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What is Common?

• Asymmetric information.

• Service provider has limited resources.

• There is an incentive to lie to access service faster.

• Pricing or punishments are not applicable.

• A one-shot, anonymous, interaction with service provider.

• Queues (other people) are unobservable.
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Research Questions

1 How to model customer misreporting behaviour in queues?

• Can our model be validated with experimental data?

2 How can we control performance in the system effectively?

• What is the optimal scheduling policy?
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Plan for the remainder of the talk

• Part 1: Propose a queueing game model

• Part 2: Validate model experimentally

• Part 3: Design effective scheduling control



Part 1:

Queueing game model



Queueing Game: Sequence of Events



M/M/1 Non-Preemptive Priority Queue

Customers with a claim y ∈ {H, L} are given priority with probability αy .



Manager’s Problem

Min
(αH ,αL)

Expected Delay Cost in System︷ ︸︸ ︷∑
x∈{H,L}

λp,x · cx · E[Wp] + λr ,x · cx · E[Wr ]

• λp,x is arrival rate of customer type x ∈ {H, L} to priority queue.

• λr ,x is arrival rate of customer type x ∈ {H, L} to regular queue.

• cx is delay cost: cH > cL.

• E[Wp] and E[Wr ] are delays in priority and regular queues.
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Customer Problem: A Lying Aversion Model

A customer of true type x ∈ {H, L} makes a claim y :

Min
y∈{H,L}

cx · E[W |Claim = y ]︸ ︷︷ ︸
Delay cost

+

Lying cost︷ ︸︸ ︷
θ · `(x , y)

• cx is the delay cost for customer type x : cH > cL.

• E[W |Claim = y ] is the expected conditional waiting time given a
claim y .

• `(x , y) is an intrinsic lying cost

• `(x , x) = 0 and `(x , y) ≥ 0 for y 6= x .

(Fischbacher and Föllmi-Heusi 2013, Abeler et al. 2019)

• Heterogeneous lying aversion: θ is a random variable.
(Gibson et al. 2013, Rosenbaum et al. 2014, Abeler et al. 2019)
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(Fischbacher and Föllmi-Heusi 2013, Abeler et al. 2019)

• Heterogeneous lying aversion: θ is a random variable.
(Gibson et al. 2013, Rosenbaum et al. 2014, Abeler et al. 2019)



Customer Problem: A Lying Aversion Model

A customer of true type x ∈ {H, L} makes a claim y :

Min
y∈{H,L}

cx · E[W |Claim = y ]︸ ︷︷ ︸
Delay cost

+

Lying cost︷ ︸︸ ︷
θ · `(x , y)

• cx is the delay cost for customer type x : cH > cL.

• E[W |Claim = y ] is the expected conditional waiting time given a
claim y .

• `(x , y) is an intrinsic lying cost

• `(x , x) = 0 and `(x , y) ≥ 0 for y 6= x .
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Lying Cost Models from the Literature

Fixed

• `(x , y) = 1

(DellaVigna et al. 2016, Khalmetski and Sliwka 2019)

Linear in expected material benefit

• `(x , y) = cx ·

(
E[W |Claim = x ]− E[W |Claim = y ]

)+

(Fischbacher and Föllmi-Heusi 2013, Abeler et al. 2019)

Strictly convex in expected material benefit

• `(x , y) =

cx ·

(
E[W |Claim = x ]− E[W |Claim = y ]

)+
r

, r > 1

(Duch et al. 2021, Gneezy et al. 2018, Kartik 2009)
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Best-Response Misreporting Probability

Customer type x ∈ {H, L} with lying aversion θ faces expected waiting
times E[W |Claim = y ] and scheduling policy αy for claim y ∈ {H, L}.

• Cost for honest claim i.e., y = x :

cx · E[W |Claim = x ].

• Cost for dishonest claim i.e., y 6= x :

cx · E[W |Claim = y ] + θ · `(x , y).

Customer misreports when

cx · E[W |Claim = x ] ≥ cx · E[W |Claim = y ] + θ · `(x , y),

i.e., when θ is small enough.
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Best-Response Misreporting Probability

Customer type x ∈ {H, L} with lying aversion θ faces expected waiting
times E[W |Claim = y ] and scheduling policy αy for claim y ∈ {H, L}.

If E[W |Claim = y ] < E[W |Claim = x ]:

P(Misreport) = P
(
θ ≤ cx(E[W |Claim = x ]− E[W |Claim = y ])

`(x , y)

)

= P
(
θ ≤ cx(αx − αy )(E[Wr ]− E[Wp])

`(x , y)

)
.

Later, we will show that only L customers misreport.
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Best-Response Misreporting Probability of Type L customers

P
(

Misreport

)
= P

(
θ ≤

cL(αH − αL)(E[Wr ]− E[Wp ])

`(L,H)

)
.

Lying Cost P(Misreport)
Effect of Effect of

`(L,H) ∆α = (αH − αL) ∆W = (E[Wr ]− E[Wp ])

Fixed Cost P(θ ≤ cL(αH − αL)(E[Wr ]− E[Wp ])) ↑ ↑

Linear in material benefit P(θ ≤ 1) No Effect No Effect

Convex in material benefit P
(
θ ≤ 1

(cL(αH−αL)(E[Wr ]−E[Wp ]))r−1

)
↓ ↓
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Experimental Design

Controlled experiment to investigate:

1 The existence of lying costs: Is P(Misreport) < 1?

2 The effect of ∆α = (αH − αL) on misreporting probability.

3 The effect of ∆W = (E[Wr ]− E[Wp]) on misreporting probability.
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Part 2:

Controlled Experiment



Experimental Design

We adapt the Fischbacher and Föllmi-Heusi (2013) design, which focuses
on intrinsic lying costs.

