Data-Driven
 Markov Decision Processes

Wolfram Wiesemann
Imperial College Business School

Markov Decision Processes

Markov decision process

Tuple ($\mathcal{S}, \mathscr{A}, q, p, r, \lambda$) where

- $\mathcal{S}=\{1, \ldots, S\}$ is the (finite) state space;
- $\mathscr{A}=\{1, \ldots, A\}$ is the (finite) action space;
- $q=\left(q_{1}, \ldots, q_{S}\right) \in \Delta(\mathcal{S})$ is the initial state distribution;
- $p: \mathcal{S} \times \mathscr{A} \rightarrow \Delta(\mathcal{S})$ is the transition kernel with elements $p\left(s^{\prime} \mid s, a\right)$;
- $r: \mathcal{S} \times \mathscr{A} \rightarrow \mathbb{R}$ are the expected one-step rewards;
- $\lambda \in(0,1)$ is the discount factor.

Markov Decision Processes

Markov decision process

Tuple ($\mathcal{S}, \mathscr{A}, q, p, r, \lambda$) where

- $\mathcal{S}=\{1, \ldots, S\}$ is the (finite) state space;
- $\mathscr{A}=\{1, \ldots, A\}$ is the (finite) action space;
- $q=\left(q_{1}, \ldots, q_{S}\right) \in \underline{\Delta}(\mathcal{S})$ is the initial state distribution;
- $p: \mathcal{S} \times \mathscr{A} \rightarrow \Delta(\mathcal{S})$ is the transition kernel with elements $p\left(s^{\prime} \mid s, a\right)$;
- $r: \delta \times$ Objective
- $\lambda \in(0$,
find policy $\pi: \mathcal{S} \rightarrow \mathscr{A}$ that maximizes the expected total discounted rewards:
maximize

$$
\mathbb{E}_{p}\left[\sum_{t=1}^{\infty} \lambda^{t-1} \cdot r\left(s_{t}, \pi\left[s_{t}\right]\right)\right]
$$

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.

Cart Pole Example

Cart Pole Example

Cart Pole Example

Barto et al. (1983), Neuronlike Adaptive Elements that can Solve Difficult Learning Control Problems.

STOCHASTICITY AND AMBIGUITY

Ambiguity and Robust MDPs

Ambiguity and Robust MDPs

Two common sources of ambiguity:

- Modelling errors: 32.67 secs/run

Ambiguity and Robust MDPs

Two common sources of ambiguity:

- Modelling errors: 32.67 secs/run $\Rightarrow 2.45$ secs/run

Ambiguity and Robust MDPs

Two common sources of ambiguity:

- Modelling errors: 32.67 secs/run $\Rightarrow 2.45$ secs/run
- Estimation errors: 32.67 secs/run

Ambiguity and Robust MDPs

Two common sources of ambiguity:

- Modelling errors: 32.67 secs/run $\Rightarrow 2.45$ secs/run
- Estimation errors: 32.67 secs/run $\Rightarrow 4.68$ secs/run

Ambiguity and Robust MDPs

Two common sources of ambiguity:

- Modelling errors: 32.67 secs/run $\Rightarrow 2.45$ secs/run
- Estimation errors: 32.67 secs/run $\Rightarrow 4.68$ secs/run

Impact of ambiguity can be alleviated via robust optimization:

Robust MDPs admit interpretation as regularized MDPs!

Ambiguity: Estimation Errors

Estimation errors: $32.67 \mathrm{secs} /$ run $\leadsto 4.68 \mathrm{secs} /$ run $\Rightarrow 15.76 \mathrm{secs} /$ run

Ambiguity Sets

Structural ambiguity set

Ambiguity Sets

Wiesemann et al. (2013), Robust Markov Decision Processes.

