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Markov Decision Processes

Tuple  where


•  is the (finite) state space;


•  is the (finite) action space;


•  is the initial state distribution;


•  is the transition kernel with elements ;


•  are the expected one-step rewards;


•  is the discount factor.

(𝒮, 𝒜, q, p, r, λ)
𝒮 = {1,…, S}
𝒜 = {1,…, A}
q = (q1, …, qS) ∈ Δ(𝒮)
p : 𝒮 × 𝒜 → Δ(𝒮) p(s′￼|s, a)
r : 𝒮 × 𝒜 → ℝ
λ ∈ (0,1)

Markov decision process
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Markov Decision Processes

Tuple  where


•  is the (finite) state space;


•  is the (finite) action space;


•  is the initial state distribution;


•  is the transition kernel with elements ;


•  are the expected one-step rewards;


•  is the discount factor.

(𝒮, 𝒜, q, p, r, λ)
𝒮 = {1,…, S}
𝒜 = {1,…, A}
q = (q1, …, qS) ∈ Δ(𝒮)
p : 𝒮 × 𝒜 → Δ(𝒮) p(s′￼|s, a)
r : 𝒮 × 𝒜 → ℝ
λ ∈ (0,1)

Markov decision process

Objective
find policy  that maximizes the 

expected total discounted rewards:
π : 𝒮 → 𝒜

𝔼p [
∞

∑
t=1

λt−1 ⋅ r(st, π[st])]π∈Π
maximize

1



Cart Pole Example

x ∈ [−4.8,4.8]
·x ∈ ℝ

θ ∈ [−24∘,24∘]
·θ ∈ ℝ

State space

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.
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Cart Pole Example

x ∈ [−4.8,4.8]
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State space Action space

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.
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Cart Pole Example

x, ·x, θ, ·θ ∼
𝒰[−0.05,0.05]

Initial state

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.

x ∈ [−4.8,4.8]
·x ∈ ℝ

θ ∈ [−24∘,24∘]
·θ ∈ ℝ

State space Action space
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Cart Pole Example

Transitions

• deterministic via 
laws of mechanics 

• terminate if 
      
or 

x ∉ [−2.4,2.4]
θ ∉ [−12∘,12∘]

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.

x, ·x, θ, ·θ ∼
𝒰[−0.05,0.05]

Initial state
x ∈ [−4.8,4.8]

·x ∈ ℝ

θ ∈ [−24∘,24∘]
·θ ∈ ℝ

State space Action space
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Cart Pole Example

Rewards
+1/non-terminated 

time step

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.

Transitions

• deterministic via 
laws of mechanics 

• terminate if 
      
or 

x ∉ [−2.4,2.4]
θ ∉ [−12∘,12∘]

x, ·x, θ, ·θ ∼
𝒰[−0.05,0.05]

Initial state
x ∈ [−4.8,4.8]

·x ∈ ℝ

θ ∈ [−24∘,24∘]
·θ ∈ ℝ

State space Action space
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Cart Pole Example

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.
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STOCHASTICITY AND AMBIGUITY



Ambiguity and Robust MDPs

4



Ambiguity and Robust MDPs

Two common sources of ambiguity:

• Modelling errors: 32.67 secs/run

x

·x
×

×
θ
·θ

 = 50,625 states154×
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Ambiguity and Robust MDPs

Two common sources of ambiguity:

• Modelling errors: 32.67 secs/run         2.45 secs/run

x

·x
×

×
θ
·θ

 = 10,000 states104×
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Ambiguity and Robust MDPs

Two common sources of ambiguity:

• Modelling errors: 32.67 secs/run         2.45 secs/run


• Estimation errors: 32.67 secs/run
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Ambiguity and Robust MDPs

Two common sources of ambiguity:

• Modelling errors: 32.67 secs/run         2.45 secs/run


• Estimation errors: 32.67 secs/run         4.68 secs/run

inf
p∈𝒫

𝔼p [
∞

∑
t=1

λt−1 ⋅ r(st, π[st])]
Robust MDP

ambiguity set

Robust MDPs admit interpretation as regularized MDPs!