• Widely used in the literature: over 90 studies involving more than
44,000 subjects across 47 countries.

• Participants privately observe the outcome of a random variable.

• Misreporting is not detected at the individual level.

• Inferences at the aggregate level.
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Experimental Design

We run an online experiment. Participants privately observe the outcome
of a die.



Experimental Design

Participants are randomly assigned to 1 out of 9 experimental conditions
that differ in their ∆α and ∆W values.

Condition ∆α ∆W αH αL Wr Wp Sample size

1 1 3 min 1 0 5 min 2 min 226
2 1 8 min 1 0 10 min 2 min 220
3 1 13 min 1 0 15 min 2 min 217
4 0.5 3 min 1 0.5 5 min 2 min 222
5 0.5 8 min 1 0.5 10 min 2 min 227
6 0.5 13 min 1 0.5 15 min 2 min 222
7 0.1 3 min 1 0.9 5 min 2 min 220
8 0.1 8 min 1 0.9 10 min 2 min 233
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Experimental Design

Participants make a claim about their die outcome.

• H claim: number 5.

• L claim: any other number.



Experimental Design

Based on participant claims and experimental condition, they wait in a
virtual queue.

• To ensure waiting costs, participants need to click Advance in queue
buttons.



Experimental Design

Participants are paid the same amount of money irrespective of their
waiting time.
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Experimental Results

Logistic Regressions: P(Claim 5)
(1a) (2a) (3a)

(Intercept) -1.03*** -1.19*** -1.29***
(0.21) (0.20) (0.22)

Age 0.00 0.00 0.00
(0.00) (0.00) (0.00)

GenderM 0.13 0.13 0.13
(0.10) (0.10) (0.10)

∆W 0.01 - 0.01
(0.01) - (0.01)

∆α - 0.45*** 0.45***
- (0.13) (0.13)

N 2021 2021 2021
AIC 2398.17 2387.79 2388.81

Pseudo R2 0.00 0.01 0.01
Pseudo R2 † 0.01 0.23 0.25

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
†: at aggregate level.

• Result 3. ∆α influences misreporting
behaviour.

• Result 4. ∆W does not influence
misreporting behaviour.

• Result 5. None of the lying-cost
models from the literature exhibit the
same directional patterns of the data.
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Experimental Results

Lying P(Misreport)
Effect of Effect of

Cost ∆α = (αH − αL) ∆W = (E[Wr ]− E[Wp ])

Fixed Cost P(θ ≤ cL(αH − αL)(E[Wr ]− E[Wp ])) ↑ ↑

Linear in material benefit P(θ ≤ 1) No Effect No Effect

Convex in material benefit P
(
θ ≤ 1

(cL(αH−αL)(E[Wr ]−E[Wp ]))r−1

)
↓ ↓

Data - ↑ No Effect

Why do existing lying-cost models fail to fit our data?

Because the outcomes of lying are uncertain in our setting.
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Part 3:

Scheduling Control



Updated Customer Lying Aversion Model

Min
y∈{H,L}

Delay cost︷ ︸︸ ︷
cx · E[W |Claim = y ] +

θ

τ(∆α)︸ ︷︷ ︸
Lying aversion

·

Intrinsic lying cost︷ ︸︸ ︷
`(x , y) ,

• `(x , y) = cx(E[W |Claim = x ]− E[W |Claim = y ])+ is proportional
to material gain from lying.
(Fischbacher and Föllmi-Heusi 2013, Kajackaite and Gneezy 2017)

• Lying aversion θ/τ(∆α) depends on uncertain consequence of lying.
(Celse et al. 2019, Dugar et al. 2019)

We make assumptions on τ(·) so that we get consistency with data.
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Game Equilibrium

Proposition. There is a unique equilibrium:

Manager’s Scheduling Policy

• If misreporting semi-elasticity is sufficiently low:
α∗H = 1, α∗L = 0, i.e., honor policy.

• If misreporting semi-elasticity is sufficiently high:
α∗H = 1, α∗L ∈ (0, 1), i.e., upgrading policy.

Customer Misreporting Behaviour

• All H types claim their type, and only some L types
misreport.
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Managerial Implications

• Due to lying aversion, Managers should seek customer claims despite
the prevalence of misreporting.

• The scheduling policy, but not the waiting times, impacts the
probability of misreporting.

• Honor policies, which are commonly used in practice, can be
optimal.

• Managers can use upgrading policy as a control to incentivize more
honesty.
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Thank You!



Intuition: Cost Asymmetry

Lemma. The expected waiting cost is more sensitive to the under-
prioritization probability than to the over-prioritization probability.

Under-prioritization i.e., sending true H customers to regular queue:

• ↑ αH ⇒ decrease under-prioritization.

• All H types claim their true type, so α∗
H = 1 eliminates under-prioritization.

Over-prioritization i.e., sending true L customers to priority queue:

• ↑ αL ⇒ ↑ true L in priority queue.

• ↑ αL ⇒ decrease probability of false H claims.

• α∗
L minimizes over-prioritization.

• α∗
L > 0 ⇔ the misreporting probability is sufficiently sensitive to changes in αL.
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