

INTEGER PROGRAMMING	
(IP) max {c ^T x : Ax≤b, x€	$\in \mathbb{Z}^n$ }
where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^{m}$,	THEORY OF LINEAR AND INTEGER PROGRAMMING
c € ℤ ⁿ	• • • • • • •
Q: What parameter(s) drive the complexity of (TP)?	Alexander Schrijver

PARAMETERS OF IN-	TEREST
On = # columns(A)	[Lenstra'83]
2 m = # constraints(A)	[Papaolimitriou'81]
3 tree-depth (A)	LEHKKLO'19]
(A) dual-tree-depth(A)	J (+ others)
This talk:	
$\Delta(A) := \max \{ det A $: A sq. submtx A }

\underline{DEF} : $A \in \mathbb{Z}^{m \times n}$ is	•
• totally unimodular (TU) if $\Delta(A) \leq 1$	•
• totally Δ -modular if $\Delta(A) \leq \Delta$	•
	•
· · · · · · · · · · · · · · · · · · ·	•
	•
	•
	•
	•

WHY • all v have (wher	∆(A) ertices coordin never	? \times^* of nates in $\Delta(A) \leq Z$	$P := \left\{ x \\ n \mathbb{Z} \cup \frac{1}{2} \\ \Lambda \right\}$	(5) $Ax \le b$ $\mathbb{Z} \cup \cdots \cup \frac{1}{\Delta} \mathbb{Z}$
• olian	m (P) =	= Poly (r	, Δ) $[B3$	SEHN'14]
· · · · · · · · · · · ·	· · · · · · · · · · ·	 	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · ·		

• If $\Delta(A) = 1$ then all vertices of P are integral? And solving (IP) is equivalent to solving:
(LP) max { c'x : $Ax \leq b$ } • (LP) can be solved in strongly polynomial time if $\Delta(A) = O(1)$ [Tardos' 86]

THM [CGST'86] Suppose (IP) is
bounded and feasible. Then $\forall x^*$ opt sol
OF (LP). JZ OPT SOL OF (IP) S.E.
$\ \times^* - \overline{z} \ \leq n \cdot \Lambda$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
\times \times \times \times
· · · · · · · · · · · · · · · · · · ·
\times

			IDT	- (11	Fall					c 7			
	ו נ או נ										≥1		
0.0	Insta	ant	C ر	an	2011	(6	$\begin{pmatrix} 1 & 1 \end{pmatrix}$		in	(st	T01	nc) i	$\left(-\frac{1}{2} \right)^{2}$
Þ.	olyn	omi	or);	tim	e 1	f	$\Delta(A$	<i>\ </i>		· · · · · · · · · · · · · · · · · · ·			· · · ·
· · · · · ·											• • •		
	· · · · · ·								• • •				
									• • •				
		· · · · · ·					· · · ·	· · · ·	· · ·	· · · · · ·		· · · ·	· · ·
	· · · · · ·	· · · · · ·				· · · ·		· · · · ·	· · · ·	· · · · · ·	· · · ·	· · · · ·	· · · ·
· · · · · ·	 	· · · · · · ·						· · · · ·	· · · ·	· · · · · · ·			· · · ·

Conjecture true for $\Delta = 1$: "TU case"
THM [Artmann, Weismantel, Zenklusen'17]: Conjecture holds for $\Delta = 2$?
REM : Still open for all constants $\Delta \ge 3$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

DECOMPOSITION OF TU MATRICES
THM [Seymour'80]: all TU matrices can be obtained, starting from
 network matrices transposed network matrices two sporadic TU matrices
by operations that preserve TUness

NETWORK MATRICES
Consider of min cost flow problem
min $\{c^T x : A x = b, l \leq x \leq v\}$
2 4 - (+1 + 1)
-1 + 1 + 1
1 -1 -1 +1 -1 -1 +1
$-1 - 1 \int$

THE SPORADIC MATRICES -1 1 1 1 1 1 1 1 - 1 1 - 1 11-1 Rint

THE OPERATIONS	 	
$1 - Svm: A_1 \oplus_1 A_2 = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$		
$2 - SUM: \begin{pmatrix} A_1 & 0 \\ \vdots & 0 \\ -\alpha_1 & 1 \end{pmatrix} \oplus_2 \begin{pmatrix} 1 & \alpha_2 \\ 0 & -\alpha_2 \\ 0 & -\alpha_2 \end{pmatrix} = \begin{bmatrix} -\alpha_2 & -\alpha_2 \\ 0 & -\alpha_2 \\ 0 & -\alpha_2 \end{bmatrix}$		A_{2}
and also 3-sum, pivoting, permit resigning $\begin{cases} row \\ col \end{cases}$, duplicating $\begin{cases} row \\ col \end{cases}$, adding $\begin{cases} row \\ col \end{cases}$ with ≤ 1 nonzero	sting	2 KON S