Ambiguity Sets

Ambiguity Sets

[^0]
Ambiguity Sets

Ambiguity Sets

Historical sample

historical policy π^{0} (stationary, randomized)

state-action history

$$
\mathscr{H}_{n}=\left(s_{1}, a_{1}, \ldots, s_{n}, a_{n}\right) \in(\mathcal{S} \times \mathscr{A})^{n}
$$

Ambiguity Sets

Historical sample

historical policy π^{0} (stationary, randomized)

state-action history

$$
\mathscr{H}_{n}=\left(s_{1}, a_{1}, \ldots, s_{n}, a_{n}\right) \in(\mathcal{S} \times \mathscr{A})^{n}
$$

Likelihood, given history

$$
\mathscr{L}_{n}(p)=q\left(s_{1}\right) \cdot \pi^{0}\left(a_{n} \mid s_{n}\right) \cdot \prod^{n-1}\left[\pi^{0}\left(a_{t} \mid s_{t}\right) \cdot p\left(s_{t+1} \mid s_{t}, a_{t}\right)\right]
$$

Ambiguity Sets

Historical sample

$$
\mathscr{P}\left(\mathscr{H}_{n}\right)=\left\{p: \log \mathscr{L}_{n}(p) \geq \log \mathscr{L}_{n}\left(p^{\star}\right)-\delta\right\}
$$

historical policy π^{0} (stationary, randomized)

state-action history

$$
\mathscr{H}_{n}=\left(s_{1}, a_{1}, \ldots, s_{n}, a_{n}\right) \in(\mathcal{S} \times \mathscr{A})^{n}
$$

Likelihood, given history

$$
\mathscr{L}_{n}(p)=q\left(s_{1}\right) \cdot \pi^{0}\left(a_{n} \mid s_{n}\right) \cdot \prod^{n-1}\left[\pi^{0}\left(a_{t} \mid s_{t}\right) \cdot p\left(s_{t+1} \mid s_{t}, a_{t}\right)\right]
$$

Ambiguity Sets

Theorem

Assumption: Historical policy π^{0} visits every $s \in \mathcal{S}$ infinite often as $n \longrightarrow \infty$

Ambiguity Sets

Theorem

$$
\begin{aligned}
& \mathscr{P}_{n}=\mathscr{P}^{0} \cap \mathscr{P}\left(\mathscr{H}_{n}\right) \text { with } \delta=(1-\beta) \text {-quantile } \\
& \text { of } \chi^{2} \text {-distribution with } \kappa \text { degrees of freedom }
\end{aligned}
$$

Assumption: Historical policy π^{0} visits every $s \in \mathcal{S}$ infinite often as $n \longrightarrow \infty$

Ambiguity Sets

Theorem

$$
\begin{aligned}
& \mathscr{P}_{n}=\mathscr{P}^{0} \cap \mathscr{P}\left(\mathscr{H}_{n}\right) \text { with } \delta=(1-\beta) \text {-quantile } \\
& \text { of } \chi^{2} \text {-distribution with } \kappa \text { degrees of freedom }
\end{aligned}
$$

Assumption: Historical policy π^{0} visits every $s \in \mathcal{S}$ infinite often as $n \longrightarrow \infty$ (1) $\lim _{n \rightarrow \infty} \mathbb{P}\left[p^{0} \in \mathscr{P}_{n}\right]=1-\beta$

Ambiguity Sets

Theorem

$$
\begin{aligned}
& \mathscr{P}_{n}=\mathscr{P}^{0} \cap \mathscr{P}\left(\mathscr{H}_{n}\right) \text { with } \delta=(1-\beta) \text {-quantile } \\
& \text { of } \chi^{2} \text {-distribution with } \kappa \text { degrees of freedom }
\end{aligned}
$$

Assumption: Historical policy π^{0} visits every (s, a) infinite often as $n \longrightarrow \infty$ (1) $\lim _{n \rightarrow \infty} \mathbb{P}\left[p^{0} \in \mathscr{P}_{n}\right]=1-\beta$

Ambiguity Sets

Theorem

$$
\begin{aligned}
& \mathscr{P}_{n}=\mathscr{P}^{0} \cap \mathscr{P}\left(\mathscr{H}_{n}\right) \text { with } \delta=(1-\beta) \text {-quantile } \\
& \text { of } \chi^{2} \text {-distribution with } \kappa \text { degrees of freedom }
\end{aligned}
$$