Derman et al. (2023), Twice Regularized Markov Decision Processes: The Equivalence between Robustness and Regularization.

Impact of ambiguity can be alleviated via robust optimization:

π∈Π
maximize
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Ambiguity: Modelling Errors

no
m

in
al

ro
bu

st

Modelling errors: 32.67 secs/run         2.45 secs/run         15.77 secs/run 5



Ambiguity: Estimation Errors

no
m

in
al

ro
bu

st

Estimation errors: 32.67 secs/run         4.68 secs/run         15.76 secs/run 5



Ambiguity Sets
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

Structural ambiguity set

6



Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

𝒫(ℋn)

∩

Structural ambiguity set Historical sample
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

𝒫(ℋn)

𝒫0

𝒫n

𝒫(ℋn)

∩ =

Structural ambiguity set Historical sample Out-of-sample guarantee
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

Structural ambiguity set

p0 ∈ rel int 𝒫0

𝒫0 ⊆ {p : 𝒮 × 𝒜 → Δ(𝒮)}
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

Structural ambiguity set

p0 ∈ rel int 𝒫0

𝒫0 ⊆ {p : 𝒮 × 𝒜 → Δ(𝒮)}

μ

Ξ0

(injective affine)
μ

Ξ0

(injective affine)
Possible transitions

1

3

4

5

6

ξ1

1 − ξ1

ξ2

1 − ξ2

1

1

2
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

𝒫0

Structural ambiguity set

p0 ∈ rel int 𝒫0

𝒫0 ⊆ {p : 𝒮 × 𝒜 → Δ(𝒮)}

μ

Ξ0

(injective affine)
μ

Ξ0

(injective affine)
Possible transitions

1

2

3

4

5

6

ξ1

1 − ξ1

ξ2

1 − ξ2

1

1

𝒫0𝒫0𝒫0 Equal probabilities

1

3

4

5

6

ξ

1 − ξ

ξ

1 − ξ

1

1

2
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Historical sample

historical policy 

(stationary, randomized)

π0 state-action history 
ℋn = (s1, a1, …, sn, an) ∈ (𝒮 × 𝒜)n
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Historical sample

historical policy 

(stationary, randomized)

π0 state-action history 
ℋn = (s1, a1, …, sn, an) ∈ (𝒮 × 𝒜)n

ℒn(p) = q(s1) ⋅ π0(an |sn) ⋅
n−1

∏
t=1

[π0(at |st) ⋅ p(st+1 |st, at)]

Likelihood, given history
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Historical sample

𝒫(ℋn) = {p : log ℒn(p) ≥ log ℒn(p⋆) − δ}

historical policy 

(stationary, randomized)

π0 state-action history 
ℋn = (s1, a1, …, sn, an) ∈ (𝒮 × 𝒜)n

ℒn(p) = q(s1) ⋅ π0(an |sn) ⋅
n−1

∏
t=1

[π0(at |st) ⋅ p(st+1 |st, at)]

Likelihood, given history
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

Assumption: Historical policy  visits every  infinite often as π0 s ∈ 𝒮 n ⟶ ∞
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

 with  = -quantile 
of -distribution with  degrees of freedom

𝒫n = 𝒫0 ∩ 𝒫(ℋn) δ (1 − β)
χ2 κ

9

Assumption: Historical policy  visits every  infinite often as π0 s ∈ 𝒮 n ⟶ ∞



Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

 with  = -quantile 
of -distribution with  degrees of freedom

𝒫n = 𝒫0 ∩ 𝒫(ℋn) δ (1 − β)
χ2 κ

lim
n⟶∞

ℙ [p0 ∈ 𝒫n] = 1 − β1

9

Assumption: Historical policy  visits every  infinite often as π0 s ∈ 𝒮 n ⟶ ∞



Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

 with  = -quantile 
of -distribution with  degrees of freedom

𝒫n = 𝒫0 ∩ 𝒫(ℋn) δ (1 − β)
χ2 κ

lim
n⟶∞

ℙ [p0 ∈ 𝒫n] = 1 − β1
Assumption: Historical policy  visits every  infinite often as π0 (s, a) n ⟶ ∞
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

