Theoretical Models of Generative Al in Economic Environments

Nicole Immorlica, Microsoft Research

Based on joint work with Kate Donahue, Keegan Harris, Meena Jagadeesan, Brendan Lucier, and Alex Slivkins

generative AI.

generative AI.

How Microsoft Is Creating an Democratized Al Assistant for Every Work Task and Function

Plug-ins
$6^{2} 545$

Microsoft 365 Apps

Microsoft Graph

- User Data
- Business Data

Microsoft Copilot: Al for the Workplace

impact of AI on tasks.

Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023] The Impact of AI on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023] Measuring the Impact of AI on Information Worker Productivity [Edelman, Ngwe, Peng 2023]

impact of AI on tasks.

Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023] The Impact of AI on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023] Measuring the Impact of AI on Information Worker Productivity [Edelman, Ngwe, Peng 2023]

impact of AI on tasks.

Task	Accuracy Difference (\%)	P-value	Time Difference(\%)	P-Value
Information Retrieval	$(2.0) \%$	0.612	26.6%	<0.001
Meeting Recap	2.60%	0.347	19.3%	0.003
Creation (Blog Post)	$(0.36) \%$	0.882	62.6%	<0.001

Comparing Traditional and LLM-based Search for Consumer Choice [Spatharioti, Rothschild, Goldstein, Hofman 2023] The Impact of AI on Developer Productivity: Evidence from GitHub Copilot [Peng, Kalliamvakou, Cihon, Demirer 2023] Measuring the Impact of AI on Information Worker Productivity [Edelman, Ngwe, Peng 2023]

strategic reasoning of AI.

Using Large Language Models to Simulate Multiple Humans [Aher, Arriaga, Tauman Kalai 2023]
Using GPT for Market Research [Brand, Israeli, Ngwe 2023]

strategic reasoning of AI.

(a) Single Laptop Option

(b) Two Laptop Options

(c) Two Toothpaste Options

Using Large Language Models to Simulate Multiple Humans [Aher, Arriaga, Tauman Kalai 2023]
Using GPT for Market Research [Brand, Israeli, Ngwe 2023] Large Language Models as Simulated Economic Agents [Horton 2023]

strategic reasoning of Al.

Using Large Language Models to Simulate Multiple Humans [Aher, Arriaga, Tauman Kalai 2023] Using GPT for Market Research [Brand, Israeli, Ngwe 2023]

economic settings.

Primitives:

- nature: randomly selects state $\omega \in \Omega$ from known probability distribution
- human players: player $i \in\{1, \ldots, n\}$ has action space A_{i} and information set $I_{i} \subseteq \Omega$

Game:

- players select actions $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- player i receives payoff $u_{i}(\boldsymbol{a}, \omega)$

examples.

Beckham Pavarotti	opera	football
opera	$(10,9)$	$(0,0)$
football	$(0,0)$	$(9,10)$

bimatrix game:

- state is payoff matrix
- information set is state
- study actions selected in a Nash equilibria

auction game:
- state is values v_{i} of players
- information set of i is i 's value
- study bids b_{i} selected in a Bayes Nash equilibrium

Al as an economic agent.

Information: detailed view of world

Like previous GPT models, the GPT-4 base model was trained to predict the next word in a document, and was trained using publicly available data (such as internet data) as well as data we've licensed. The data is a web-scale corpus of data including correct and incorrect solutions to math problems, weak and strong reasoning, selfcontradictory and consistent statements, and representing a great variety of ideologies and ideas.

Al as an economic agent.

Information: detailed view of world
Incentives: Al chooses output to maximize encoded utility function

Al as an economic agent.

Information: detailed view of world
Incentives: Al chooses output to maximize encoded utility function Agency: needs human intervention to take actions
Al actors (e.g., autobidders)

Algorithmic Pricing Facilitates Tacit Collusion [Musolff 2022]
How will the algorithms converge?

> Al advisors (e.g., copilots)

How will the Al be used?

Al in economic settings.

Human agents choose actions with personalized Al assistant
Al can change beliefs, information sets of agents \Rightarrow Payoffs change due to AI

Outcome: can see benefit or harm to human agents, especially if Al is misaligned

Al in economic settings.

