The Randomized Robust Assortment Optimization Problem Why does randomization help?

1 Mathematical Interpretation:

The Randomized Robus \ddagger Assortment Optimization Problem

Why does randomization help?

The Randomized Robust Assortment Optimization Problem

Why does randomization help?
(2) "Game-Theoretic" Interpretation:

deterministic robust

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

(2) "Game-Theoretic" Interpretation:

deterministic robust

randomized robust

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

(2) "Game-Theoretic" Interpretation:

deterministic robust

randomized robust

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

The Randomized Robust Assortment Optimization Problem

Why does randomization help?
(3) "Managerial" Interpretation:

周 p_{1}

The Randomized Robust Assortment Optimization Problem

Why does randomization help?

3 "Managerial" Interpretation:

Fof p_{1}

Fon p_{2}

randomization $=$ diversification

But divide your investments among many places, for you do not know what risks might lie ahead.
(Book of Ecclesiastes)

My ventures are not in one bottom trusted, Nor to one place; nor is my whole estate Upon the fortune of this present year:
Therefore, my merchandise makes me not sad.
(Merchant of Venice)

When does randomization improve the worst-case profit?

When does randomization improve the worst-case profit?
2.

Is in-sample improvement = out-of-sample improvement?

When does randomization improve the worst-case profit?
2.

Is in-sample improvement = out-of-sample improvement?

How can we compute optimal randomized assortments?

When does randomization improve the worst-case profit?
2.

Is in-sample improvement = out-of-sample improvement?

How can we compute optimal randomized assortments?
4. How can we implement optimal randomized assortments?

Implementing Randomized Assortments
(2) When Does Randomization Help?
(3) Computing Randomized Assortments

4 Numerical Experiments

Implementation: The E-Commerce Setting

Randomization across different users:

Each user's experience can be kept consistent via cookies.

Implementation: The Brick-and-Mortar Setting

Randomization across retail stores:

Possible for larger chains, not suitable for individual stores.

Computing Randomized Assortments
(4) Numerical Experiments

（Nominal）Assortment optimization problem：（ $\mathcal{N}, \mathcal{S}, \mathfrak{C}, \boldsymbol{r})$ where

米 $\mathcal{N}=\{1, \ldots, N\}$ ：set of products
＊ $\mathcal{S} \subseteq\{S: S \subseteq \mathcal{N}\}$ ：set of admissible assortments
缕 $\mathfrak{C}: \mathcal{S} \rightarrow \Delta\left(\mathcal{N}_{0}\right)$ ：choice model； $\mathfrak{C}(i \mid S)=0$ if $i \notin S$
缕 $\boldsymbol{r}=\left(r_{1}, \ldots, r_{N}\right)$ ：product prices

（Nominal）Assortment optimization problem：$(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \boldsymbol{r})$ where

米 $\mathcal{N}=\{1, \ldots, N\}$ ：set of products
＊ $\mathcal{S} \subseteq\{S: S \subseteq \mathcal{N}\}$ ：set of admissible assortments
楼 $\mathfrak{C}: \mathcal{S} \rightarrow \Delta\left(\mathcal{N}_{0}\right)$ ：choice model； $\mathfrak{G}(i \mid S)=0$ if $i \notin S$
缕 $\boldsymbol{r}=\left(r_{1}, \ldots, r_{N}\right)$ ：product prices

$$
R_{\text {nom }}^{\star}=\max _{S \in \mathcal{S}} R(S)
$$

$$
\text { where } R(S)=\sum_{i \in S} r_{i} \cdot \mathfrak{S}(i \mid S)
$$

Robust Assortment optimization problem: ($\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathscr{U}, \boldsymbol{r})$ where

米 \mathscr{U} : uncertainty set
米 $\mathfrak{S}: \mathcal{S} \times \mathscr{U} \rightarrow \Delta\left(\mathscr{N}_{0}\right)$: choice model; $\mathfrak{G}(i \mid S, u)=0$ if $i \notin S$

Robust Assortment optimization problem: ($\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathcal{U}, \boldsymbol{r})$ where

米 \mathscr{U} : uncertainty set
粦 $\mathfrak{C}: \mathcal{S} \times \mathscr{U} \rightarrow \Delta\left(\mathcal{N}_{0}\right)$: choice model; $\mathfrak{C}(i \mid S, u)=0$ if $i \notin S$

$$
\begin{aligned}
& R_{\text {det }}^{\star}(\mathscr{U})=\max _{S \in \mathcal{S}} \min _{u \in \mathscr{U}} R(S, u) \\
& \text { where } R(S, u)=\sum_{i \in S} r_{i} \cdot \mathfrak{C}(i \mid S, u)
\end{aligned}
$$

Definitions

Robust Assortment optimization problem: $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathcal{U}, \boldsymbol{r})$ where

