Randomized **Assortment Optimization**

Zhengchao Wang

Department of Analytics, Marketing & Operations Imperial College Business School

Heikki Peura

Wolfram Wiesemann

£3 profit

The Assortment Optimization Problem

£10 profit

£1 profit

*** Multinomial logit model:**

- *** Choice model:** Luce ('59), Plackett ('75)
- ***** Optimization: Talluri & van Ryzin ('04), Rusmevichientong et al. ('10)
- and Davis et al. ('13) for cardinality constraints

***** Markov chain model:

- Simsek & Topaloglu ('18) for estimation Désir et al. (20) for cardinality constraints
- * Choice model: Zhang & Cooper ('05), Blanchet et al. ('16), * Optimization: Blanchet et al. ('16), Feldman & Topaloglu ('17),

***** Preference ranking model:

- Paul et al. ('18), Bertsimas & Mišić ('19)
- * Choice model: Farias et al. ('13), van Ryzin & Volcano ('15, '17) * Optimization: Honhon et al. ('12), Aouad et al. ('18, '21),

£1 profit

Uncertainty

MC/PR models

small bias g h

Plarge variance

(...)

Bishop (2006), Pattern Recognition and Machine Learning (Springer). Hastie et al. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer).

Combining estimation with optimization amplifies errors:

Michaud (1989), Financial Analysts Journal 45(1):31–42. Smith & Winkler (2006), Management Science 52(3):311–322. DeMiguel & Nogales (2009), Operations Research 57(3):560–577.

The robust optimization paradigm to combat estimation errors:

The robust optimization paradigm to combat estimation errors:

The robust optimization paradigm to combat estimation errors:

Ben-Tal et al. (2009), Robust Optimization (Princeton University Press). Bertsimas & den Hertog (2022), Robust and Adaptive Optimization (Dynamic Ideas).

£3 profit

£10 profit

£1 profit

75%:25%

*** Multinomial logit model:**

- Rusmevichientong & Topaloglu ('12) solve robust assortment optimization problem under uncertain product valuations; revenue-ordered assortments remain optimal

*** Markov chain model:**

- * Désir et al. ('21) use robust MDP-type algorithms to solve robust assortment optimization problem under uncertain arrival rates and
 - transition probabilities

***** Preference ranking model:

- * Farias et al. ('13) estimate worst-case revenues for fixed assortment under uncertain preference distributions
- * Bertsimas & Mišić ('17) solve robust assortment optimization problem under uncertain preference distributions

£5.33 worst-case expected profit

ominal policy decrease 41% in the worst case	

£5.33 worst-case expected profit

The Randomized Robust Assortment Optimization Problem

The Randomized Robust Assortment Optimization Problem

The Randomized Robust Assortment Optimization Problem

2

"Game-Theoretic" Interpretation:

randomization = diversification

"Managerial" Interpretation:

3

But divide your investments among many places, for you do not know what risks might lie ahead. (Book of Ecclesiastes)

randomization = diversification

My ventures are not in one bottom trusted, Nor to one place; nor is my whole estate Upon the fortune of this present year: Therefore, my merchandise makes me not sad. (Merchant of Venice)

Is in-sample improvement = out-of-sample improvement?

Is in-sample improvement = out-of-sample improvement?

How can we compute optimal randomized assortments?

Is in-sample improvement = out-of-sample improvement?

How can we compute optimal randomized assortments?

How can we implement optimal randomized assortments?

Implementing Randomized Assortments

Implementation: The E-Commerce Setting

Each user's experience can be kept consistent via cookies.

Implementation: The Brick-and-Mortar Setting

Randomization across retail stores:

Possible for larger chains, not suitable for individual stores.

https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/

(Nominal) Assortment optimization problem: $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathbf{r})$ where

 $M = \{1, \dots, N\} : set of products$ $\mathscr{S} \subseteq \{S : S \subseteq \mathcal{N}\}$: set of admissible assortments $* \mathfrak{C} : S \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S) = 0$ if $i \notin S$ $* \mathbf{r} = (r_1, \dots, r_N)$: product prices

Definitions

(Nominal) Assortment optimization problem: $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathbf{r})$ where

 $M = \{1, \dots, N\}$: set of products $\mathscr{S} \subseteq \{S : S \subseteq \mathcal{N}\}$: set of admissible assortments $* \mathfrak{C} : S \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S) = 0$ if $i \notin S$ * $\mathbf{r} = (r_1, \dots, r_N)$: product prices

Definitions

$R_{nom}^{\star} = \max_{S \in \mathcal{S}} R(S)$

where $R(S) = \sum r_i \cdot \mathfrak{C}(i \mid S)$ $i \in S$

Robust Assortment optimization problem:) $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathcal{U}, \mathbf{r})$ where