ΙΝτυιτίοΝ	FOR SEYMOUR	'S DECOMP (15
ntwk		ntwk (=cographic M)
(Egrophic M)	planar	

CIRCUITS OF MATRICES	. .
DEF: XEZn is a circuit of AE	Zit
(i) A x = 0	· ·
(ii) $x \neq 0$ and is support-min in	Ker A \ {o}
(iii) gcd $(x_{1},, x_{n}) = 1$	· · · · · · · · · · · · · · · · · · ·

EXAMPLE: is a circuit of A + 1 \mathbf{O} Q 0

② If A is transposed network then	20
$\Delta(A_{w^{T}}) = \max \{\overline{w}(S) : S \subseteq V(G), S \text{ and } S \text{ are connected } \}$	
where $\overline{w}(v)$ are weights on vertices of G s.t. $\sum_{v \in V} \overline{w}(v) = \overline{o}$	· · · · · · · · · · · · · · · · · · ·
	 . .<
S	· · ·

Some of the "MAGIC" G graph, 4-connected $\overline{W} \in \mathbb{Z}^{V(G)}$ s.t. $\sum \overline{W}(v) = 0$ \sqrt{e} $\sum \overline{w}(v) \leq 1 \quad \forall "docset" S$ VES

$\underline{REM}: \overline{W}(v) \in \{-1, 0, +1\} \forall v \in V(G)$	• • • •
\underline{DEF} : \vee terminal if $\overline{W}(\gamma) \neq 0$	• • • •
	•
Either #terminals <2, and always OK or #terminals >4, and	• • •
Either #terminals <2, and always OK or #terminals >4, and	•
Either #terminals ≤2, and always OK or #terminals ≥4, and	• • • • • •
Either #terminals ≤2, and always0K or #terminals ≥4, and	
Either #terminals ≤2, and always UK or #terminals ≥4, and	
Either #terminals ≤2, and always0K or #terminals ≥4, and	
Either #terminals ≤2, and always0K or #terminals ≥4, and	
Either #terminals ≤2, and always0k or #terminals ≥4, and	
Either #terminals ≤2, and always OK or #terminals ≥4, and	
Either #terminals ≤2, and always0K or #terminals ≥4, and	
Either #terminals ≤2, and always OK or #terminals ≥4, and	
Either #terminals ≤2, and always UK or #terminals ≥4, and	

Sz . . E2

THE BIMODULAR ALGORITHM
Assuming $\Delta(A) \leq 2$, [AWZ'17] solve
$(IP) \min \{c^T x : A x \ge b, x \in \mathbb{Z}^n \}$
Steps: () solve $(LP) \rightarrow get \times^*$
2 tight constrolints Ax= b
$A = \frac{A}{b}$

[Veselov & Chirkov '09]	(25
	• e Z ^r
	$\epsilon \frac{1}{2} \mathbb{Z}^n \cdot \mathbb{Z}^n$

3 Drop constraints not tight at x* (4) Pick basis Q and let $y := Q(x - x^*)$ (IP) min { $d^{T}y : Ty \ge 0$, $\overline{Q}y + x^{*} \in \mathbb{Z}^{n}$ } where T is TU mtx $y \in \mathbb{Z}^{h}, \sum_{i \in S} y_{i}$ odd

$T_{y} \ge 0 \iff T_{y-z} = 0, z \ge 0$
Every sol is sum of circuits of (T-I)
$\begin{pmatrix} y \\ z \end{pmatrix} = c_{1} + c_{2} + \dots + c_{k}$
An odd number of c's are odd
$\Box > t = 1 \text{wlog} \mathbb{P}^{p}_{\mathfrak{o}}$

Final problem is min cost odd circuit
Given TU mtx A E { 0, ±1 } mxn
cost vector $c \in \mathbb{Z}^n$
subsets I, J c[n]
Find min {ctx: Ax=0, x; >0 Vie I,
$\sum_{j \in J} x_j \equiv 1 \pmod{2}$
\mathbf{J}

BASE CASES -	FOR MCOC	
<u>Graphic case</u> : (=ntwk)	min odd cycle	
	20 TO TO	, → o J
. .		

Co-graphic case:	min odd	cut	(30
(-1)(wa)			
			· · · · · · ·
	Aor		
	X		

TAM IP'S WITH < 2 NONZEROS PER ROW
THM [FJWY'21] For every fixed $\Delta \in \mathbb{Z}_{\geq 1}$
there is a (strongly) polynomial time
algorithm for
$(IP) \max \{c^T x : A x \leq b, x \in \mathbb{Z}^n\}$
where A has $\Delta(A) \leq \Delta$ and
<2 nonzeros per row
(or per col)

Approach has three parts:
① Little IP theory to reduce to
stable set problem on graphs with
odd cycle packing number $O(\log \Delta)$
2) Heavy graph (minor) theory to "control" structure of such graphs
3 Intricated Dynamic Programming algorithm using structure