 with  = -quantile 
of -distribution with  degrees of freedom

𝒫n = 𝒫0 ∩ 𝒫(ℋn) δ (1 − β)
χ2 κ

lim
n⟶∞

ℙ [p0 ∈ 𝒫n] = 1 − β1 2
Assumption: Historical policy  visits every  infinite often as π0 (s, a) n ⟶ ∞

plim
n⟶∞

[ n ⋅ dH(𝒫n, {p0})] = 0
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Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Theorem

 with  = -quantile 
of -distribution with  degrees of freedom

𝒫n = 𝒫0 ∩ 𝒫(ℋn) δ (1 − β)
χ2 κ

1 2

p0

𝒫100

𝒫200

𝒫300

𝒫400

𝒫500

lim
n⟶∞

ℙ [p0 ∈ 𝒫n] = 1 − β plim
n⟶∞

[ n ⋅ dH(𝒫n, {p0})] = 0

9

Assumption: Historical policy  visits every  infinite often as π0 (s, a) n ⟶ ∞



Rectangularity

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard
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Rectangularity

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

   with   𝒫 = ∏
(s,a)∈𝒮×𝒜

𝒫s,a 𝒫s,a ⊆ Δ(𝒮)
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Rectangularity

P =
�
P 0
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s,a
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P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy stationary and deterministic

Bellman optimality principle holds

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard
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Rectangularity

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy stationary and deterministic

Bellman optimality principle holds

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

Example

for some unknown ξ ∈ [0,1]

1

2

3

ξ

1 − ξ

Action 1

1

2

3

Action 2

ξ

1 − ξ
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Rectangularity

P =
�
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s
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P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy stationary and deterministic

Bellman optimality principle holds

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

Example

for some unknown ξ1, ξ2 ∈ [0,1]

1

2

3

ξ1

1 − ξ1

Action 1

1

2

3

Action 2

ξ2

1 − ξ2
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Rectangularity

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

s-rectangular ambiguity sets

(s,a)-rectangular ambiguity sets

   with   𝒫 = ∏
s∈𝒮

𝒫s 𝒫s ⊆ [Δ(𝒮)]A

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

Optimal policy stationary and deterministic

Bellman optimality principle holds
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Rectangularity

P =
�
P 0

 
P =⇥
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s
Ps P ✓ �S⇥A

P =
�
P 0
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Psa P =⇥

s
Ps P ✓ �S⇥A

P =
�
P 0

 
P =⇥

s,a
Psa P =⇥

s
Ps P ✓ �S⇥A

General (non-rectangular) ambiguity sets

s-rectangular ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy stationary but can be randomized
Bellman optimality principle holds

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

Optimal policy stationary and deterministic

Bellman optimality principle holds
10



Rectangularity

P =
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s-rectangular ambiguity sets

(s,a)-rectangular ambiguity sets

Optimal policy stationary but can be randomized
Bellman optimality principle holds

Optimal policy can be randomized & history-dependent

Bellman optimality principle violated; NP-hard

Optimal policy stationary and deterministic

Bellman optimality principle holds

Example

for some unknown ξ ∈ [0,1]
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2

3

ξ

1 − ξ
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1
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ξ
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s-Rectangular Ambiguity Sets: Bellman Operator

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

v⋆(s) = max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v⋆(s′￼)}
Classical (non-robust) Bellman equations

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

v⋆(s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v⋆(s′￼)]
Robust Bellman equations

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
Robust Bellman operator

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

   with   𝒫 = ∏
s∈𝒮

𝒫s 𝒫s = {p( ⋅ |s, ⋅ ) : ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] ≤ κ}
Distance-constrained s-rectangular ambiguity set