* **U**: uncertainty set $* \mathfrak{C} : \mathcal{S} \times \mathcal{U} \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S, \mathfrak{u}) = 0$ if $i \notin S$

Definitions

Robust Assortment optimization problem:) $(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathfrak{U}, r)$ where

* **U**: uncertainty set

Definitions

$* \mathfrak{C} : \mathcal{S} \times \mathcal{U} \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S, \mathfrak{u}) = 0$ if $i \notin S$

 $R^{\star}_{\det}(\mathcal{U}) = \max_{S \in \mathcal{S}} \min_{u \in \mathcal{U}} R(S, u)$

where $R(S, \boldsymbol{u}) = \sum r_i \cdot \mathfrak{C}(i | S, \boldsymbol{u})$ i∈S

$(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathcal{U}, \mathbf{r})$ where **Robust Assortment optimization problem:**)

* **U**: uncertainty set

 $* \mathfrak{C} : \mathcal{S} \times \mathcal{U} \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S, \mathfrak{u}) = 0$ if $i \notin S$

where $R(S, \boldsymbol{u})$

Randomized Assortment optimization problem:

$$R_{\text{rand}}^{\star}(\mathcal{U}) = \max_{\substack{p \in \Delta(\mathcal{S}) \\ u \in \mathcal{U}}} \min_{\substack{u \in \mathcal{U} \\ S \in \mathcal{S}}} \sum_{\substack{S \in \mathcal{S}}} p_{S} \cdot R(S, u)$$

Definitions

 $R^{\star}_{det}(\mathcal{U}) = \max_{S \in \mathcal{S}} \min_{u \in \mathcal{U}} R(S, u)$

$$= \sum_{i \in S} r_i \cdot \mathfrak{C}(i \mid S, \boldsymbol{u})$$

$(\mathcal{N}, \mathcal{S}, \mathfrak{C}, \mathfrak{U}, \mathbf{r})$ where **Robust Assortment optimization problem:**

* **U**: uncertainty set

 $* \mathfrak{C} : S \times \mathcal{U} \to \Delta(\mathcal{N}_0)$: choice model; $\mathfrak{C}(i \mid S, u) = 0$ if $i \notin S$

Randomized Assortment optimization problem:

$$R^{\star}_{\text{rand}}(\mathscr{U}) = \max_{\substack{p \in \Delta}}$$

Definitions

The Multinomial Logit Model (Luce '59, McFadden '80)

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York) McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13–29.

The Multinomial Logit Model (Luce '59, McFadden '80)

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York) McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13–29.

The Multinomial Logit Model (Luce '59, McFadden '80)

Luce (1959), Individual Choice Behavior: A Theoretical Analysis (Wiley, New York) McFadden (1980), Econometric models for probabilistic choice among products. J. Bus. 53(3):13–29.

Randomized Assortment optimization problem:

$$R_{\text{rand}}^{\star}(\mathcal{U}) = \max_{\substack{p \in \Delta(\mathcal{S}) \ u \in \mathcal{U}}} \min_{\substack{u \in \mathcal{U} \\ S \in \mathcal{S}}} \sum_{\substack{p_{S} \in \mathcal{S}}} p_{S} \cdot R(S, u)$$

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$R_{\text{rand}}^{\star}(\mathcal{U}) = \max_{\substack{p \in \Delta(\mathcal{S}) \ u \in \mathcal{U}}} \min_{\substack{u \in \mathcal{U} \\ S \in \mathcal{S}}} \sum_{\substack{S \in \mathcal{S}}} p_{S} \cdot R(S, u)$$

Robust optimization problem

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$R_{\text{rand}}^{\star}(\mathcal{U}) = \max_{\substack{p \in \Delta(\mathcal{S}) \ u \in \mathcal{U}}} \min_{\substack{u \in \mathcal{U} \\ S \in \mathcal{S}}} \sum_{\substack{S \in \mathcal{S}}} p_{S} \cdot R(S, u)$$

Robust optimization problem with two challenges:

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$R^{\star}_{rand}(\mathscr{U}) = \max_{p \in \Delta}$$

Robust optimization problem with two challenges:

Computing Randomized Assortments

Randomized Assortment optimization problem:

$$R^{\star}_{rand}(\mathscr{U}) = \max_{p \in \Delta}$$

Robust optimization problem with two challenges:

Computing Randomized Assortments

The Randomized RO problem satisfies the following strong duality:

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, INFORMS Journal on Computing 34(1):333-353

 $\max_{p \in \Delta(\mathscr{S})} \min_{u \in \mathscr{U}} \sum_{S \in \mathscr{S}} p_S \cdot R(S, u) = \min_{\kappa \in \Delta(\mathscr{U})} \max_{S \in \mathscr{S}} \int_{u \in \mathscr{U}} R(S, u) \kappa(du)$

The Randomized RO problem satisfies the following strong duality:

Indeed:

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, INFORMS Journal on Computing 34(1):333-353

The Randomized RO problem satisfies the following strong duality:

Indeed:

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, INFORMS Journal on Computing 34(1):333-353

The Randomized RO problem satisfies the following strong duality:

Indeed:

Delage & Saif (2022), The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems, INFORMS Journal on Computing 34(1):333-353

We use this strong duality in the outer layer of our solution approach:

We use this strong duality in the outer layer of our solution approach:

solve restricted primal

primal

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"

We use this strong duality in the outer layer of our solution approach:

solve restricted primal

primal

where $\hat{\mathcal{S}} \subseteq \mathcal{S}$ is "small"

solve restricted dual

where $\hat{\mathcal{U}} \subseteq \mathcal{U}$ is "small"

add worst-case u^{\star} 's to $\hat{\mathcal{U}}$

add worst-case S^{\star} 's to \hat{S}

Inner layer: solve restricted primal

$$\max_{p \in \Delta(\hat{\mathcal{S}})} \min_{u \in \mathscr{U}} \sum_{S \in \hat{\mathcal{S}}} p_S \cdot R(S, u) \text{ with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text{ "small}$$

Inner layer: solve restricted primal

while LB < UB:

(a) solve the evaluation problem

solve the optimization problem

$$\max_{\boldsymbol{\rho} \in \Delta(\hat{\mathcal{S}})} \min_{\boldsymbol{u} \in \mathcal{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, \boldsymbol{u}) \text{ with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text{ "smaller}$$

set LB = $-\infty$ and UB = $+\infty$; choose any $p \in \Delta(S)$

$$\hat{s} p_{S} \cdot R(S, u)$$

 \implies LB \leftarrow max{LB,obj} $\implies \hat{\mathcal{U}} \leftarrow \hat{\mathcal{U}} \cup \{u^{\star}\}$

Inner layer: solve restricted primal

while LB < UB: (a) solve the evaluation problem

solve the optimization problem

$$\max_{\boldsymbol{\rho} \in \Delta(\hat{\mathcal{S}})} \min_{\boldsymbol{u} \in \mathcal{U}} \sum_{S \in \hat{\mathcal{S}}} p_{S} \cdot R(S, \boldsymbol{u}) \text{ with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text{ "smaller}$$

set LB = $-\infty$ and UB = $+\infty$; choose any $p \in \Delta(S)$

$$\hat{s} p_{S} \cdot R(S, u)$$

 $\square LB \leftarrow \max\{LB, obj\}$ $\implies \hat{\mathcal{U}} \leftarrow \hat{\mathcal{U}} \cup \{u^{\star}\}$

Inner layer: solve restricted primal

while LB < UB:

(a) solve the evaluation problem

solve the optimization problem

$$\max_{\boldsymbol{\rho} \in \Delta(\hat{\mathcal{S}})} \min_{\boldsymbol{u} \in \mathcal{U}} \sum_{S \in \hat{\mathcal{S}}} p_S \cdot R(S, \boldsymbol{u}) \text{ with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text{ "smaller}$$

set LB = $-\infty$ and UB = $+\infty$; choose any $p \in \Delta(S)$

$$\sum_{s} p_{S} \cdot R(S, u)$$

 \implies LB \leftarrow max{LB, obj} $\implies \hat{\mathcal{U}} \leftarrow \hat{\mathcal{U}} \cup \{u^{\star}\}$

$$\sum_{\substack{N \in \hat{S}}} p_S \cdot R(S, u)$$

Inner layer: solve restricted primal

while LB < UB:

(a) solve the evaluation problem

b) solve the optimization problem

$$\max_{\boldsymbol{\rho} \in \Delta(\hat{\mathcal{S}})} \min_{\boldsymbol{u} \in \mathcal{U}} \sum_{S \in \hat{\mathcal{S}}} p_S \cdot R(S, \boldsymbol{u}) \text{ with } \hat{\mathcal{S}} \subseteq \mathcal{S} \text{ "smaller}$$

set LB = $-\infty$ and UB = $+\infty$; choose any $p \in \Delta(S)$

$$\sum_{s} p_{S} \cdot R(S, u)$$

 \implies LB \leftarrow max{LB, obj} $\implies \hat{\mathcal{U}} \leftarrow \hat{\mathcal{U}} \cup \{u^{\star}\}$

Data-driven experiment for MNL model:

- random MNL instances with 10 products 米
- purchase samples for random assortments under true model 米
- MLE estimation (with budget uncertainty set for robust approaches) 米

cardinality 1

cardinality 2

In-Sample = Out-of-Sample?

Z. Wang, H. Peura and WW, Randomized Assortment Optimization, Forthcoming in [1] Operations Research, 2024.

This Presentation is Based on...

ww@imperial.ac.uk