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In a nutshell

We study scheduling policies based on (noisy) service-time
information in service systems.



A motivational example: Scheduling in a bank’s call center

Data set from SEE Lab (Technion).

• Individual-level call data (April 2007 - June 2009)

• We can track customers using their unique ID’s

• Callers contact 12 times on average

• 1,835 agents in total, 400-450 agents on a day

• Customer abandonment: 4.5%

Can we use data from the past transactions of a customer to
predict their service times, and use these predictions to

schedule more efficiently?
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Size-based scheduling

If service times are perfectly known and preemptions are allowed, then
schedule the Shortest Remaining Processing Time first.

SRPT minimizes the mean response time in M/G/1.

(Schrage and Miller 1966; Wierman 2008; Harchol-Balter 2013; ...)

SRPT is asymptotically optimal in heavy traffic in M/G/k.

(Grosof, Scully, Harchol-Balter 2018.)

What if we have a noisy estimate of the service time, and the model is
M/GI/k + GI?
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A difficult problem, even in M/G/1

Lu D, Sheng H, Dinda P (2004); Wierman and Nuyens (2008); Dell’Amico M, Carra D, Pastorelli M, Michiardi P (2014); Mailach and
Down (2017); Scully, Grosof and Harchol-Balter (2020); Mitzenmacher (2021); Scully and Harchol-Balter (2021); Scully, Grosof, and
Mitzenmacher (2022); Chen and Dong (2022).



Customer abandonment

Assume that we know the service times perfectly (a priori).

Model the service system as a multiserver queue with abandonment.

In M/G/1, we know that SRPT is optimal.

In M/G/k, we know that SRPT is asymptotically optimal.

Question: Assuming service times are perfectly known, what do we know
about SRPT in multi-server queues with abandonment?

Answer: Nothing.
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Plan for the talk

1 Service times perfectly known: SRPT in M/GI/s + GI

Dong and Ibrahim. 2021. SRPT scheduling in many-server queues with

impatient customers. Management Science.

2 Noisy service-time information: SJF in M/GI/s + GI

Dong and Ibrahim. 2023. SJF scheduling in many-server queues with
impatient customers and noisy service-time estimates.



Perfect Service-Time Information:
SRPT in M/GI/s + GI



Snapshot of main results

Here, we will consider an asymptotic many-server overloaded
regime, and we will focus on throughput.
(Atar, Giat, Shimkin 2010; Atar, Kaspi, Shimkin 2014; Bassamboo and Randhawa 2016; Puha and Ward 2021; ...)

We will derive limits for steady-state performance measures.

We will demonstrate that SRPT asymptotically maximizes the
throughput.

We will show that the SRPT system is well-approximated asymp-
totically by a two-priority system.
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Modelling framework

Poisson arrivals 

+GI abandonment

mean 1/

GI service

mean 1/

s

• Keep traffic intensity ρ = λ/sλµ > 1 fixed

• Made stable by abandonments

• Let λ ↑ ∞ and sλ ↑ ∞
• Abandonment and service-time distributions fixed

• Non-negligible abandonment/delay in the limit
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SRPT scheduling

• Preemptions are allowed.

• Arrival who finds empty server: begins service immediately.

• If all servers busy:

• Update remaining processing times of all jobs in service

• If service time of arrival < longest remaining processing time in
service ⇒ preempt the longest remaining processing time

• Else, join queue.
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Simulation results under SRPT

We consider the M/M/s + E2 system with ρ = 1.4 and 1/θ = 1 .
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Threshold

Define the threshold τ :

λ · P(S ≤ τ) · E[S |S ≤ τ ] = λE[S1(S ≤ τ)] = s,

where we have:

• λ: arrival rate

• S : service time

• s: number of servers

See Chen and Dong (2022) for a similar idea in GI/GI/1.



Main Theorem

For the sequence of M/GI/sλ + GI queues under SRPT with
ρλ = λ/sλµ > 1 held fixed, in steady state:

1 limλ→∞ P(Served |S ≤ τ) = 1.

2 limλ→∞ P(Served |S > τ) = 0.

3 limλ→∞ E[W |Served ] = 0.

4 limλ→∞ E[W |Abandon] = Mean time to abandon.

5 SRPT maximizes throughput.

That is, customers with short service times (below threshold) are served
immediately, and customers with long service times eventually abandon.
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Proof idea

It is hard to prove this directly.

Customers with long service times abandon.

Customers with short service times are served immediately.

This looks like fluid performance in a large queue with two priority
classes, where the class is defined according to the service time.

