

Integer Programs with Bounded SUBDETERMINANTS
S. Fiorini LNMB'24

Integer Programming
(IP) $\max \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
where $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$,

$$
c \in \mathbb{Z}^{n}
$$

Q: What parameter (s) drive the complexity of (IP)?

Parameters of Interest
(1) $n=$ \#columns(A) [Lenstra' 83]
(2) $m=$ \#constraints (A) [Papaolimitriou' 81$]$
(3) tree-depth (A)
$\}$ [EHKKLO'19]
(4) dual-tree-depth (A) $\}$ (+others)

This talk:

$$
\Delta(A):=\max \left\{\left|\operatorname{lot} A^{\prime}\right|: A^{\prime} \text { sq. submtx } A\right\}
$$

DEF: $A \in \mathbb{Z}^{m \times n}$ is

- totally unimodular (TU) if $\Delta(A) \leqslant 1$
- totally Δ-modular if $\Delta(A) \leqslant \Delta$

WHY $\triangle(A)$?

- all vertices x^{*} of $P:=\{x: A x \leqslant b\}$ have coordinates in $\mathbb{Z} \cup \frac{1}{2} \mathbb{Z} \cup \cdots \cup \frac{1}{\Delta} \mathbb{Z}$ (whenever $\triangle(A) \leqslant \Delta$)
- $\operatorname{diam}(P)=\operatorname{poly}(n, \Delta)\left[B S E H N^{\prime} 14\right]$
- If $\Delta(A)=1$ then all vertices of P are integral? And solving (IP) is equivalent to solving:

$$
(L P) \max \left\{c^{\top} x: A x \leqslant b\right\}
$$

- (LP) can be solved in strongly polynomial time if $\triangle(A)=O(1) \quad$ [Tarolos' 86]

THM［CGST＇86］Suppose（IP）is bounded and feasible．Then $\forall x^{*}$ OPT sol of（LP），ヨ立 OPT sol of（IP）st．

$$
\left\|x^{*}-\bar{z}\right\|_{\infty} \leqslant n \cdot \Delta
$$

CONJECTURE ("Folklore"): $\forall \Delta \in \mathbb{Z}_{\geqslant 1}$ constant, can solve (IP) in (strongly) polynomial time if $\triangle(A) \leqslant \triangle$

Conjecture true for $\triangle=1$: "TU case" THM [Artmann, We is mantel, Zenklusen' 17$]$: Conjecture holds for $\Delta=2$?

REM: Still open for all constants $\Delta \geqslant 3$

Decomposition of TU matrices
Th [Seymour' 80]: all TU matrices can be obtained, starting from

- network matrices
- transposed network matrices
- two sporadic TU matrices by operations that preserve TUnas

Network Matrices
Consider a min cost flow problem $\min \left\{c^{\top} x: A x=b, \quad l \leqslant x \leqslant u\right\}$

$$
A=\left(\begin{array}{llllll}
+1 & +1 & & & & \\
-1 & & +1 & +1 & & \\
& -1 & & & +1 & \\
& & -1 & & & \\
& & -1 & -1 & & \\
& & & -1 & -1
\end{array}\right)
$$

Pick basis and pivot

$$
\begin{aligned}
& \text { D network max }
\end{aligned}
$$

The Sporadic Matrices

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
-1 & 1 & & 1 \\
1 & -1 & 1 & \\
& 1 & -1 & 1 \\
1 & & 1 & -1 \\
1 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & & \\
1 & & 1 & 1 & \\
1 & & & 1 & 1 \\
1 & 1 & & & 1
\end{array}\right)} \\
& R_{10} \\
& R_{12}
\end{aligned}
$$

The Operations

$$
\begin{aligned}
& \text { 1-sum: } A_{1} \oplus_{1} A_{2}=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \\
& \text { 2-sum: }\left[\begin{array}{c|c}
A_{1} & 0 \\
\vdots & 0 \\
a_{1} & 1
\end{array}\right] \oplus_{2}\left(\begin{array}{cc}
1 & a_{2} \\
0 & \\
\vdots & A_{2}
\end{array}\right]=\left[\begin{array}{c|c}
A_{1} & 0 \\
\hline a_{1} & a_{2} \\
0 & A_{2}
\end{array}\right]
\end{aligned}
$$

and also 3-sum, pivoting, permuting $\left\{\begin{array}{l}\text { rows } \\ \text { cols }\end{array}\right.$ resigning $\left\{\begin{array}{l}\text { row } \\ \text { col , duplicating }\left\{\begin{array}{l}\text { row } \\ \text { col }\end{array} \text {, }\right.\end{array}\right.$ adding $\left\{\begin{array}{l}\text { row with } \leqslant 1 \text { nonzero } \\ \text { col }\end{array}\right.$