Al-Augmented Primitives:

- nature: randomly selects state $\omega \in \Omega$ from known probability distribution
- humans: human $i \in\{1, \ldots, n\}$ has action space A_{i} and information set $I_{i} \subseteq \Omega$
- Al-agents: agent $i \in\{1, \ldots, n\}$ has information set $J_{i} \subseteq \Omega$
- communication protocol: human i and agent i send messages resulting in transcript τ_{i}

Al-Augmented Game:

- humans communicate with their Al-agent resulting in transcript τ_{i}
- humans simultaneously select actions $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- human i receives payoff $u_{i}(\boldsymbol{a}, \omega)-c\left(\tau_{i}\right)$
- agent i receives payoff $u_{i}\left(\tau_{i}, \omega\right)$

examples.

Beckham Pavarotti	opera	football
opera	$(10,9)$	$(0,0)$
football	$(0,0)$	$(9 w, 10 w)$

bimatrix game:

- state is payoff matrix
- human info is state
- Al info is weather $w \in\{0,2\}$
- Al helps humans select better equilibrium

auction game:
- state is values v_{i} of players
- human i 's info is i 's value
- Al i 's info is signal of $-i$'s value
- Al helps humans capture more surplus by shaving bids

examples.

Email game.

Primitives: two potential emails, A and B

- nature selects one email to be superior, each selected with equal probability
- human information set is probability distribution and payoffs
- human action set is A, B or $C=$ refine information set and select superior email
- Al has signal of state, correct with probability 0.9 , gets utility from reporting state
- Communication protocol: human may request signal from AI at cost of 1

Game: payoff is 5 for superior email, -10 for inferior email, and 1 for refining information set first (i.e., thinking costs -4)

- Without AI, human chooses C for payoff of 1 , society gets superior email for sure
- With AI, human follows AI for payoff of (0.9)(5) + (0.1)(-10) - $1=2.5$, society gets inferior email with some probability!

outline.

Al and Learning

Al and Persuasion

learning.

multi-armed bandits.

Problem: given arms (actions), time horizon T,

- planner chooses one arm in each time step
- arm yields reward from unknown distribution (state of nature).

Goal. minimize Regret $(T)=$ OPT reward @ T - ALG reward @ T.
Assumptions:

- bandit feedback: only see reward of chosen arm
- IID rewards: independently across arms and time

Solutions. Optimum regret for multi-armed bandits is

- $\widetilde{O}\left(T^{2 / 3}\right)$ with non-adaptive exploration (explore-then-exploit, ϵ-greedy)
- $\widetilde{O}\left(T^{1 / 2}\right)$ with adaptive exploration (decreasing ϵ-greedy, UCB)

prompting.

prompting game.

Stackelberg game.

| Follower |
| :---: | :---: | :---: | :---: |
| Leader |b_{1}

Game. Leader commits to an action $a \in A$, then follower (knowing a) selects an action $b \in B$.
Solution concept. Action profile (a^{*}, b^{*}) is a Stackelberg equilibrium (SE) if

- Follower plays best-response to leader, i.e., $b^{*}\left(a^{*}\right) \in \operatorname{argmax}_{b \in B} v_{a^{*} b}^{F}$
- Leader plays optimal action anticipating follower, i.e., $a^{*} \in \operatorname{argmax}_{a \in A} v_{a b^{*}\left(a^{*}\right)}^{L}$

If $\boldsymbol{v}_{a b}^{L}=\boldsymbol{v}_{a b}^{F}$ for all $a \in A, b \in B$, leader and follower are aligned; else they are misaligned. Note: If leader and follower are aligned, payoffs are totally ordered and SE is best one.

prompting as a Stackelberg game.

Al-Agent	b_{1}	b_{2}	b_{3}
Human			
a_{1}	$(10,9)$	$(5,8)$	\times
a_{2}	\times	\times	$(8,10)$

Primitives: one human player H with Al-agent $A I$

- communication protocol (Stackelberg game): human (leader) commits to a prompt $a \in A$, then Al-agent (follower) selects response $b \in B$
- nature: randomly selects expected rewards $v_{a b}^{i}$ for transcript $a b$ and $i \in\{H, A I\}$ from distribution
- Al-agent: information set is support of payoff matrix distribution
- human: information set is support of payoff matrix distribution, action space is set of responses \boldsymbol{B}

prompting as a Stackelberg game.