Use a coupling proof with a loss queue with two priority classes.
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Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Sketch of the proof

Consider a loss M/GI/s/s system where class 1 customers (S < τ) have
preemptive priority over class 2 customers (S ≥ τ).

Coupling proof:

1 Couple arrival and service times between loss and SRPT systems.
Initialize both systems as empty.

2 Match each class 1 customer in loss system with a customer in
service in SRPT system who finishes service earlier.

3 Conclude, by induction, that you serve more customers in the SRPT
system.

4 In loss system, all class 1 customers are served asymptotically and
throughput is maximal.

5 Conclude that throughput is maximal in SRPT system, and derive
limits for remaining performance measures.



Implications

We show that, in the overloaded M/GI/sλ + GI as λ ↑ ∞:

• SRPT scheduling maximizes throughput among all scheduling
policies.

• SRPT minimizes the expected waiting time conditional on being
served.

• SRPT maximizes the expected waiting time conditional on
abandoning.

• Performance under SRPT is insensitive to the abandonment
distribution, beyond the mean.
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Effect of the abandonment distribution
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Recall that, among blind policies:

• Weibull shape α < 1 ⇒ DHR ⇒ FCFS minimizes fluid waiting time

• Weibull shape α > 1 ⇒ IHR ⇒ LCFS minimizes fluid waiting time

Bassamboo and Randhawa (2015).
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• When there is a service completion, schedule shortest predicted
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Imperfect service-time information

Let Si denote the actual service time and Ŝi denote the predicted service
time for customer i .

We assume that E[Si |Ŝi = y ] increases in y , for any y .

For example, this is satisfied in a regression model:

Si = Ŝi + ϵi ,

where Ŝi and ϵi are independent.
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Recall how we defined the threshold τ earlier:

λ · P(S ≤ τ) · E[S |S ≤ τ ] = λE[S1(S ≤ τ)] = s.

Now, we define the threshold τ̂ as follows:
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We show that, asymptotically, prioritizing customers with Ŝ < τ̂
over customers with Ŝ ≥ τ̂ maximizes the throughput.
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“Discretized” SJF Policy: SJF∆

0 2 3 (k-1) k M

• Class 1: Ŝ ∈ [0,∆)

• Class 2: Ŝ ∈ [∆, 2∆)

• Class 3: Ŝ ∈ [2∆, 3∆)

• · · ·
• Class k : Ŝ ∈ [(k − 1)∆, k∆)

• · · ·
• Class ⌊M/∆⌋: Ŝ ∈ [(⌊M/∆⌋ − 1)∆,M)

• Class ⌊M/∆⌋+ 1: Ŝ ∈ [M,∞)

Class has lower index ⇒ Higher non-preemptive priority.



Main Theorem

For the sequence of M/GI/sλ + GI queues under SJF∆

with ρλ = λ/sλµ > 1 held fixed, in steady state:

1 lim∆↓0 limλ→∞ P(Served |Ŝ ≤ τ̂) = 1.

2 lim∆↓0 limλ→∞ P(Served |Ŝ > τ̂) = 0.

3 lim∆↓0 limλ→∞ E[W |Served ] = 0.

4 lim∆↓0 limλ→∞ E[W |Abandon] = Mean time to abandon.

5 SJF∆ maximizes throughput among non-preemptive policies
that use the noisy service-time information.

6 SJF∆ and SJF have asymptotically the same performance.

Use Atar, Kaspi, Shimkin (2014).



Accuracy of the approximation: SJF vs. Two-class priority rule
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• The noisier the service times, the better the two-class approximation

• Recall that service-time predictions can be very noisy
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Number of classes: Effect on throughput

Consider the M/LGN/100 +M with ρ = 1.4.

Divide the high class (< τ) into equally-sized classes.

r [Z , Ẑ ] SJF 2 classes 3 classes 5 classes 10 classes

0.03 0.723 0.722 0.722 0.722 0.722
0.2 0.7677 0.7587 0.7477 0.7657 0.7674
0.5 0.8286 0.807 0.8201 0.8239 0.8243
0.7 0.8593 0.8314 0.8472 0.8487 0.8488
0.95 0.8764 0.8449 0.8595 0.8605 0.8606
0.99 0.8802 0.8474 0.8618 0.8626 0.8626

• low correlation ⇒ two-priority approximation very accurate

• high correlation ⇒ some advantage in using 3 classes instead
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Takeaways

• Theoretical results about performance of SRPT and SJF in
many-server queues with abandonment.

• Implementing SRPT or SJF is hard. Usually, only two or three
classes sufficient.

• Accuracy of approximation improves as the noise in the service-time
prediction increases.



Thank you!