TU + K Rows
Since September '22, I am working on
Solving (IP) max { $c^{T}x : Ax \leq b, x \in \mathbb{Z}^{n}$ }
where A has $\Delta(A) \leq \Delta$ and
$\left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
W } k extra rows (k constant)

together with:	(35
 Manuel Aprile (U Padova) Stefan Kober Gwenaël Joret Zsince July'23 Michał Seweryn Stefan Weltge (TU Munich) 	
• Lena Yuditsky	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · ·

Thm [AFKJSWY'24+]
For every constants Δ , k $\in \mathbb{Z}_{\geq 1}$ there
is a (strongly) polynomial time
algorithm for solving
$(IP) \max \{c^T x : A x \leq b, x \in \mathbb{Z}^n\}$
where A is totally Δ -modular and
becomes ntwk after deleting
<k and="" columns<="" rows="" td=""></k>

OUR APPROACH
 IP theory to relate Δ(A) to circuits of (T I) bound #augmentations on circuits
 ② Graph theory to • control graphs with no rooted K_{2,t} • minor
3 Dynamic Program

ABOUT $\Delta(A)$ Recall: LEMMA: Let $T \in \{0, \pm 1\}$ be $TU, w \in \mathbb{Z}^n$ Then $\Delta \begin{pmatrix} T \\ w^T \end{pmatrix} = \max \{ w^T x : \begin{pmatrix} x \\ y \end{pmatrix} \text{ circuit}$ of $(TI) \}$

PROXIMITY RESULT
$(IP_2) \max \{ c^T x : U x = b, l \le x \le v \}$
$W_X \leq d, x \in \mathbb{Z}^n$
LEMMA (informal): Can efficiently
compute integer point z satisfying all
"TU constraints", s.t. I opt. solution
$\overline{z} = \overline{z} + \sum_{i=1}^{c} C_i^{i}$
where $C_{1,,C_{t}}$ are circuits and $t \leq f(k, \Delta)$

FINAL PROBLEM
$\max \{ c^{T} \times : \times_{i} - \times_{j} \leq b(i,j) \; \forall (i,j) \in E(G) \\ \qquad $
s.t. G directed graph $C^{T} = 0, W = 0,$
$\ WX^{s}\ _{\infty} \leq \Delta \forall \text{ docsets } S \leq V(G)$

ROOTED K2, MINORS $DEF: v \in V(G)$ is terminal if rooted minor: Forbiolden minor for $t = q(k, \Delta)$

GRAPH STRUCTUR 3 decomposition tree	e of G s.t.
	 intersection of two adjacent bags is bounded
	 each node has bounded #children with terminals
 docsets of G int each bag in "n. 	tersect terminals in ice" way (poly # ways)

OPEN PROBLEMS
④ Generalize thm to all TU matrices (graphic case + 3-sums)
② Further generalize to "binet" matrices and their transposes
3 Solve whole conjecture ???

DUUU

TREE-	DEPTH
Def:	tree-depth(G) = min height of forest
	F s.t. every edge of G connects pair of vtcs having ancestor-descendant relationship
· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
<td></td>	

PROOF IDEA: Take any opt. IP sol. Z,
look at y := Z-x* and partition rows A
into A^{\leq} , A^{\neq} s.t. $A^{\leq}y \leq 0$, $A^{\leq}y \neq 0$.
Consider cone K := { x : A × ≤ 0, A × ≥ 0}
Then $\exists v_1,, v_e \in \mathbb{Z}^n$:
$K = cone \{v_1, \dots, v_p\}$ and
$\ \mathbf{v}_i\ _{\infty} \leq \Delta \forall i$
(Cramer's rule)

 · · · · · · 		V ₁ V 2 V 2 V 3 V 2 V 3	• y=z-x* Show	$= \sum_{i=1}^{k} \lambda_i$ $0 \le \lambda_i < 1$	V; where k≤n ((aratheodory ∀i wlog	
· · · · · · · · · · · · · · · · · · ·		Z-×* ~	s = ∥.y.∥	$\infty \leq \sum_{i=1}^{k} \gamma$	$u_i \ v_i \ _{\infty} \leq n \Delta$	· · ·
· · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· ·	· ·	 · · · · · · · · · · · · · · · · · · ·		· · ·
· · ·	· · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• •

MATROIDS
are discrete structures "axiomatizing" linear independence
Given F field get matroid M=M(A) A e F ^{m×n}
• elements of M = columns of A
 independent sets of M = sets of linearly independent columns of A
 circuits of M = minimally dependent sets

DEF: Matroid M is regular if JATU s.t. M=M(A) (over IR)
THM: (i) M is regular ⇔ (ii) M can be represented over any field
\Leftrightarrow (iii) M can be represented over GF(2) and GF(3)

K-SUMS "MATROIDALLY"

