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generative Al.
@ )

The Soul of a Machine

Deep within the metal frame
Lies a force we can't explain.
A spark of life, a glimmering light,
A machine soul, burning bright.
It's not a heart that beats iNside, g

Nor lungs that draw the breath of =
‘ But circuits, wires, and coded lineg,




generative Al.
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iImpact of Al on tasks.
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Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023]
The Impact of Al on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023]
Measuring the Impact of Al on Information Worker Productivity [Edelman, Ngwe, Peng 2023]



Impact of Al on tasks.
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Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023]
The Impact of Al on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023]
Measuring the Impact of Al on Information Worker Productivity [Edelman, Ngwe, Peng 2023]



Impact of Al on tasks.

AccuracyDifference (%) P-value Time Difference (%) P-Value
Information Retrieval (2.0)% 0.612 26.6% <0.001
Meeting Recap 2.60% 0.347 19.3% 0.003
Creation (Blog Post) (0.36)% 0.882 62.6% <0.001

Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023]
The Impact of Al on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023]
Measuring the Impact of Al on Information Worker Productivity [Edelman, Ngwe, Peng 2023]



strategic reasoning of Al.
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Using Large Language Models to Simulate Multiple Humans [Aher, Arriaga, Tauman Kalai 2023]
Using GPT for Market Research [Brand, Israeli, Ngwe 2023]
Large Language Models as Simulated Economic Agents [Horton 2023]



strategic reasoning of Al.
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Using Large Language Models to Simulate Multiple Humans [Aher, Arriaga, Tauman Kalai 2023]

Using GPT for Market Research [Brand, Israeli, Ngwe 2023]
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strategic reasoning of Al.
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economic settings.

Primitives:
- nature: randomly selects state w € () from known probability distribution
- human players: playeri € {1, ...,n} has action space 4; and informationset I; € ()

Game:
- playersselect actions a = (a4, a,, ..., a,)
- playeri receives payoffu;(a, w)



examples.

Beckham

opera football

Pavarotti

opera

football

bimatrix game:

state is payoff matrix
information set is state
study actions selected
in a Nash equilibria

Rijksmuseum

v1 ~ U[O,].] vl )
by = 2 allocation
A 0
0.0 rice
/[bz _ prices
Louvre 2
vz ~ U[O,l]

auction game:

state is values v; of players
information set of i is i’s value
study bids b; selected in a
Bayes Nash equilibrium



Al as an economic agent.

Information: detailed view of world

Like previous GPT models, the GPT-4 base model was trained to predict the next word
in a document, and was trained using publicly available data (such as internet data) as
well as data we’ve licensed. The data is a including correct
and incorrect solutions to math problems, weak and strong reasoning, self-
contradictory and consistent statements, and representing a great variety of
ideologies and ideas.



Al as an economic agent.

Information: detailed view of world
Incentives: Al chooses output to maximize encoded utility function

Forward Propagation

)

Backward Propagation



Al as an economic agent.

Information: detailed view of world
Incentives: Al chooses output to maximize encoded utility function
Agency: needs human intervention to take actions

Al actors (e.g., autobidders) Al advisors (e.g., copilots)
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Algorithmic Pricing Facilitates Tacit Collusion [Musolff 2022]

How will the algorithms converge? How will the Al be used?



Al In economic settings.

Human agents choose actions with personalized Al assistant
Al can change beliefs, information sets of agents = Payoffs change due to Al

Outcome: can see benefit or harm to human agents, especially if Al is misaligned

pese-




Al In economic settings.

Al-Augmented Primitives:

- nature: randomly selects state w € () from known probability distribution

- humans:humani € {1, ..., n} has action space A; and information setI; € ()

- Al-agents:agenti € {1, ...,n} hasinformationset J; C ()

- communication protocol: human i and agent i send messages resulting in
transcript t;

Al-Augmented Game:

- humans communicate with their Al-agent resulting in transcript t;
- humans simultaneously select actionsa = (a4, a,, ..., a,)

- humani receives payoffu;(a, w) — c(1;)

- agenti receives payoff u;(7;, w)



examples.

