Gijs de Leve prize talk Geometric Aspects of Linear Programming Sophie Huiberts CNRS & LIMOS

Geometric Aspects of Linear Programming

Sophie Huiberts

Shadow Paths, Central Paths, and a Cutting Plane Method

Linear Programming simplex methods $maximize C^{T}x$ subject to $Ax \le b$ we get AER? interior-point methods $b \in \mathbb{R}^n$ $c \in \mathbb{R}^{d}$ We compute $\propto \epsilon R^{cl}$

Linear Programming simplex methods maximize ctr subject to $Ax \le b$ we get AER" $b \in \mathbb{R}^n$ $c \in \mathbb{R}^{q}$ We compute $x \in \mathbb{R}^d$

In Practice
The simplex method visits 2(n+d) vertices before reaching an optimal one
Only a few documented cases where $> 10(n+d)$ iterations were performed
See, e.g., Shamir 187

Worst-case complexity	
· · · · · · · · · · · · · · · · · · ·	
Theorem The simplex	method
has exponential wors	t-case
complexity*	
Klee Minty '72 Many, many others '72-'23	ms and conditions apply

Simplex method is slow in theory fast in practice

Average case analysis	· · · ·
Theorem There is a simplex method which, Borguardt '87 if the rows of A are iid Uniform	· · · · · · · · · · · · · · · · · · ·
from the sphere and $b=1$, visits	· · · · · · · · · · · ·
d'n [#] vertices in expectation	· · ·
	· · · ·
	· · · ·

Average case analysis
Theorem There is a simplex method which, Borguardt 187
if the rows of A are iid Uniform
from the sphere and $b=1$, visits
d' not vertices in expectation
Theorem If n >> 2d ³ then this concentrates
Grypel Huiberts around the mean. Livshyts 122

· ·	Extension to diameter	
· ·	· · · · · · · · · · · · · · · · · · ·	
· ·	There \tilde{L} as $d^2 = 1$, and $d^2 = -2$	· · · · · · · · · · · · · · ·
· ·	Bonnet Dadush Gryper	15
· ·	Huiberts $= Q D $ Livshyts 122 $Cincl$	· · · · · · · · · · · · · ·
••••	$\leq d^2 \cap^{\frac{1}{d-r}}$	· · · · · · · · · · · · · ·
••••	with high probability	· · · · · · · · · · · · ·
• •		
· ·		

How Realistic is Average Case? real world photo random bitmap

· · · · · · · · · · · · · · · · · · ·	Smoo Leł	ted analy: $\bar{A} \in \mathbb{R}^{n \times d}$ h	sis $ave rows$	s of norm	≤ 1.	
· · · ·	lot	$\overline{b} \in [-1, 1]^n$	$c \in \mathbb{R}^{d}$	$(a a^2)$ on fa	206	
· · ·	Leu	1, 5 (Jule				· · · · · · · · · · · ·
• • •	· · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · ·		
• • •	· · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · ·		· · · · · · · · · · ·
· · ·	· · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · ·	· · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · ·	· · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·		
		· · · · · · · · · · · · ·				· · · · · · · · · · ·

Smooted analysis Let $\overline{A} \in \mathbb{R}^{n \times d}$ have rows of norm ≤ 1 . $\overline{D} \in [-1, 1]^n$, $c \in \mathbb{R}^d$	· · · · · · · · · · · · · · · · · · ·
Let A, 5 have i.i.g. $N(0, 0)$ entries, τ_1	· · ·
Then [time to solve]	
$\max_{\overline{A}, \overline{b}, \overline{c}} \left[\max_{\overline{A}, \overline{b}} \left[\operatorname{maximize}_{x \to 1} c^{T} x \right] \leq \operatorname{poly}(n, d, \sigma^{-1}) \\ \operatorname{s.t}(\overline{A} + \widehat{A}) x \leq \overline{b} + \widehat{b} \right]$	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	• •

Why smoothed analysis?
independent measurement/numerical errors do not conspire against your algorithm.
interpolate between worst case and average case analysis.
shows algorithm is fast on average in every large enough neighborhood