Assumption: Historical policy π^{0} visits every (s, a) infinite often as $n \longrightarrow \infty$

$$
\operatorname{plim}_{n \rightarrow \infty}\left[\sqrt{n} \cdot d^{\mathrm{H}}\left(\mathscr{P}_{n},\left\{p^{0}\right\}\right)\right]=0
$$

Ambiguity Sets

Theorem

$$
\begin{aligned}
& \mathscr{P}_{n}=\mathscr{P}^{0} \cap \mathscr{P}\left(\mathscr{H}_{n}\right) \text { with } \delta=(1-\beta) \text {-quantile } \\
& \text { of } \chi^{2} \text {-distribution with } \kappa \text { degrees of freedom }
\end{aligned}
$$

Assumption: Historical policy π^{0} visits every (s, a) infinite often as $n \longrightarrow \infty$

Wiesemann et al. (2013), Robust Markov Decision Processes.

Rectangularity

General (non-rectangular) ambiguity sets
©asc Optimal policy can be randomized \& history-dependent
âc Bellman optimality principle violated; NP-hard

General (non-rectangular) ambiguity sets
ब्बी Optimal policy can be randomized \& history-dependent âç Bellman optimality principle violated; NP-hard

(s, a)-rectangular ambiguity sets

$$
\mathscr{P}=\prod_{(s, a) \in \mathcal{S} \times \mathscr{A}} \mathscr{P}_{s, a} \text { with } \mathscr{P}_{s, a} \subseteq \Delta(\mathcal{S})
$$

Rectangularity

General (non-rectangular) ambiguity sets
बą Optimal policy can be randomized \& history-dependent ©

(s, a)-rectangular ambiguity sets
疑 3 Optimal policy stationary and deterministic
䫌 Bellman optimality principle holds

Rectangularity

General (non-rectangular) ambiguity sets
axa Optimal policy can be randomized \& history-dependent
ax. Bellman optimality principle violated; NP-hard

s-rectangular ambiguity sets

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \text { with } \mathscr{P}_{s} \subseteq[\Delta(\mathcal{S})]^{A}
$$

(s, a)-rectangular ambiguity sets
Optimal policy stationary and deterministic
Bellman optimality principle holds

General（non－rectangular）ambiguity sets
気通 Optimal policy can be randomized \＆history－dependent
気 Bellman optimality principle violated；NP－hard

踝 3 Optimal policy stationary and deterministic
疑 Bellman optimality principle holds

s-Rectangular Ambiguity Sets: Bellman Operator

s-Rectangular Ambiguity Sets: Bellman Operator
Classical (non-robust) Bellman equations
$\nu^{\star}(s)=\max _{a \in \mathscr{I}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v^{\star}\left(s^{\prime}\right)\right\}$

s-Rectangular Ambiguity Sets: Bellman Operator

Robust Bellman equations

$$
v^{\star}(s)=\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v^{\star}\left(s^{\prime}\right)\right]\right\}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
[\mathfrak{R} v](s)=\max _{\pi \in \Delta(\mathcal{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

Robust Bellman operator

$$
[\mathfrak{B} v](s)=\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
$$

Distance-constrained s-rectangular ambiguity set

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \quad \text { with } \quad \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
[\mathfrak{B} v](s)=\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{aligned}
{[\mathfrak{B} v](s) } & =\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\} \\
& =\min _{p \in \mathscr{P}_{s}} \max _{\pi \in \Delta(\mathscr{A})}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
\end{aligned}
$$

Minimax theorem: exchange order of min and max

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{aligned}
{[\mathfrak{B} v](s) } & =\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\} \\
& =\min _{p \in \mathscr{P}_{s}} \max _{\pi \in \Delta(\mathscr{A})}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\} \\
& =\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\}
\end{aligned}
$$