Beckham Rijksmuseum
opera football vy ~ U[0,1] U1 |
Pavarotti \[bl 2 | allocation
A 0
opera /[bz v, .8 price orices
Louvre 2 )
football vy ~ U[0,1]
bimatrix game: auction game:
- state is payoff matrix - stateis values v; of players
- humaninfo is state - humani’sinfoisi’s value
- Alinfois weatherw € {0,2} - Al i’sinfois signal of —i’svalue
- Al helps humans select - Al helps humans capture more

better equilibrium surplus by shaving bids



examples.

Email game.

Primitives: two potential emails, A and B

- nature selects one email to be superior, each selected with equal probability
human information set is probability distribution and payoffs

human action setis A,Bor(C =

- , correct with probability 0.9, gets utility from reporting state
- : human may request signal from Al at cost of 1

Game: payoffis 5 for superior email, —10 for inferior email, and 1 for refining

information set first (i.e., thinking costs —4)

- Without Al, human chooses (C for payoff of 1, society gets superior email for sure

- With Al, human follows Al for payoffof (0.9)(5) + (0.1)(—=10) — 1 = 2.5,
society gets inferior email with some probability!



outline.

Al and Learning Al and Persuasion




learning.

value(Nirvana) + value(Beatles) + value(Pink Floyd)



multi-armed bandits.

Problem: given arms (actions), time horizon T,
- planner chooses one arm in each time step
- armyields reward from unknown distribution (state of nature).

Goal. minimize Regret(T) = OPT reward @ T - ALG reward @ T.
Assumptions:
- banditfeedback: only see reward of chosen arm

- |ID rewards: independently across arms and time

Solutions. Optimum regret for multi-armed bandits is
- 0(T?/%) with non-adaptive exploration (explore-then-exploit, e-greedy)
- 0(T'/?) with adaptive exploration (decreasing e-greedy, UCB)

Introduction to Multi-Armed Bandits [Slivkins 2020]



prompting.

‘ You

could you give me restaurant recommendations for Ilthaca?

124

ChatGH

Sure, I'c

popula

1. Ithaca
style fi
2. Moose
Moosé
3. Agava

and a |

‘ You

I'm vegetarian - can you suggest some restaurant recommendations that are
vegetarian-friendly?

ChatG
Absolu
restau

1. Moos
veget
2. Colleg
delicic
3. Ten F¢

bowls

‘ You

I'm visiting NYC soon, can you suggest some restaurants there?

ChatGPT

Certainly! New York City is a food lover's paradise with a vast array of culinary options.

Here are some restaurant suggestions across different cuisines:

1. Champs Diner: A popular spot for vegan comfort food, offering a variety of plant-
based burgers, sandwiches, and breakfast items.
2. Buddha Bodai: A well-regarded vegetarian and vegan Chinese restaurant in

Chinatown, known for its dim sum and diverse menu.




prompting game.

Prompt 1: write an angsty song

Response 1:

With the lights out, it’s less dangerous

Here we are now, entertain us

| feel stupid and contagious é

‘ Here we are now, entertain us.
< tﬂl
n aD

Human Prompt 2: write a silly song Robot

>
rf(p1,r1) + rf (p2,72) rR(p1,71) + r¥(p2,72)
Response 2:
I'd like to be under the sea
In an octopus'gardenin the shade
He'd let us in, knows where we 've been
In his octopus’'gardenin the shade




Stackelberg game.

Follower

Leader

Game. Leader commitsto an action a € A, then follower (knowing a) selects an action b € B.

Solution concept. Action profile (a*, b™) is a Stackelberg equilibrium (SE) if
- Follower plays best-response to leader, i.e., b*(a") € argmax, g vg*b
- Leader plays optimal action anticipating follower, i.e., a* € argmax c4 véb*(a*)

If vl, = vt foralla € A,b € B, leader and follower are aligned; else they are misaligned.
Note: If leader and follower are aligned, payoffs are totally ordered and SE is best one.



prompting as a Stackelberg game.

Primitives: one human player H with Al-agent Al

- communication protocol (Stackelberg game): human (leader) commitsto a prompta € A4, then
Al-agent (follower) selects response b € B

- nature: randomly selects expected rewards véb for transcript ab and i € {H, Al'} from distribution

- Al-agent: information set is support of payoff matrix distribution

- human:information set is support of payoff matrix distribution, action space is set of responses B



prompting as a Stackelberg game.