Al-Agent Human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9)$	$(5,8)$	\times
a_{2}	\times	\times	$(8,10)$

Stage game:

- human chooses a, then Al-agent chooses b
- human chooses action $b^{\prime} \in B$
- if $b^{\prime}=b$, payoffs are $r_{a b}^{i} \sim F\left(v_{a b}^{i}\right)$; else human payoff $r_{a b}^{i}=-\infty$

Question: Can human and Al-agent engage in repeated instances of stage game to learn payoff matrix while inducing low regret?

repeated interactions.

Learning setting:

- Neither human nor Al-agent know expected rewards, but learn them over time
- Commit to multi-armed bandit learning alg. for selecting messages in communication protocol
- Human uses A as set of arms
- Al-agent uses $A \times B$ as set of arms
- In each round t, play stage game selecting strategies (a^{t}, b^{t}) specified by learning algorithm

Definition. The regret of $i \in\{H, A I\}$ with respect to benchmark α is $R^{i, \alpha}=\alpha T-\sum_{t=1}^{T} r_{a^{t}, b^{t}}^{i}$.
Question: Can players choose learning algorithms that guarantee low regret with respect to (relaxation of) their payoffs in the Stackelberg equilibrium of the stage game with known rewards?

related work.

Corralling bandits (equivalent to aligned setting).

- $O(\sqrt{T})$ regret using centralized control algorithm
[Maillard and Munos; 2011], [Agarwal, Luo, Neyshabur and Schapire; 2017], [Arora, Marinov and Mohri; 2021], [Pacchiano, Phan, Yadkori, Rao, Zimmert, Lattimore and Szepesvari; 2020]

Repeated Stackelberg games.

- leader controls actions of both players, observes both rewards
[Bai, Jin, Wang and Xiong; 2021], [Gan, Han, Wu and Xu; 2023]
- results in decentralized setting for constraints on payoff matrix and/or leader or follower behavior [Camara, Hartline and Johnsen; 2020], [Collina, Roth and Shao; 2023], [Haghtalab, Podimata and Yang; 2023]

aligned setting.

Al-agent. Uses a learning algorithm whose expected regret at time t is at most $R(t, \delta)$ with probability at least $1-\delta$, i.e., the algorithm has bounded anytime regret.

Human. Uses explore-then-commit with parameter N

- Select each prompt $a \in A$ a total of N times
- Compute empirical mean reward of each prompt
- Commit to prompt with max empirical mean for remaining $T-K N$ rounds where $K=|A|$

Theorem. With probability at least $1-\delta$, regret with parameter N is at most

$$
N K+T \cdot\left(\frac{R(N, \delta / 8 T)}{N}+2 \sqrt{\frac{2 \log (8 T / \delta)}{N}}\right)+K \cdot R(T / K, 4 \delta / T)
$$

Note: Choosing $N=\tilde{O}\left(T^{2 / 3}\right)$ gives $\tilde{O}\left(T^{2 / 3}\right)$ regret if Al-agent's algorithm has $\tilde{O}\left(T^{1 / 2}\right)$ regret.

aligned setting.

Al-agent. Uses a learning algorithm whose expected regret at time t is at most $R(t, \delta)$ with probability at least $1-\delta$, i.e., the algorithm has bounded anytime regret.

Human. Uses regret-adjusted UCB

- Select each prompt $a \in A$ once
- Compute regret-adjusted upper confidence bounds

$$
\tilde{\mu}_{a}(t)=\hat{\mu}_{a}(t)+\sqrt{\frac{2 \log \left(\frac{2 T^{2}}{\delta}\right)}{T_{a}(t)}}+\frac{1}{T_{a}(t)} R\left(T_{a}(t), \delta / 2 T^{2}\right)
$$

- Select prompt with maximum upper confidence bound

Theorem. With probability at least $1-\delta$, regret is at most $\widetilde{O}(\sqrt{T})$, i.e.,

$$
2 \sqrt{2 T \log \left(8 T^{2} / \delta\right)}+2 K \cdot R\left(T / K, \delta / 8 T^{2}\right)
$$

Note: If follower uses a regret-adjusted UCB algorithm, can still get $\tilde{O}(\sqrt{T})$ even if leader does not!