Linearity: we only need to consider ext $\Delta(\mathscr{A})=\mathscr{A}$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{aligned}
{[\mathfrak{B} v](s) } & =\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\} \\
& =\min _{p \in \mathscr{P}_{s}} \max _{\pi \in \Delta(\mathscr{A})}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\} \\
& \min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
\begin{array}{c}
\text { Bisection } \\
\text { search: }
\end{array} &
\end{aligned}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ?
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{aligned}
& \min _{p \in \mathscr{\mathscr { P }}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
& \left.\min _{p \in[\Delta(\mathcal{S})]^{A}}\left\{\max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\}: \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right)\right\} \leq \theta
\end{aligned}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{gathered}
\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
\min _{p \in[\Delta(\mathcal{S})]^{A}}\{\underbrace{f(\mathrm{p})}_{\max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\}}: \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\} \leq \theta \\
g(\mathrm{p})
\end{gathered}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{gathered}
\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
\min _{p \in[\Delta(\mathcal{S})]^{A}}\left\{\max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\}: \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\} \leq \theta \\
\min _{p \in[\Delta(\mathcal{S})]^{A}}\left\{\sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right]: \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta\right\} \leq \kappa \\
f(p)
\end{gathered}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{gathered}
\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
\min _{p \in[\Delta(\mathcal{S})]^{A}}\left\{\sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right]: \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta\right\} \leq \kappa \\
f(\mathrm{p})
\end{gathered}
$$

$$
\begin{gathered}
\min _{p \in \mathscr{F}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ? \\
\min _{p \in[\Delta(\mathcal{S})]^{4}}\{\underbrace{f(p)}_{\left.\left.\sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right]\right]: \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta\right\} \leq \kappa} \\
\stackrel{\sum_{a \in \mathscr{A}} \min _{p_{a} \in \Delta(\mathcal{S})}\left\{d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right]: r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right) \leq \theta\right\} \leq \kappa}{\Longleftrightarrow}
\end{gathered}
$$

Separability: of both objective and constraints in $a \in \mathscr{A}$

s-Rectangular Ambiguity Sets: Bellman Operator

$$
\begin{gathered}
\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\}
\end{gathered} \leq \theta ?
$$

s-Rectangular Ambiguity Sets: Bellman Operator

$\min _{p \in \mathscr{P}_{s}} \max _{a \in \mathscr{A}}\left\{r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right\} \leq \theta ?$
$\sum_{a \in \mathscr{A}} \min _{p_{a} \in \Delta(\mathcal{S})}\left\{d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right]: r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right) \leq \theta\right\} \leq \kappa$

$$
\square \Longleftrightarrow \sum \mathfrak{P}\left(p^{0} ; \lambda \nu, \theta-r(s \mid a)\right) \leq \kappa
$$

with $\mathfrak{P}\left(p^{0} ; b, \beta\right)=\left[\begin{array}{ll}\underset{p}{\operatorname{minimize}} & d\left[p, p^{0}\right] \\ \text { subject to } & \sum_{\substack{s^{\prime} \in \mathcal{S} \\ p \in \Delta(\mathcal{S})}} b_{s^{\prime}} \cdot p_{s^{\prime}} \leq \beta \\ & p \in \Delta]\end{array}\right.$
Ho et al. (2023), Robust Phi-Divergence MDPs.

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \text { with } \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

s-Rectangular Ambiguity Sets: Bellman Operator

Distance-constrained s-rectangular ambiguity set

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \text { with } \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

Robust Bellman operator

$$
[\mathfrak{B} v](s)=\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
$$

Distance-constrained s-rectangular ambiguity set

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \quad \text { with } \quad \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

Robust Bellman operator

$$
[\mathfrak{B} v](s)=\max _{\pi \in \Delta(\mathscr{A})} \min _{p \in \mathscr{P}_{s}}\left\{\sum_{a \in \mathscr{A}} \pi(a) \cdot\left[r(s, a)+\lambda \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot v\left(s^{\prime}\right)\right]\right\}
$$

Distance-constrained s-rectangular ambiguity set

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \text { with } \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

Theorem

Assume \mathfrak{P} can be computed exactly in time $\mathcal{O}(h(S))$.
Then \mathfrak{B} can be computed to accuracy $\epsilon>0$ in time $\mathcal{O}(A S \cdot h(S) \cdot \log [\bar{R} / \epsilon])$.