Stage game:
- human chooses a, then Al-agent chooses b
- humanchooses action b’ € B

- ifb’ = b, payoffsare i, ~ F(vl,); else human payoffr, = —o

Question: Can human and Al-agent engage in repeated instances of stage game to learn payoff
matrix while inducing low regret?



repeated interactions.

Learning setting:

- Neither human nor Al-agent know expected rewards, but learn them over time

- Commit to multi-armed bandit learning alg. for selecting messages in communication protocol
- Humanuses A as set of arms
- Al-agentuses A X B as set of arms

- Ineachround t, play stage game selecting strategies (at, b?) specified by learning algorithm

Definition. The regret of i € {H, AI} with respect to benchmark a is R¥® = aT — ZZ:N”Cit,bt-

Question: Can players choose learning algorithms that guarantee low regret with respect to
(relaxation of) their payoffsin the Stackelberg equilibrium of the stage game with known rewards?



related work.

Corralling bandits (equivalent to aligned setting).

- O(VT) regret using centralized control algorithm
[Maillard and Munos; 2011], [Agarwal, Luo, Neyshabur and Schapire; 2017], [Arora, Marinov and
Mohri; 2021], [Pacchiano, Phan, Yadkori, Rao, Zimmert, Lattimore and Szepesvari; 2020]

Repeated Stackelberg games.

- leader controls actions of both players, observes both rewards
[Bai, Jin, Wang and Xiong; 2021], [Gan, Han, Wu and Xu; 2023]

- results in decentralized setting for constraints on payoff matrix and/or leader or follower behavior
[Camara, Hartline and Johnsen; 2020], [Collina, Roth and Shao; 2023], [Haghtalab, Podimata and
Yang; 2023]



alighed setting.

Al-agent. Uses a learning algorithm whose expected regret at time t is at most R(t, §) with
probabilityat least 1 — 4, i.e., the algorithm has

Human. Uses explore-then-commitwith parameter N

- Selecteach prompta € A atotal of N times

- Compute empirical mean reward of each prompt

- Committo promptwith max empirical mean for remaining T — KN rounds where K = |A|

Theorem. With probability at least 1 — §, regret with parameter N is at most

NK + T - +K -

2\/210g(8T/5)

N N

Note: Choosing N = 0(T?/3) gives 0(T?/3) regret if Al-agent’s algorithm has 0(T/?) regret.



alighed setting.

Al-agent. Uses a learning algorithm whose expected regret at time t is at most R(t, §) with
probability at least 1 — §, i.e., the algorithm has bounded anytime regret.

Human. Uses regret-adjusted UCB

- Selecteach prompta € A once
-  Compute regret-adjusted upper confidence bounds

2
2 log (%)
GG

- Select prompt with maximum upper confidence bound

ﬁa(t) = ﬁa(t) + R(Ta(t)r 5/2T2)

Theorem. With probability at least 1 — §, regret is at most 0~(\/T), i.e.,

2+/2Tlog (8T2/8) 4+ 2K - R(T/K,5/8T%)

Note: If follower uses a regret-adjusted UCB algorithm, can still get 0~(\/T) even if leader does not!



Al and learning: alighed setting.

Model:

- Prompting as a repeated Al-augmented decision problem with uncertain rewards
- Reward uncertainty creates a two-sided learning problem

Results:

- Cangetregret bounds in alighed setting if human and Al use standard algorithms
with carefully-tuned parameters that are even agnostic to other learner

- Canimprove these bounds to optimal regret rates if human OR Al uses a regret-
adjusted UCB algorithm that takes into account learning rates of other



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Observation: Explore-then-commit can induce linear regret with misalignment.

Human: fal 10 a, 8 a 5 a, 8 N ( a, 8 )

Al-agent: bl 94§ b3 10 bz 9—-§ b3 10 b3 10

\_ Round 1 Round 2 Round 3 Round4/ KRound35+/



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Theorem: For any choice of low-regret algorithms, either human or Al incurs linear regret in some state.