Al and learning: aligned setting.

Model:

- Prompting as a repeated AI-augmented decision problem with uncertain rewards
- Reward uncertainty creates a two-sided learning problem

Results:

- Can get regret bounds in aligned setting if human and AI use standard algorithms with carefully-tuned parameters that are even agnostic to other learner
- Can improve these bounds to optimal regret rates if human OR AI uses a regretadjusted UCB algorithm that takes into account learning rates of other

nilsalioneas settino.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Observation: Explore-then-commit can induce linear regret with misalignment.

Human: | Al-agent: |
| :--- |\(\left(\begin{array}{ccccccc}a_{1} \& 10 \& a_{2} \& 8 \& a_{1} \& 5 \& a_{2}

b_{1} \& 8

b_{1} \& 9+\delta \& b_{3} \& 10 \& b_{2} \& 9-\delta \& b_{3}

Round 10

Round 2 \& Round 3 \& Round 4\end{array}\right)\left($$
\begin{array}{cc}a_{2} & 8 \\
b_{3} & 10 \\
\text { Rounds 5+ }\end{array}
$$\right)\)

misaligned setting.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Theorem: For any choice of low-regret algorithms, either human or Al incurs linear regret in some state.

Intuition: If δ is small enough, either

- fail to distinguish b_{1} from b_{2}, causing high regret to human or Al depending on algorithm choice
- spend many rounds to distinguish b_{1} from b_{2}, causing high regret to Al in ω_{2}

Key Issue: small utility difference for AI substantially changes target value for human

misaligned setting.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- Let $B_{\epsilon}(a)=\left\{b \mid v_{a b}^{A I} \geq \max _{b^{\prime}} v_{a b^{\prime}}^{A I}-\epsilon\right\}$ be approximate best responses of Al-agent

nisalioneo settino.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent			
human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- Let $B_{\epsilon}(a)=\left\{b \mid v_{a b}^{A I} \geq \max _{b^{\prime}} v_{a b^{\prime}}^{A I}-\epsilon\right\}$ be approximate best responses of Al-agent
- Let $A_{\epsilon}=\left\{a \mid \max _{b \in B_{\epsilon}(a)} v_{a b}^{H} \geq \max _{a^{\prime}} \min _{b^{\prime} \in B_{\epsilon}(a)} v_{a^{\prime} b^{\prime}}^{A I}-\epsilon\right\}$ be approximately optimal commitments by human assuming $A l$ is best-responding only approximately

nisalioneo settino.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent			
human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- Let $B_{\epsilon}(a)=\left\{b \mid v_{a b}^{A I} \geq \max _{b^{\prime}} v_{a b^{\prime}}^{A I}-\epsilon\right\}$ be approximate best responses of Al-agent
- Let $A_{\epsilon}=\left\{a \mid \max _{b \in B_{\epsilon}(a)} v_{a b}^{H} \geq \max _{a^{\prime}} \min _{\left.b^{\prime} \in B_{\epsilon}(a)^{\prime}\right)} v_{a^{\prime} b^{\prime}}^{A I}-\epsilon\right\}$ be approximately optimal commitments by human assuming $A l$ is best-responding only approximately

nisalioneo settino.

Al-agent	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent			
human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Approximate Stackelberg equilibria: each optimizes assuming worst case over small errors by other

- Let $B_{\epsilon}(a)=\left\{b \mid v_{a b}^{A I} \geq \max _{b^{\prime}} v_{a b^{\prime}}^{A I}-\epsilon\right\}$ be approximate best responses of Al-agent
- Let $A_{\epsilon}=\left\{a \mid \max _{b \in B_{\epsilon}(a)} v_{a b}^{H} \geq \max _{a^{\prime}} \min _{\left.b^{\prime} \in B_{\epsilon}(a)^{\prime}\right)} v_{a^{\prime} b^{\prime}}^{A I}-\epsilon\right\}$ be approximately optimal commitments by human assuming $A l$ is best-responding only approximately

misaligned setting.