* $\mathscr{*}$: uncertainty set

米 $\mathfrak{S}: \mathcal{S} \times \mathscr{U} \rightarrow \Delta\left(\mathcal{N}_{0}\right)$: choice model; $\mathfrak{G}(i \mid S, u)=0$ if $i \notin S$

$$
\begin{gathered}
R_{\operatorname{det}}^{\star}(\mathscr{U})=\max _{S \in \mathcal{S}} \min _{u \in \mathscr{U}} R(S, u) \\
\text { where } R(S, u)=\sum_{i \in S} r_{i} \cdot \mathfrak{S}(i \mid S, u)
\end{gathered}
$$

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

Definitions

Robust Assortment optimization problem: $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathcal{U}, \boldsymbol{r})$ where

米 \mathscr{U} : uncertainty set

* $\mathfrak{G}: \mathcal{S} \times \mathscr{U} \rightarrow \Delta\left(\mathcal{N}_{0}\right)$: choice model; $\mathfrak{G}(i \mid S, u)=0$ if $i \notin S$

$$
\text { where } R(S, u)=\sum_{\operatorname{det}^{\star}(U)=\max _{S \in \mathcal{S}} \min _{u \in \mathscr{U}} R(S, u)} r_{i} \cdot \mathbf{S}(i \mid S, u)
$$

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

rand.-receptive otherwise

Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

[^0]
Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

v_{1}

$\}$
v_{3}
v_{4}

Popular Choice Models

The Multinomial Logit Model (Luce ‘59, McFadden ‘80)

v_{1}
v_{2}

$\}$
v_{3}
v_{4}

Popular Choice Models

Multinomial Logit

Popular Choice Models

Multinomial Logit

Popular Choice Models

Multinomial Logit

Popular Choice Models

Multinomial Logit

Complexity

Popular Choice Models

Multinomial Logit

Popular Choice Models

Computing Randomized Assortments
(4) Numerical Experiments

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

Robust optimization problem

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

Robust optimization problem with two challenges:

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$
R_{\text {rand }}^{\star}(\mathscr{U})=\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)
$$

Robust optimization problem with two challenges:
exponentially many decision variables

Computing Randomized Assortments

Randomized Assortment optimization problem:

Robust optimization problem with two challenges:
exponentially many decision variables
2.
(typically) hard-to-evaluate objective function

Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

$$
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)=\min _{\kappa \in \Delta(\mathscr{U})} \max _{S \in \mathcal{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(\mathrm{d} u)
$$

Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

$$
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)=\min _{\kappa \in \Delta(\mathscr{U})} \max _{S \in \mathcal{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(\mathrm{d} u)
$$

Indeed: $\quad \max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)=\max _{p \in \Delta(\mathcal{S})} \min _{\kappa \in \Delta(\mathcal{U})} \sum_{S \in \mathcal{S}} \int_{u \in \mathscr{U}} p_{S} \cdot R(S, u) \kappa(\mathrm{d} u)$

Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

$$
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)=\min _{\kappa \in \Delta(\mathscr{U})} \max _{S \in \mathcal{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(\mathrm{d} u)
$$

$$
\text { Indeed: } \quad \begin{aligned}
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u) & =\max _{p \in \Delta(\mathcal{S})} \min _{\kappa \in \Delta(\mathscr{U})} \sum_{S \in \mathcal{S}} \int_{u \in \mathscr{U}} p_{S} \cdot R(S, u) \kappa(\mathrm{d} u) \\
& =\min _{\kappa \in \Delta(\mathscr{U})} \max _{p \in \Delta(\mathcal{S})} \sum_{S \in \mathcal{S}} \int_{u \in \mathscr{U}} p_{S} \cdot R(S, u) \kappa(\mathrm{d} u)
\end{aligned}
$$

Two-Layer Primal-Dual Solution Approach

The Randomized RO problem satisfies the following strong duality:

$$
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u)=\min _{\kappa \in \Delta(\mathscr{U})} \max _{S \in \mathcal{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(\mathrm{d} u)
$$

$$
\text { Indeed: } \quad \begin{aligned}
\max _{p \in \Delta(\mathcal{S})} \min _{u \in \mathscr{U}} \sum_{S \in \mathcal{S}} p_{S} \cdot R(S, u) & =\max _{p \in \Delta(\mathcal{S})} \min _{\kappa \in \Delta(\mathscr{U})} \sum_{S \in \mathcal{S}} \int_{u \in \mathscr{U}} p_{S} \cdot R(S, u) \kappa(\mathrm{d} u) \\
& =\min _{\kappa \in \Delta(\mathcal{U})} \max _{p \in \Delta(\mathcal{S})} \sum_{S \in \mathcal{S}} \int_{u \in \mathscr{U}} p_{S} \cdot R(S, u) \kappa(\mathrm{d} u) \\
& =\min _{\kappa \in \Delta(\mathcal{U})} \max _{S \in \mathcal{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(\mathrm{d} u)
\end{aligned}
$$

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

solve restricted primal

$$
\max _{p \in \Delta(\hat{\mathcal{S}})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u)
$$