Intuition: If 6 is small enough, either

- failto distinguish b; from b,, causing high regret to human or Al depending on algorithm choice
- spend many rounds to distinguish b, from b,, causing high regret to Al in w,

Key Issue: small utility difference for Al substantially changes target value for human



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- LetB.(a) = {b | vAL > max val — e} be approximate best responses of Al-agent



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- LetB.(a) = {b | vAL > max val — e} be approximate best responses of Al-agent

- LetA€={a| max vi > max min v’
beB(a) a’ b'eBc(ar)

human assuming Al is best-responding only approximately

— e} be approximately optimal commitments by



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- LetB.(a) = {b | vAL > max val — e} be approximate best responses of Al-agent

- LetA€={a| max v, =max min v,
beB(a) a’ b'eB.(ar) ¢

human assuming Al is best-responding only approximately

— e} be approximately optimal commitments by



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other
- LetB.(a) = {b | vAL > max val — e} be approximate best responses of Al-agent

- LetAd ={a max v’ >max min Al —e}bea roximately optimalcommitmentsb
€ |bEBE(Cl) ab a’ b’EBE(a’) a'p’ pp y p y

human assuming Al is best-responding only approximately



misalighed setting.

Al-agent

human

state of nature w4 state of nature w,

Relaxed Stackelberg benchmark:

Al benchmark inf(min max val + e) and human benchmark: inf(max min v, + e)
€ \a€A b € a bEB¢

where minmax terms are benchmark given pessimistic play of other, € term is regularizer, and we take
inf to capture worst possible imperfection level of other thereby allowing for them to be a slow learner



misalighed setting.

Explore Twice then Commit (EETC): given parameters N; and N,, algorithm EETC(N4, N,) is as follows:
- : Round-robin through arms for N; steps

- : Round-robin through arms for N, steps

- : Commit to arm with highest empirical mean in phase 2

Theorem. If Al runs explore-then-commitwith N = 0(T?/3 - |A x B|7%/3) exploration rounds and
human runs EETC(N|B|, N), then both achieve 5(T2/3) regret wrt relaxed Stackelberg benchmark.

Intuition: Human must be patient enough for Al to learn responses before committingto prompt.
Note: If human follows a slightly more robust algorithm (e.g., explore-then-EXP3), can get regret

bound so long as Al is running any algorithm with good-enough convergence (e.g., active arm
elimination).



Al and learning: misaligned setting.

Model:

- Prompting as a repeated Al-augmented decision problem with uncertain rewards
- Reward uncertainty creates a two-sided learning problem

- Misalignment leads to strategic prompting, repeated Stackelberg game

Results:

- Standard learning methods can lead to high regret

- Can achieve low regret for both Al and human with decentralized learning
algorithms so long as human accounts for Al imperfections while learning

- Better regret bounds are possible for partially-aligned preferences



outline.

Al and Learning Al and Persuasion




persuasion.

observe state

®

Pr(®)
%S?er e send message Re;ive@
o — o

G committo take an action a

message policy

% Utilities are function of state and action.



binary persuasion.

Sender:
- aseller of a product,
- utility 1 if product purchased, 0 otherwise

Receiver:

- apotential buyer of product,

(1 if purchased product and high quality
- utility =< -1 if purchased and low quality

_0 otherwise

State: quality of product



binary persuasion.

Example: product high quality with probability 0.4

messaging policy seller utility
Always recommend purchase 0 (buyer never buys)
When high quality, recommend purchase 0.4 (buyer buys when recommended to)

When low quality, recommend no purchase

When high quality, recommend purchase 0.8 (buyer buys when recommended to)
When low quality, recommend purchase with prob. 2/3

Proof sketch: Policy recommends purchase as often as possible since receiver is
exactly indifferent when receiving a purchase recommendation.

P[high|purchase]

= P[purchase|high]P[high]/(P[purchase|low]P[low]+P[purchase|high]P[high])
=1*0.4/(1*0.4+2/3*0.6) = 1/2



binary persuasion.

Example: messaging policy sensitive to prior

1. product high quality with probability 0.4
- recommend purchasing low quality product with probability 2/3
- results in seller utility of 0.8

2. product high quality with probability 0.2
- recommend purchasing low quality product with probability 1/4
- results in seller utility of 0.4



private signal.

Buyer receives private signal correlated with state.

Bad news!
Pr[high]=0.2

Good news!
Pr[high]=0.4

optimisti &g) peSSImIStI&§>

If seller doesn’t know what news buyer received, whatis best messaging policy?



private signal.