Distance-constrained s-rectangular ambiguity set

$$
\mathscr{P}=\prod_{s \in \mathcal{S}} \mathscr{P}_{s} \text { with } \mathscr{P}_{s}=\left\{p(\cdot \mid s, \cdot): \sum_{a \in \mathscr{A}} d\left[p(\cdot \mid s, a), p^{0}(\cdot \mid s, a)\right] \leq \kappa\right\}
$$

Theorem

Assume \mathfrak{P} can be computed exactly in time $\mathcal{O}(h(S))$.
Then \mathfrak{B} can be computed to accuracy $\epsilon>0$ in time $\mathcal{O}(A S \cdot h(S) \cdot \log [\bar{R} / \epsilon])$.
Assume \mathfrak{P} can be computed to any accuracy $\delta>0$ in time $\mathcal{O}(h(\delta))$. Then \mathfrak{B} can be computed to accuracy $\epsilon>0$ in time $\mathcal{O}(A S \cdot h(\epsilon \kappa /[2 A \bar{R}+A \epsilon]) \cdot \log [\bar{R} / \epsilon])$.

s-Rectangular Ambiguity Sets: Bellman Operator

Divergence $d_{a}\left(\cdot, p^{0}\right)$
 Ours
 Previous

KL-Divergence	$\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot \log \left(\frac{p\left(s^{\prime} \mid s, a\right)}{p^{0}\left(s^{\prime} \mid s, a\right)}\right)$	$\mathcal{O}\left(S^{2} \cdot A \log A\right)$	$\mathcal{O}\left(\ell^{2} \cdot S^{2} \cdot A\right)$
Burg Entropy	$\sum_{s^{\prime} \in \mathcal{S}} p^{0}\left(s^{\prime} \mid s, a\right) \cdot \log \left(\frac{p^{0}\left(s^{\prime} \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)}\right)$	$\mathcal{O}\left(S^{2} \cdot A \log A\right)$	(none)
Variation Distance	$\sum_{s^{\prime} \in \mathcal{S}}\left\|p\left(s^{\prime} \mid s, a\right)-p^{0}\left(s^{\prime} \mid s, a\right)\right\|$	$\mathcal{O}\left(S^{2} \log S \cdot A\right)$	$\mathcal{O}\left(S^{2} \log S \cdot A\right)$
χ^{2}-Distance	$\sum_{s^{\prime} \in \mathcal{S}} \frac{\left[p\left(s^{\prime} \mid s, a\right)-p^{0}\left(s^{\prime} \mid s, a\right)\right]^{2}}{p^{0}\left(s^{\prime} \mid s, a\right)}$		

s-Rectangular Ambiguity Sets: Bellman Operator

Divergence

KL-Divergence	$\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) \cdot \log \left(\frac{p\left(s^{\prime} \mid s, a\right)}{p^{0}\left(s^{\prime} \mid s, a\right)}\right)$	$\mathcal{O}\left(S^{2} \cdot A \log A\right)$	$\mathcal{O}\left(\ell^{2} \cdot S^{2} \cdot A\right)$
Burg Entropy	$\sum_{s^{\prime} \in \mathcal{S}} p^{0}\left(s^{\prime} \mid s, a\right) \cdot \log \left(\frac{p^{0}\left(s^{\prime} \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)}\right)$	$\mathcal{O}\left(S^{2} \cdot A \log A\right)$	(none)
Variation Distance	$\sum_{s^{\prime} \in \mathcal{S}}\left\|p\left(s^{\prime} \mid s, a\right)-p^{0}\left(s^{\prime} \mid s, a\right)\right\|$	$\mathcal{O}\left(S^{2} \log S \cdot A\right)$	$\mathcal{O}\left(S^{2} \log S \cdot A\right)$
χ^{2}-Distance	$\sum_{s^{\prime} \in \mathcal{S}} \frac{\left[p\left(s^{\prime} \mid s, a\right)-p^{0}\left(s^{\prime} \mid s, a\right)\right]^{2}}{p^{0}\left(s^{\prime} \mid s, a\right)}$	$\mathcal{O}\left(S^{2} \log S \cdot A\right)$	$\mathcal{O}\left(S^{4.5} \cdot A\right)$