Smoothed analysis results

	Expected Number of Pivots
Spielman, Teng '01	$O(n^{86}d^{55}\sigma^{-30})$
Vershynin '09	$O(d^3 \log^3 n \sigma^{-4})$
Dadush, Huiberts '18	$O(d^2\sqrt{\log n}\sigma^{-2})$
Huiberts, Lee, Zhang '23	$O(d^{13/4}\log^{7/4}n\sigma^{-3/2})$
Borgwardt '87	$\Omega(d^{3/2}\sqrt{\log n})$
Huiberts, Lee, Zhang '23	$\Omega(\min(2^d, \frac{1}{\sqrt{\sigma d \sqrt{\log n}}}))$

Linear Programming maximize ctr subject to $Ax \le b$ we get AER" × d interior-point methods $b \in \mathbb{R}^n$ $c \in \mathbb{R}^{q}$ We compute $\propto \epsilon R^{cl}$

Basic IPM analysis Theorem An IPM can solve an LP using Vr. LAbc linear system solves LABC: # of bits to write down A, b, c

Basic IPMs are scale-invariant For D positive diagonal, consider maximize cTx subject to $DAx \leq Db$ -> Same feasible region -> Predictable change to central path -> Same change to IPM path

Sophisticated IPM analysis Theorem Specific IPMs can solve an LP using poly(n) · LA linear system solves LA : # of bits to write down A

Question: Can we have both properties for a single IPM? Monteiro, Tsuchiya 2003

Question: Can properties fa	we have or a single	both IPM?		
Ansver: Yes				
Monteiro, Tsuchiya 2003	Dadush, Huibert	ș Natura,	Végh	2023

Separation oracle
$K \subseteq \mathbb{R}^{d}$ unknown convex. $z + r \mathbb{B}_{2}^{d} \subseteq K \subseteq \mathbb{R} \mathbb{B}_{2}^{d}$ with $z \in unknown$.
Can ask; is $x \in k$? - Yes
- No because; cetx>b
city < b for all yek

Gradient oracle	· · · · · · · · · · · · · ·
f: Rd > R unknown convex	
$ \nabla f(y) \leq L$ for all $y \in K$	
Can query $x \in \mathbb{R}^{d}$:	
- Value $f(x)$	
- gradient $\nabla f(x)$	· · · · · · · · · · · · · · · · · · ·

· · · · · · · · · ·			· ·	· ·
· ·	1. le Liant	to minimize	$f(\tau)$	· ·
 · · · · · · · · · · · · · · · · · · ·	WE WUIT	CU MM JM ZE OVEr	xek	· ·
. .	with ci	small # of qu	jeries,	
· · · · · · · · · ·				
· · · · · · · · · ·				

Ellipsoid method
1. Have an ellipsoid containing all optimal points
2. Query center point
3. if not in K: find smaller ellipsoid using cut
4. if in k: find smaller ellipsoid using gradient
5, go to 1

Ellipsoid method Pros Cons - Convergence guarcintee - Slow in practice

LP ba	sed 100p
1.	have a set S of valid constraints.
2,	solve minimize cix
	subject to at x = b
· · · · · · · · · · · ·	$\mathcal{PO}[\mathcal{U}[\mathcal{U}]] \in \mathcal{O}$
3. (query LP optimal solution
, , , ,	fnotin K
	add (a,b) to 5

LP based loop	· · · · · · · · · · · · · · · · · · ·
Pros	Cons
- mostly fast in practice	- no convergence guarantee
- LP solves are cheap	- only lower bounds no feasible points
<pre></pre>	· · · · · · · · · · · · · · · · · · ·

Our new algorithm
1. have a set S of valid constraints.
2. solve a quadratic program
3. query its solution act
4, if not in K add (a,b) to 5
5. if in K $c_{idcl}(\nabla f(x_{t}), \langle \nabla f(x_{t}), x_{t} \rangle)$ to S

Our new algorith	λ Ω
Pros	Cons
- Convergence guarantee	- Need to solve a quadratic program every round
- good in experiments	
. .	. .

Linear programming - diameter of random polyhedra - smoothed analysis of simplex method - scale-invariant IPM Oracle model - new cutting plane method