[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
Robust Bellman operator

Ho et al. (2023), Robust Phi-Divergence MDPs.

p0( ⋅ |s, a)
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[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
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s-Rectangular Ambiguity Sets: Bellman Operator

[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
= min

p∈𝒫s

max
π∈Δ(𝒜) ∑

a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]

Minimax theorem: exchange order of min and max

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
= min

p∈𝒫s

max
π∈Δ(𝒜) ∑

a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
= min

p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)}

Linearity: we only need to consider ext Δ(𝒜) = 𝒜

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

[𝔅v](s) = max
π∈Δ(𝒜)

min
p∈𝒫s

∑
a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
= min

p∈𝒫s

max
π∈Δ(𝒜) ∑

a∈𝒜

π(a) ⋅ [r(s, a) + λ ∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)]
min
p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ

ℝ

?

Bisection 
search:

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

min
p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ ?

Ho et al. (2023), Robust Phi-Divergence MDPs.
13



s-Rectangular Ambiguity Sets: Bellman Operator

min
p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ ?

min
p∈[Δ(𝒮)]A

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} : ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] ≤ κ ≤ θ

Ho et al. (2023), Robust Phi-Divergence MDPs.
13



s-Rectangular Ambiguity Sets: Bellman Operator

min
p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ ?

min
p∈[Δ(𝒮)]A

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} : ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] ≤ κ ≤ θ

f (p) g (p)

�
Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

min
p∈𝒫s

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ ?

f (p) g (p)

�
min

p∈[Δ(𝒮)]A ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] : max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮

p(s′￼|s, a) ⋅ v(s′￼)} ≤ θ ≤ κ

g (p) f (p)

Ho et al. (2023), Robust Phi-Divergence MDPs.

min
p∈[Δ(𝒮)]A

max
a∈𝒜 {r(s, a) + λ ∑

s′￼∈𝒮
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g (p) f (p)
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   with   𝒫 = ∏
s∈𝒮

𝒫s 𝒫s = {p( ⋅ |s, ⋅ ) : ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] ≤ κ}

Ho et al. (2023), Robust Phi-Divergence MDPs.

Distance-constrained s-rectangular ambiguity set
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�
Theorem

Assume  can be computed exactly in time .

Then  can be computed to accuracy  in time 

.

𝔓 𝒪(h(S))
𝔅 ϵ > 0

𝒪(AS ⋅ h(S) ⋅ log[R/ϵ])

Ho et al. (2023), Robust Phi-Divergence MDPs.

Distance-constrained s-rectangular ambiguity set

   with   𝒫 = ∏
s∈𝒮

𝒫s 𝒫s = {p( ⋅ |s, ⋅ ) : ∑
a∈𝒜

d [p( ⋅ |s, a), p0( ⋅ |s, a)] ≤ κ}

15



s-Rectangular Ambiguity Sets: Bellman Operator

�
Theorem

Assume  can be computed exactly in time .

Then  can be computed to accuracy  in time 

. 
Assume  can be computed to any accuracy  
in time . Then  can be computed to accuracy  

 in time .

𝔓 𝒪(h(S))
𝔅 ϵ > 0

𝒪(AS ⋅ h(S) ⋅ log[R/ϵ])
𝔓 δ > 0

𝒪(h(δ)) 𝔅
ϵ > 0 𝒪(AS ⋅ h(ϵκ/[2AR + Aϵ]) ⋅ log[R/ϵ])

Ho et al. (2023), Robust Phi-Divergence MDPs.
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KL-Divergence

Burg Entropy

Variation Distance

-Distanceχ2

∑
s′￼∈𝒮

p(s′￼|s, a) ⋅ log ( p(s′￼|s, a)
p0(s′￼|s, a) )

∑
s′￼∈𝒮

p0(s′￼|s, a) ⋅ log ( p0(s′￼|s, a)
p(s′￼|s, a) )