Bibliography

[1] WW, D. Kuhn, B. Rustem, Robust Markov Decision Processes, Mathematics of Operations Research 38(1):153-183, 2013.
[2] C. Ho, M. Petrik, WW, Fast Bellman Updates for Robust MDPs, Proceedings of the 35th International Conference on Machine Learning (ICML), 2018.
[3] J. C. D'Aeth, WW et al. Optimal National Prioritization Policies for Hospital Care During the SARS-CoV-2 Pandemic, Nature Computational Science 1(8):521-531, 2021.
[4] J. C. D'Aeth, WW et al. Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic, Management Science (Online First), 2023.
[5] C. Ho, M. Petrik, WW, Partial Policy Iteration for L1-Robust Markov Decision Processes, The Journal of Machine Learning Research 22(1):12612-12657, 2021.
[6] C. Ho, M. Petrik, WW, Robust Phi-Divergence MDPs, Advances in Neural Information Processing Systems 35 (NeurIPS Proceedings), 2022.

- BACKUP -

LARGE-SCALE PROBLEMS

Case Study: National Patient Prioritization

Waiting list for hospital treatment

Case Study: National Patient Prioritization

MDP model of an individual patient:

Case Study: National Patient Prioritization

MDP model of an individual patient:

Case Study: National Patient Prioritization

MDP model of an individual patient:

Case Study: National Patient Prioritization

MDP model of an individual patient:

Case Study: National Patient Prioritization

MDP model of an individual patient:

Weakly Coupled Markov Decision Process

Markov decision process

Tuple ($\mathcal{S}, \mathcal{A}, q, p, r, T)$ where

- $\mathcal{S}=\prod_{i=1}^{n} \mathcal{S}_{i}$ with $\mathcal{S}_{i}=\left\{1, \ldots, S_{i}\right\}$ is the (finite) state space;
- $\mathscr{A}=\prod_{i=1}^{n} \mathscr{A}_{i}$ with $\mathscr{A}_{i}=\left\{1, \ldots, A_{i}\right\}$ is the (finite) action space;

Weakly Coupled Markov Decision Process

Markov decision process

Tuple ($\mathcal{S}, \mathscr{A}, q, p, r, T)$ where

- $\mathcal{S}=\prod_{i=1}^{n} \mathcal{S}_{i}$ with $\mathcal{S}_{i}=\left\{1, \ldots, S_{i}\right\}$ is the (finite) state space;
- $\mathscr{A}=\prod_{i=1}^{n} \mathscr{A}_{i}$ with $\mathscr{A}_{i}=\left\{1, \ldots, A_{i}\right\}$ is the (finite) action space;
- $q(s)=\prod_{i=1}^{n} q_{i}\left(s_{i}\right)$ is the initial state distribution;
- $p_{t}\left(s^{\prime} \mid s, a\right)=\prod_{i=1}^{n} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right)$ is the transition kernel;
- $r_{t}(s, a)=\sum_{i=1}^{n} r_{t i}\left(s_{i}, a_{i}\right)$ are the expected one-step rewards;
- $T \in \mathbb{N}$ is the (finite) time horizon