Al-agent human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9+\delta)$	$(5,9-\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{1}

Al-agent human	b_{1}	b_{2}	b_{3}
a_{1}	$(10,9-\delta)$	$(5,9+\delta)$	\times
a_{2}	\times	\times	$(8,10)$

state of nature ω_{2}

Relaxed Stackelberg benchmark:

$$
\text { Al benchmark } \inf _{\epsilon}\left(\min _{a \in A_{\epsilon}} \max _{b} v_{a b}^{A I}+\epsilon\right) \text { and human benchmark: } \inf _{\epsilon}\left(\max _{a} \min _{b \in B_{\epsilon}} v_{a b}^{H}+\epsilon\right)
$$

where minmax terms are benchmark given pessimistic play of other, ϵ term is regularizer, and we take inf to capture worst possible imperfection level of other thereby allowing for them to be a slow learner

misaligned setting.

Explore Twice then Commit (EETC): given parameters N_{1} and N_{2}, algorithm EETC(N_{1}, N_{2}) is as follows:

- Phase 1: Round-robin through arms for N_{1} steps
- Phase 2: Round-robin through arms for N_{2} steps
- Phase 3: Commit to arm with highest empirical mean in phase 2

Theorem. If AI runs explore-then-commit with $N=\tilde{O}\left(T^{2 / 3} \cdot|A \times B|^{-2 / 3}\right)$ exploration rounds and human runs $\operatorname{EETC}(N|B|, N)$, then both achieve $\tilde{O}\left(T^{2 / 3}\right)$ regret wrt relaxed Stackelberg benchmark.

Intuition: Human must be patient enough for Al to learn responses before committing to prompt.

Note: If human follows a slightly more robust algorithm (e.g., explore-then-EXP3), can get regret bound so long as Al is running any algorithm with good-enough convergence (e.g., active arm elimination).

Al and learning: misaligned setting.

Model:

- Prompting as a repeated AI-augmented decision problem with uncertain rewards
- Reward uncertainty creates a two-sided learning problem
- Misalignment leads to strategic prompting, repeated Stackelberg game

Results:

- Standard learning methods can lead to high regret
- Can achieve low regret for both AI and human with decentralized learning algorithms so long as human accounts for Al imperfections while learning
- Better regret bounds are possible for partially-aligned preferences

outline.

Al and Learning

Al and Persuasion

persuasion.

binary persuasion.

Sender:

- a seller of a product,
- utility 1 if product purchased, 0 otherwise

Receiver:

- a potential buyer of product,
$\{1$ if purchased product and high quality
- utility $=\{-1$ if purchased and low quality

0 otherwise

State: quality of product

binary persuasion.

Example: product high quality with probability 0.4

messaging policy	seller utility
Always recommend purchase	0 (buyer never buys)
When high quality, recommend purchase When low quality, recommend no purchase	0.4 (buyer buys when recommended to)
When high quality, recommend purchase When low quality, recommend purchase with prob. $2 / 3$	0.8 (buyer buys when recommended to)

Proof sketch: Policy recommends purchase as often as possible since receiver is exactly indifferent when receiving a purchase recommendation.

P[high|purchase]

$$
\begin{aligned}
& =P[\text { purchase|high }] P[\text { high }] /(P[\text { purchase|low]P[low] }+P[\text { purchase|high }] P[\text { high }]) \\
& =1 * 0.4 /(1 * 0.4+2 / 3 * 0.6)=1 / 2
\end{aligned}
$$

binary persuasion.

Example: messaging policy sensitive to prior

1. product high quality with probability 0.4

- recommend purchasing low quality product with probability $2 / 3$
- results in seller utility of 0.8

2. product high quality with probability 0.2

- recommend purchasing low quality product with probability $1 / 4$
- results in seller utility of 0.4

private signal.

Buyer receives private signal correlated with state.

If seller doesn't know what news buyer received, what is best messaging policy?

private signal.

Example: messaging policy with private signal

news quality	good	bad
high	0.2	0.1
low	0.3	0.4

joint dist. of signal and state

Buyers:

- signal: $\operatorname{Pr[good~news]~}=\operatorname{Pr[bad~news]~}=0.5$
- beliefs: $\operatorname{Pr[high|good~news]~}=0.4, \operatorname{Pr[high|bad~news]}=0.2$

Sender strategy: recommend purchase when high quality and with probability q when low quality *

- target optimists: set $q=2 / 3, \operatorname{Pr}[$ sale $]=0.4$
- target pessimists: set $q=1 / 4, \operatorname{Pr}[$ sale $]=0.3+(0.25)(0.7)=0.475$
* Optimal strategy targets either optimistic or pessimistic buyers

If seller is told buyer beliefs, can achieve $\operatorname{Pr}[$ sale $]=(0.5)(0.8)+(0.5)(0.4)=0.6$.

persuasion with Al.

model (binary setting).