∑
s′￼∈𝒮

|p(s′￼|s, a) − p0(s′￼|s, a) |

∑
s′￼∈𝒮

[p(s′￼|s, a) − p0(s′￼|s, a)]2

p0(s′￼|s, a)

𝒪(S2 ⋅ A log A)

𝒪(S2 ⋅ A log A)

𝒪(S2 log S ⋅ A)

𝒪(S2 log S ⋅ A)

𝒪(S2 log S ⋅ A)

𝒪(S4.5 ⋅ A)

(none)

𝒪(ℓ2 ⋅ S2 ⋅ A)

da( ⋅ , p0)Divergence Ours Previous

Ho et al. (2023), Robust Phi-Divergence MDPs.
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s-Rectangular Ambiguity Sets: Bellman Operator

Projection problem Bellman operator

Ho et al. (2023), Robust Phi-Divergence MDPs.
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Weakly Coupled Markov Decision Process

Tuple  where


•   with  is the (finite) state space;


•  with  is the (finite) action space;

(𝒮, 𝒜, q, p, r, T)
𝒮 = ∏n

i=1 𝒮i 𝒮i = {1,…, Si}

𝒜 = ∏n
i=1 𝒜i 𝒜i = {1,…, Ai}

Markov decision process

…

…

…

x

x
(𝒮1, 𝒜1)

(𝒮n, 𝒜n)

…
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Weakly Coupled Markov Decision Process
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T ∈ ℕ

Markov decision process
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20

Objective
find policy  that 

maximizes the expected total rewards:
π = 𝒮 → 𝒜

maximize 𝔼p [
T

∑
t=1

r(st, πt[st])]π∈Π



The Fluid Approximation

Fluid Linear Program
T

∑
t=1

n

∑
i=1

∑
si∈𝒮i

∑
ai∈𝒜i

rti(si, ai) ⋅ πti(si, ai)

σ1i(si) = qi(si)

σt+1,i(s′￼i) = ∑
si∈𝒮i

∑
ai∈𝒜i

pti(s′￼i | si, ai) ⋅ πti(si, ai)

n

∑
i=1

∑
si∈𝒮i

∑
ai∈𝒜i

ctli(si, ai) ⋅ πti(si, ai) ≤ btl

∑
ai∈𝒜i

πti(si, ai) = σti(si)

maximize

subject to

σ, π ≥ 0

∀i, ∀si ∈ 𝒮i

∀i, ∀s′￼i ∈ 𝒮i, ∀t

∀l, ∀t

∀i, ∀s ∈ 𝒮i, ∀t
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: % of MDP i that is in 
           state si in stage t
σti(si)
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objective function: 
maximize rewards
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Fluid Linear Program
T

∑
t=1

n

∑
i=1

∑
si∈𝒮i

∑
ai∈𝒜i

rti(si, ai) ⋅ πti(si, ai)

σ1i(si) = qi(si)

σt+1,i(s′￼i) = ∑
si∈𝒮i

∑
ai∈𝒜i

pti(s′￼i | si, ai) ⋅ πti(si, ai)

n

∑
i=1

∑
si∈𝒮i

∑
ai∈𝒜i

ctli(si, ai) ⋅ πti(si, ai) ≤ btl

∑
ai∈𝒜i

πti(si, ai) = σti(si)

maximize

subject to

σ, π ≥ 0

∀i, ∀si ∈ 𝒮i

∀i, ∀s′￼i ∈ 𝒮i, ∀t

∀l, ∀t

∀i, ∀s ∈ 𝒮i, ∀t

“flow preservation”: 
we cannot “drop” MDPs

∑
ai∈𝒜i

πti(si, ai) = σti(si)
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Randomized Fluid Policies

Observation
The fluid LP constitutes a relaxation of the weakly coupled MDP.
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Randomized Fluid Policies

Observation

Randomized policy

For each MDP i, take action ai in state si with probability  at time t.
πti(si, ai)

σti(si)