Weakly Coupled Markov Decision Process

Weakly coupled Markov decision process

Tuple ($\mathcal{S}, \mathscr{A}, q, p, r, T)$ where

- $\mathcal{S}=\prod_{i=1}^{n} \mathcal{S}_{i}$ with $\mathcal{S}_{i}=\left\{1, \ldots, S_{i}\right\}$ is the (finite) state space;
- $\mathscr{A}=\prod_{i=1}^{n} \mathscr{A}_{i}$ with $\mathscr{A}_{i}=\left\{1, \ldots, A_{i}\right\}$ is the (finite) action space;
- $q(s)=\prod_{i=1}^{n} q_{i}\left(s_{i}\right)$ is the initial state distribution;
- $p_{t}\left(s^{\prime} \mid s, a\right)=\prod_{i=1}^{n} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right)$ is the transition kernel;
- $r_{t}(s, a)=\sum_{i=1}^{n} r_{t i}\left(s_{i}, a_{i}\right)$ are the expected one-step rewards;
- $T \in \mathbb{N}$ is the (finite) time horizon
and

$$
a \in \mathscr{A} \text { admissible only if } \sum_{i=1}^{n} c_{t l i}\left(s_{i}, a_{i}\right) \leq b_{t l} \text { for all } l \in \mathscr{L}
$$

Weakly Coupled Markov Decision Process

Weakly coupled Markov decision process

Tuple $(\mathcal{S}, \mathscr{A}, q, p, r, T)$ where

find policy $\pi=\mathcal{S} \rightarrow \mathscr{A}$ that maximizes the expected total rewards:
$\underset{\pi \in \Pi}{\operatorname{maximize}} \mathbb{E}_{p}\left[\sum_{t=1}^{T} r\left(s_{t}, \pi_{t}\left[s_{t}\right]\right)\right]$

The Fluid Approximation

Fluid Linear Program

$$
\underset{\sigma, \pi \geq 0}{\operatorname{maximize}} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right)
$$

subject to

$$
\begin{array}{ll}
\sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) & \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
\sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) & \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t \\
\sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} & \forall l, \forall t \\
\sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) & \forall i, \forall s \in \mathcal{S}_{i}, \forall t
\end{array}
$$

The Fluid Approximation

Fluid Linear Program

maximize G. $\pi \geq 0$ subigel to

$$
\begin{gathered}
\sum^{T} \sum^{n} \sum \sum r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \\
\left(\begin{array}{c}
\sigma_{t i}\left(s_{i}\right): \% \text { of MDP } i \text { that is in } \\
\text { state } s_{i} \text { in stage } t
\end{array}\right.
\end{gathered}
$$

$\forall i, \forall s_{i} \in \mathcal{S}_{i}$

$$
\sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A} \mathcal{A}_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \quad \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t
$$

$$
\sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} \quad \forall l, \forall t
$$

$$
\sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right)
$$

$$
\forall i, \forall s \in \mathcal{S}_{i}, \forall t
$$

The Fluid Approximation

Fluid Linear Program

The Fluid Approximation

Fluid Linear Program

$$
\begin{array}{rlr}
\underset{\sigma, \pi \geq 0}{\operatorname{maximize}} & \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) & \begin{array}{c}
\text { objective functio } \\
\text { maximize reward }
\end{array} \\
\text { subject to } & \sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) & \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
& \sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \quad \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t \\
& \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} \quad \forall l, \forall t \\
& \sum_{i=1} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) & \forall i, \forall s \in \mathcal{S}_{i}, \forall t
\end{array}
$$

The Fluid Approximation

Fluid Linear Program

$$
\begin{aligned}
& \underset{\sigma, \pi \geq 0}{\operatorname{maximize}} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi\left(\begin{array}{r}
\text { initial states: } \\
\text { must follow } q
\end{array}\right. \\
& \text { subject to } \sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) \\
& \sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \\
& \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
& \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l}^{\prime} \in \mathcal{S}_{i}, \forall t \\
& \sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) \\
& \forall l, \forall t
\end{aligned}
$$

The Fluid Approximation

Fluid Linear Program

$$
\begin{array}{clc}
\underset{\sigma, \pi \geq 0}{\operatorname{maximize}} & \sum_{i=1}^{T} \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{j}\right) & \begin{array}{c}
\text { transitions: } \\
\text { must follow } p
\end{array} \\
\text { subject to } & \sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) & \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
& \sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) & \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t \\
& \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} & \forall l, \forall t \\
& \sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) & \forall i, \forall s \in \mathcal{S}_{i}, \forall t
\end{array}
$$