INTUITION FOR SEYMOUR'S DECOMP

Circuits of Matrices
DEF: $x \in \mathbb{Z}^{n}$ is a circuit of $A \in \mathbb{Z}^{m \times n}$ if
(i) $A x=0$
(ii) $x \neq 0$ and is support-min in $\operatorname{ker} A \backslash\{0\}$
(iii) $\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)=1$

EXAMPLE:

$$
A=\left(\begin{array}{llllll}
+ & - & + & - & & \\
\text {-1 }^{-1} & +1 & & +1 & +1 & \\
\\
& -1 & & & \\
& & -1 & & & \\
& & & +1 & -1 & \\
& & & & -1 & -1
\end{array}\right)
$$

$x=\left(\begin{array}{c}+1 \\ -1 \\ +1 \\ -1 \\ 0 \\ 0 \\ 0\end{array}\right]$
is a circuit of A

LEMMA: Suppose A is $T U$, take $w \in \mathbb{Z}^{n}$ Then $\Delta\binom{A}{w^{\top}}=\max \left\{w^{\top} x:\binom{x}{y}\right.$ circuit of (AI)\}

(1) If A is network, then $\Delta\binom{A}{w^{T}}$ is max weight of circuit in a directed graph G

(2) If A is transposed network then

$$
\Delta\binom{A}{w^{\top}}=\max \{\bar{W}(S): S \subseteq V(G), S \text { and } \bar{S}
$$ are connected \}

where $\bar{w}(v)$ are weights on vertices of G st. $\sum_{v \in V} \bar{w}(v)=0$

SOME OF THE "Magic"
G graph, 4-connected

$$
\begin{array}{ll}
\bar{w} \in \mathbb{Z}^{V(G)} \text { s.t. } & \sum_{v \in V(G)} \bar{w}(v)=0 \\
& \sum_{v \in S} \bar{w}(v) \leqslant 1 \quad \forall^{\prime \prime} \text { docset }{ }^{\prime \prime} S
\end{array}
$$

REM: $\bar{W}(v) \in\{-1,0,+1\} \quad \forall v \in V(G)$
DEF: v terminal if $\bar{w}(v) \neq 0$
Either \#terminals $\leqslant 2$, and always OK or \#terminals $\geqslant 4$, and ...

The Bimodular Algorithm
Assuming $\triangle(A) \leqslant 2,\left[A W Z^{\prime} 17\right]$ solve
(IP) $\min \left\{c^{\top} x: A x \geqslant b, x \in \mathbb{Z}^{n}\right\}$
Steps: (1) solve (LP) \rightarrow get x^{*}
(2) tight constraints $\bar{A} x=\bar{b}$

[Veselov \& Chirkov'og]

(3) Drop constraints not tight at x^{*}
(4) Pick basis Q and let $y:=Q\left(x-x^{*}\right)$

(IP) $\min \left\{d^{+} y: T y \geqslant 0, Q^{-1} y+x^{*} \in \mathbb{Z}^{n}\right\}$ where T is $T U$ mex $y \in \mathbb{Z}^{n}, \sum_{i \in S} y_{i}$ odd

$$
T y \geqslant 0 \Leftrightarrow T y-z=0, z \geqslant 0
$$

Every sol is sum of circuits of ($T-I$)

$$
\binom{y}{z}=c_{1}+c_{2}+\cdots+c_{t}
$$

An odd number of cis are odd

$$
\Rightarrow t=1 w \log !0
$$

Final problem is min cost odd circuit
Given TUmtx $A \in\{0, \pm 1\}^{m \times n}$
cost vector $c \in \mathbb{Z}^{n}$
subsets $I, J \subseteq[n]$
Find $\min \left\{c^{\top} x: A x=0, x_{i} \geqslant 0 \forall i \in I\right.$,

$$
\left.\sum_{j \in J} x_{j} \equiv 1(\bmod 2)\right\}
$$

Base Cases for Mooc
Graphic case: min odd cycle ($=n t w k$)

$$
0 \longrightarrow 0 \mathrm{~J}
$$

Co-graphic case: min odd cut ($=n$ wk $^{\top}$)

TAM IP'S WITH $\leqslant 2$ NONZEROS PER ROW
THM [FJWY'21] For every fixed $\Delta \in \mathbb{Z}_{\geqslant 1}$ there is a (strongly) polynomial time algorithm for
(IP) $\max \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ where A has $\Delta(A) \leqslant \Delta$ and $\leqslant 2$ nonzeros per row (or per cal)

Approach has three parts:
(1) Little IP theory to reduce to stable set problem on graphs with odd cycle packing number $O(\log \Delta)$
(2) Heavy graph (minor) theory to "control" structure of such graphs
(3) Intricated Dynamic Programming algorithm using structure