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"
solve restricted dual

$$
\min _{\kappa \in \Delta(\hat{\mathscr{U}})} \max _{S \in \mathcal{S}} \sum_{u \in \hat{\mathscr{U}}} \kappa_{u} \cdot R(S, u)
$$

where $\hat{\mathscr{U}} \subseteq \mathscr{U}$ is "small"

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

$$
\max _{p \in \Delta(\hat{\mathcal{S}})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u)
$$

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"
solve restricted dual

$$
\min _{\kappa \in \Delta(\hat{\mathscr{U}})} \max _{S \in \mathcal{S}} \sum_{u \in \hat{\mathscr{U}}} \kappa_{u} \cdot R(S, u)
$$

where $\hat{\mathscr{U}} \subseteq \mathscr{U}$ is "small"
add worst-case u^{\star} 's to $\hat{\mathscr{U}}$

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

$$
\max _{p \in \Delta(\hat{\mathcal{S}})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u)
$$

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"
solve restricted dual

$$
\min _{\kappa \in \Delta(\hat{\mathscr{U}})} \max _{S \in \mathcal{S}} \sum_{u \in \hat{\mathscr{U}}} \kappa_{u} \cdot R(S, u)
$$

where $\hat{\mathscr{U}} \subseteq \mathscr{U}$ is "small"

$$
\text { add worst-case } S^{\star} \text { 's to } \hat{\mathcal{S}}
$$

Two-Layer Primal-Dual Solution Approach

We use this strong duality in the outer layer of our solution approach:

solve restricted primal

$$
\max _{p \in \Delta(\hat{\mathcal{S}})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u)
$$

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"

Theorem: Finite ε-convergence to optimal $\left(p^{\star}, \kappa^{\star}\right)$.

Two-Layer Primal-Dual Solution Approach

Ininer layer: solve restricted primal $\max _{p \in \Delta(\hat{\delta})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u)$ with $\hat{\mathcal{S}} \subseteq \mathcal{S}$ "small"

Two-Layer Primal-Dual Solution Approach

Inner layer: solve restricted primal

$$
\max _{p \in \Delta(\hat{\delta})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u) \text { with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text { "small" }
$$

(1) set LB $=-\infty$ and UB $=+\infty$; choose any $p \in \Delta(\hat{\mathcal{S}})$
(2) while LB < UB:
a) solve the evaluation problem

(b) solve the optimization problem

Two-Layer Primal-Dual Solution Approach

Inner layer: solve restricted primal

$$
\max _{p \in \Delta(\hat{\delta})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u) \text { with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text { "small" }
$$

(1) set LB $=-\infty$ and $\mathrm{UB}=+\infty$; choose any $p \in \Delta(\hat{\mathcal{S}})$
(2) while LB < UB:
(a) solve the evaluation problem

(b) solve the optimization problem

Two-Layer Primal-Dual Solution Approach

Inner layer: solve restricted primal

$$
\max _{p \in \Delta(\hat{\delta})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u) \text { with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text { "small" }
$$

(1) set LB $=-\infty$ and $\mathrm{UB}=+\infty$; choose any $p \in \Delta(\hat{\mathcal{S}})$
(2) while LB < UB:
(a) solve the evaluation problem

\[

\]

b) solve the optimization problem

$\Rightarrow \mathrm{UB} \leftarrow \min \{\mathrm{UB}, \mathrm{obj}\}$
$\Longleftrightarrow p \leftarrow p^{\star}$

Two-Layer Primal-Dual Solution Approach

Inner layer: solve restricted primal

$$
\max _{p \in \Delta(\hat{\delta})} \min _{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, u) \text { with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text { "small" }
$$

(1) set $\mathrm{LB}=-\infty$ and $U B=+\infty$; choose any $p \in \Delta(\hat{\mathcal{S}})$
(2) while LB < UB:
(a) solve the evaluation problem

\[

\]

(b) solve the optimization problem

$$
\begin{aligned}
\max _{p \in \Delta(\hat{\delta})} \min _{u \in \hat{\mathscr{H}}} \sum_{S \in \hat{\delta}} p_{S} \cdot R(S, u) \quad \Longleftrightarrow \mathrm{UB} \leftarrow \min \{\mathrm{UB}, \mathrm{obj}\} \\
\Longleftrightarrow p \leftarrow p^{\star}
\end{aligned}
$$

(2) Whandoconanciomization Holp?
(3) Gemputing Dondemived Acoertments

In-Sample = Out-of-Sample?

Data-driven experiment for MNL model:

粦 random MNL instances with 10 products

* purchase samples for random assortments under true model
* MLE estimation (with budget uncertainty set for robust approaches)
cardinality 1
cardinality 2
cardinality 3
cardinality 4

This Presentation is Based on...

[1] Z. Wang, H. Peura and WW, Randomized Assortment Optimization, Forthcoming in Operations Research, 2024.

ww@imperial.ac.uk

[^0]: Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York)
 McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13-29.