The Fluid Approximation

Fluid Linear Program

maximize $\sigma, \pi \geq 0$

$$
\sum_{i n} \sum \sum
$$

resources:

 budgets must be keptsubject to

$$
\begin{array}{ll}
\sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) & \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
\sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} l_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) & \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t \\
\sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} & \forall l, \forall t \\
\sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) & \forall i, \forall s \in \mathcal{S}_{i}, \forall t
\end{array}
$$

The Fluid Approximation

Fluid Linear Program

$\underset{\sigma, \pi \geq 0}{\operatorname{maximize}} \sum_{i=1}^{T} \sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} r_{t i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, \quad \begin{array}{c}\text { "flow preservation": } \\ \text { we cannot "drop" MDPs }\end{array}\right.$
subject to

$$
\begin{array}{ll}
\sigma_{1 i}\left(s_{i}\right)=q_{i}\left(s_{i}\right) & \forall i, \forall s_{i} \in \mathcal{S}_{i} \\
\sigma_{t+1, i}\left(s_{i}^{\prime}\right)=\sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \not h_{i}} p_{t i}\left(s_{i}^{\prime} \mid s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) & \forall i, \forall s_{i}^{\prime} \in \mathcal{S}_{i}, \forall t \\
\sum_{i=1}^{n} \sum_{s_{i} \in \mathcal{S}_{i}} \sum_{a_{i} \in \mathscr{A}_{i}} c_{t l i}\left(s_{i}, a_{i}\right) \cdot \pi_{t i}\left(s_{i}, a_{i}\right) \leq b_{t l} & \forall l, \forall t \\
\sum_{a_{i} \in \mathscr{A}_{i}} \pi_{t i}\left(s_{i}, a_{i}\right)=\sigma_{t i}\left(s_{i}\right) & \forall i, \forall s \in \mathcal{S}_{i}, \forall t
\end{array}
$$

Randomized Fluid Policies

Observation

The fluid LP constitutes a relaxation of the weakly coupled MDP.

Randomized Fluid Policies

Observation

The fluid LP constitutes a relaxation of the weakly coupled MDP.

Randomized policy

For each MDP i, take action a_{i} in state s_{i} with probability $\frac{\pi_{t i}\left(s_{i}, a_{i}\right)}{\sigma_{t i}\left(s_{i}\right)}$ at time t.

Randomized Fluid Policies

Observation

The fluid LP constitutes a relaxation of the weakly coupled MDP.

Randomized policy

For each MDP i, take action a_{i} in state s_{i} with probability $\frac{\pi_{t i}\left(s_{i}, a_{i}\right)}{\sigma_{t i}\left(s_{i}\right)}$ at time t.

Performance guarantee

For suitably adapted $b_{t /}$, the randomized policy is guaranteed to be feasible in the weakly coupled MDP. Moreover, the relative optimality gap for large MDPs is:

$$
T \cdot \sqrt{\frac{\log n}{n}}+\frac{T^{2} L}{n^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Case Study: National Patient Prioritization

Simulation of Government Policy

Case Study: National Patient Prioritization

Case Study：National Patient Prioritization

Years of Life Gained by Optimized Schedule

```
** 720k YLG (+8.7%)
```

** 720k YLG (+8.7%)
㐘 22.1% less emergencies
㐘 22.1% less emergencies
粪 up to 53.5% more electives

```
粪 up to 53.5% more electives
```


Case Study: National Patient Prioritization

Years of Life Gained by Optimized Schedule

$$
\begin{gathered}
\text { Randomized Policy: } \\
\text { 米 G\&A +0.05\% } \\
\text { 米 CC }+1.56 \%
\end{gathered}
$$

[^0]: Wiesemann et al. (2013), Robust Markov Decision Processes.