Structure of Graphs with Small oct

$T U+k$ Rows
Since September' 22, I am working on solving (IP) $\max \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ where A has $\Lambda(A) \leqslant \Delta$ and
 (k constant)
together with:

- Manuel Aprile (U Padova)
- Stefan Kober
- Gwenaël Joret
- Michat Seweryn $\}$ since July'23
- Stefan Weltge (TU Munich)
- Lena Yuditsky

TH [AFKJSWY $\left.{ }^{\prime} 24+\right]$
For every constants $\triangle, k \in \mathbb{Z}_{\geqslant 1}$ there is a (strongly) polynomial time algorithm for solving
(IP) $\max \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
where A is totally \triangle-modular and becomes $n t w k^{\top}$ after deleting $\leqslant k$ rows and columns

OUR APPROACH
(1) IP theory to

- relate $\Delta(A)$ to circuits of (TI)
- bound \#augmentations on circuits
(2) Graph theory to
- control graphs with no rooted $K_{2, t}$ minor
(3) Dynamic Program

ABOUT $\triangle(A)$
Recall:
LEMMA: Let $T \in\{0, \pm 1\}$ be $T U, w \in \mathbb{Z}^{n}$ Then $\Delta\binom{T}{w^{\top}}=\max \left\{w^{\top} x:\binom{x}{y}\right.$ circuit of (TI) \}

Proximity Result
$\left(I P_{2}\right) \max \left\{c^{\top} x\right.$

$$
\begin{aligned}
& U x=b, l \leqslant x \leqslant u \\
& \left.W x \leqslant d, x \in \mathbb{Z}^{n}\right\}
\end{aligned}
$$

LEMMA (informal): Can efficiently compute integer point z satisfying all "TU constraints", s.t. \exists opt. solution

$$
\bar{z}=z+\sum_{i=1}^{t} c_{i}
$$

where c_{1}, \ldots, c_{t} are circuits and

$$
t \leqslant f(k, \Delta)
$$

Final Problem
$\max \left\{c^{\top} x: x_{i}-x_{j} \leqslant b(i, j) \quad \forall(i, j) \in E(G)\right.$

$$
\left.W x \leqslant d, \quad x \in \mathbb{Z}^{n}\right\}
$$

s.t. G directed graph

$$
c^{\top} \mathbf{1}=0, \quad W \mathbf{1}=0,
$$

$\left\|W x^{S}\right\|_{\infty} \leqslant \Delta \quad \forall$ dockets $S \subseteq V(G)$

Rooted $K_{2, t}$ Minors
DEF: $v \in V(G)$ is terminal if $W^{v} \neq 0$ rooted $K_{2, t}$ minor:

Forbiolden

Graph Structure
\exists decomposition tree of G st.

- intersection of two adjacent bags is bounded
- each node has bounded \#children with terminals
- docsets of G intersect terminals in each bag in "nice" way (poly \# ways)

Open Problems
(1) Generalize tho to all TU matrices (graphic case + 3 -sums)
(2) Further generalize to "binet" matrices and their transposes
(3) Solve whole conjecture ???
$(44$

EXTRA SLIDES

Tree-Depth
DEF: tree-depth $(G)=$ min height of forest F s.t. every edge of G connects pair of vacs having ancestor-descendant relationship

Proof ID DEA: Take any opt. IP sol. \bar{z}, look at $y:=\bar{z}-x^{*}$ and partition rows A into $A^{\leqslant}, A^{\geqslant}$s.t. $A^{\leq} y \leqslant 0, \overrightarrow{A^{\prime}} y \geqslant 0$.
Consider cone $K:=\left\{x: A^{\leqslant} x \leqslant 0, A^{\overrightarrow{2}} x \geqslant 0\right\}$

Then $\exists v_{1}, \ldots, v_{e} \in \mathbb{Z}^{n}$ $K=$ cone $\left\{v_{1}, \ldots, v_{e}\right\}$ and $\left\|v_{i}\right\|_{\infty} \leqslant \Delta \quad \forall i$ (Cramer's rule)

Matroids
are discrete structures "axiomatizing" linear independence
Given \mathbb{F} field get matroid $M=M(A)$

$$
A \in \mathbb{E}^{m \times n}
$$

- elements of $M=$ columns of A
- independent sets of $M=$ sets of linearly inolependent columns of A
- circuits of $M=$ minimally dependent sets

DEF: Matroid M is regular if $\exists A$ TU st. $M=M(A)$ (over \mathbb{R})

THM: (i) M is regular
\Leftrightarrow (ii) M can be represented over any field
\Leftrightarrow (iii) M can be represented over GF(2) and GF(3)

K-sums "Matroidally"