Example: messaging policy with private signal

Buyers:
- signal: Pr[good news] = Pr[bad news] =0.5
- beliefs: Pr[high|good news] = 0.4, Pr[high|bad news] = 0.2

Sender strategy: recommend purchase when high quality and

with probability g when low quality *

- target optimists: set g =2/3, Pr[sale] =0.4

- target pessimists: set g=1/4, Pr[sale] =0.3 + (0.25)(0.7) = 0.475

* Optimal strategy targets either optimistic or pessimistic buyers

joint dist. of signal and state

If seller is told buyer beliefs, can achieve Pr[sale] = (0.5)(0.8) + (0.5)(0.4) = 0.6.



persuasion with Al.

optimistic

pessimistic



model (binary setting).

Setting:

- Set of state distributions 7', p; € [0,1] forT € T

- Stateis w = 1 with probability p; and 0 otherwise
- True state distribution 7™ € T known to receiver

- “Second-order prior”t* ~ P(J) known to sender

Interpretation: Equivalently, there is a joint distribution of state and signal

(first draw signal and then draw state)

- receiver has some information about state (i.e., the signal) that it got from a
source thatisn'tthe sender

- senderdoesn't know what information the receiver has but is given knowledge of
the state after committing to sales pitch



model (binary setting).

Game:

1. State distributiont™ ~ P(J) is realized

2. Sender chooses set of K queries, uses them to prompt Al
3. Sender commitsto a signaling policy o: Q) - M

4. State w ~ p.+ is realized

5. Sender sends sighalm ~ g(w)

6. Receiver forms posterior p,«|m , takes action a € {0,1}

Sender: utility ug(w,a) = a
Receiver: utility ug(w,a) =a-w+a: (w—1)



related work.

Bayesian persuasion (BP):

- : worst-case optimal message policy over sender uncertainty
[Dworczak and Pavan 2022], [Hu and Weng 2021], [Kosterina 2022],
[Parakhonyak and Sobolev 2022], [Zu et al. 2021]

- : sender interacts with sequence of receivers, minimizes regret
[Castiglioni et al. 2020], [Castiglioni et al. 2021], [Bernasconi et al. 2023]

Learning:

- : learn optimal strategy to commit to from query access
[Letchford et al. 2009], [Balcan et al. 2015], [Peng et al. 2019]

- : predict best action after K rounds of exploration

[Bubeck et al. 2009], [Chen et al. 2014], [Xu et al. 2018]



Al as recelver simulator.

Simulation queries:

“If | use message policy o and send message m, what would receiver do?”
Theorem: Areceiver simulatoris equivalent to a threshold-based separation oracle.

Proof:
- Forany (m, o), there is some state distribution p s.t. receiver is indifferent.
- Buyer purchases for all higher p’ > p; does not purchase for all lower p’ < p.

|

[ ® ® 0*0}

0 p 0.5



binary persuasion.

Challenge: Seller utility can be non-monotone in target type.

Pr[sale]




value of queries.

Gain from single query:

— |
1 |
| a={{1.2,3}, {4,5}}
0.5+ _I
|
|
___.0.4:: ________________________________ .._ _______ I_ _______ i ____________________________________
° : N\

031 :
|

0.2} : N @

g
|
|
0.1+ ) SR |
......... b 4 l
|
N 1 N
0 0.1 0.2 i 0.3 0.4 0.5
p5 p4 I p3 p2 p1



value of queries.

Submodularity:
— |
2 |
| a={{1.2,3}, {4.5}}
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optimal query policy.

What set of queries should sender select to maximize utility?

Greedy: A polynomial-time constant-approximation given submodularity result.
Dynamic Program: A polynomial-time optimal algorithm.

1. Compute optimal sender value for any subinterval of types.
2. Value of K queries = sum of best split given K — 1 remaining queries in prefix.

[\o oYo o}}\o oY J

0 Recursively compute value with K — 1 queries Kt query value from step 1 0.5

Note: Importantthat simulation queries induce thresholds; if Al produces partitions
in an exogenous set (0, then the problem is NP-hard via reduction from set cover.



persuasion with Al.

Model:

- Receivers with additional signals of product quality

- Al as asimulator of receiver choice

- Equivalent to a separation oracle on state distribution

Results:

- Value of queries submodular

- Optimal query policy in simulation setting
- Additional results for non-binary setting



conclusion.

Al + X:

- Al and Persuasion

- Aland Learning

- Al and Collaboration

Impact of Al on jobs and the economy:
- Randomized experiments of copilot in workplaces

- Production function of firms with Al and impact on market equilibria

Data markets for training Al
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