The fluid LP constitutes a relaxation of the weakly coupled MDP.
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Randomized Fluid Policies

Observation

Randomized policy

For each MDP i, take action ai in state si with probability  at time t.
πti(si, ai)

σti(si)

Performance guarantee
For suitably adapted btl, the randomized policy is guaranteed to be

feasible in the weakly coupled MDP. Moreover, the relative optimality

gap for large MDPs is:

T ⋅
log n

n
+

T2L
n2

⟶
n→∞

0

The fluid LP constitutes a relaxation of the weakly coupled MDP.
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Case Study: National Patient Prioritization 

D’Aeth et al. (2021), Optimal National Prioritization Policies for Hospital Care During the SARS-CoV-2 Pandemic.
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Case Study: National Patient Prioritization 

D’Aeth et al. (2021), Optimal National Prioritization Policies for Hospital Care During the SARS-CoV-2 Pandemic.
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Figure 14. Years of Life Gained (i.e., YLL avoided) by the OS relative to the CP
policy, categorized by disease group (ICD01: certain infectious and parasitic diseases;
ICD02: neoplasms; ICD04: endocrine, nutritional and metabolic diseases; ICD05: mental
and behavioural disorders; ICD06: diseases of the nervous system; ICD09: diseases of
the circulatory system; ICD10: diseases of the respiratory system; ICD11: diseases of the
digestive system; ICD13: diseases of the musculoskeletal system and connective tissue;
ICD14: diseases of the genitourinary system; ICD18: symptoms, signs and abnormal
clinical and laboratory findings, not elsewhere classified; ICD19: injury, poisoning and
certain other consequences of external causes).

We emphasize that the CP policy constitutes an overly optimistic representation of the current

practice in England, where not only COVID patients are prioritized but also the other patient groups

are scheduled suboptimally based on static prioritization schemes. Thus, we expect our results to

underestimate the benefits of the OS over the current practice. We refer to the accompanying

paper D’Aeth et al. (2021) for a comparison of the OS against a set of government admission

policies across a range of scenarios.

6 Extensions

Our approach of modeling the health system via a weakly coupled counting DP and subsequently

determining a near-optimal solution via the fluid LP (3) is very versatile. In this section, we

highlight some extensions of our method that can help to obtain better informed, fairer and more
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Case Study: National Patient Prioritization 

D’Aeth et al. (2021), Optimal National Prioritization Policies for Hospital Care During the SARS-CoV-2 Pandemic.

720k YLG   (+8.7%)

22.1% less emergencies

up to 53.5% more electives
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Figure 14. Years of Life Gained (i.e., YLL avoided) by the OS relative to the CP
policy, categorized by disease group (ICD01: certain infectious and parasitic diseases;
ICD02: neoplasms; ICD04: endocrine, nutritional and metabolic diseases; ICD05: mental
and behavioural disorders; ICD06: diseases of the nervous system; ICD09: diseases of
the circulatory system; ICD10: diseases of the respiratory system; ICD11: diseases of the
digestive system; ICD13: diseases of the musculoskeletal system and connective tissue;
ICD14: diseases of the genitourinary system; ICD18: symptoms, signs and abnormal
clinical and laboratory findings, not elsewhere classified; ICD19: injury, poisoning and
certain other consequences of external causes).

We emphasize that the CP policy constitutes an overly optimistic representation of the current

practice in England, where not only COVID patients are prioritized but also the other patient groups

are scheduled suboptimally based on static prioritization schemes. Thus, we expect our results to

underestimate the benefits of the OS over the current practice. We refer to the accompanying

paper D’Aeth et al. (2021) for a comparison of the OS against a set of government admission

policies across a range of scenarios.

6 Extensions

Our approach of modeling the health system via a weakly coupled counting DP and subsequently

determining a near-optimal solution via the fluid LP (3) is very versatile. In this section, we

highlight some extensions of our method that can help to obtain better informed, fairer and more
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Randomized Policy: 
G&A  +0.05%

CC    +1.56%
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