Setting:

- \quad Set of state distributions $\mathcal{T}, \mathbf{p}_{\tau} \in[0,1]$ for $\tau \in \mathcal{T}$
- State is $\omega=1$ with probability \mathbf{p}_{τ} and 0 otherwise
- True state distribution $\tau^{*} \in \mathcal{T}$ known to receiver
- "Second-order prior" $\tau^{*} \sim \mathcal{P}(\mathcal{T})$ known to sender

Interpretation: Equivalently, there is a joint distribution of state and signal (first draw signal and then draw state)

- receiver has some information about state (i.e., the signal) that it got from a source that isn't the sender
- sender doesn't know what information the receiver has but is given knowledge of the state after committing to sales pitch

model (binary setting).

Game:

1. State distribution $\tau^{*} \sim \mathcal{P}(\mathcal{T})$ is realized
2. Sender chooses set of K queries, uses them to prompt Al
3. Sender commits to a signaling policy $\sigma: \Omega \rightarrow \mathcal{M}$
4. State $\omega \sim \mathbf{p}_{\tau^{*}}$ is realized
5. Sender sends signal $m \sim \sigma(\omega)$
6. Receiver forms posterior $\mathbf{p}_{\tau^{*}} \mid m$, takes action $a \in\{0,1\}$

Sender: utility $u_{S}(\omega, a)=a$
Receiver: utility $u_{R}(\omega, a)=a \cdot \omega+a \cdot(\omega-1)$

related work.

Bayesian persuasion (BP):

- Robust BP: worst-case optimal message policy over sender uncertainty [Dworczak and Pavan 2022], [Hu and Weng 2021], [Kosterina 2022], [Parakhonyak and Sobolev 2022], [Zu et al. 2021]
- Online BP: sender interacts with sequence of receivers, minimizes regret [Castiglioni et al. 2020], [Castiglioni et al. 2021], [Bernasconi et al. 2023]

Learning:

- Stackelberg games: learn optimal strategy to commit to from query access [Letchford et al. 2009], [Balcan et al. 2015], [Peng et al. 2019]
- Pure exploration in bandits: predict best action after K rounds of exploration [Bubeck et al. 2009], [Chen et al. 2014], [Xu et al. 2018]

Al as receiver simulator.

Simulation queries:

"If I use message policy σ and send message m, what would receiver do?"
Theorem: A receiver simulator is equivalent to a threshold-based separation oracle.

Proof:

- For any (m, σ), there is some state distribution p s.t. receiver is indifferent.
- Buyer purchases for all higher $p^{\prime}>p$; does not purchase for all lower $p^{\prime}<p$.

binary persuasion.

Challenge: Seller utility can be non-monotone in target type.

value of queries.

Gain from single query:

value of queries.

Submodularity:

optimal query policy.

What set of queries should sender select to maximize utility?

Greedy: A polynomial-time constant-approximation given submodularity result.

Dynamic Program: A polynomial-time optimal algorithm.

1. Compute optimal sender value for any subinterval of types.
2. Value of K queries $=$ sum of best split given $K-1$ remaining queries in prefix.

Note: Important that simulation queries induce thresholds; if AI produces partitions in an exogenous set Q, then the problem is NP-hard via reduction from set cover.

persuasion with Al.

Model:

- Receivers with additional signals of product quality
- Al as a simulator of receiver choice
- Equivalent to a separation oracle on state distribution

Results:

- Value of queries submodular
- Optimal query policy in simulation setting
- Additional results for non-binary setting

conclusion.

AI +X :

- Al and Persuasion
- Al and Learning
- Al and Collaboration

Impact of AI on jobs and the economy:

- Randomized experiments of copilot in workplaces
- Production function of firms with Al and impact on market equilibria

Data markets for training AI

