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In brief:

Combine machine learning and discrete
optimization to solve a problem that we
could not solve with any existing
methodology.

Challenges:

Very restricted computing time budget.
Imperfect information.




.
CONTEXT

Planning horizon and increasing level of information

LEVEL OF DETAIL OF SOLUTION

Long term
« strategic »

Medium term
« tactical »

Short term
« operational »

Fully detailed solution -
implementable

Description of solution -

level of detail that is relevant

fo the tactical decision
problem

Value of the
solution
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.
CONTEXT

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information
seconds fto Reasonable computing time -
minutes

within the time budget for the
operational problem

Much shorter than the
time it takes to solve the
milli- full prot?lem und_er perfect
seconds information

COMPUTING TIME BUDGET
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.
CONTEXT

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information

High-precision solution
Reasonable computing time

Solve deterministic
optimization problem
mathematical programming

High-level solution
Very short computing time

Stochastic programming

Machine learning
predict the tactical solution
————— descriptions
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.
SOME NOTATION

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Problem instance !mperfeqt X, Eerfect | X = [X,,X,]
information : information
Solution y*(Xa) Deterministic v (x) = arg min C(x,y)
a : problem yeY(x)

Tactical solution ok _ % (x
description y* = g(y*(x))
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.
APPLICATION - LOAD PLANNING

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Capacity management, Load planning for
e.g., bookings double-stack trains
Request Railcar Accepted

.v| supply bookings
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.
APPLICATION - LOAD PLANNING
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.
APPLICATION - LOAD PLANNING

» Containers have different
characteristics, for example:

» Size

1 -
T

» Weight

» The loading (operational problem) of
the containers onto railcars crucially
depends on weight

» Weight is unknown at the tactical
level
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IDEA IN BRIEF

» We know how to solve the deterministic problem - let’s
use that!

» Generate a lot of data and pretend that we have
perfect information - solve the discrete optimization
problem with an existing solver

» Let machine learning take care of the uncertain part:
hide the information that is not available at prediction
time - find best possible prediction of y*

y* (Xa) — f(Xa} 9)

|

State-of-the-art ML model Parameters
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.
METHODOLOGY

= Two-stage stochastic programming formulation

o

% Optimal prediction conditional on x,, expectation over distribution of x,

o Optimal solution to deterministic problem for given x =[x, X,]
Problem instances and solutions Machine learning

,,g (perfect information) training, validation, test data

)]
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.
METHODOLOGY

QE, y*(Xa) := arg ~inf P ¥ (%a) — 9(¥y" (%a, xu)) || | Xa}
— y(Xa) €Y (Xa)
s
S *(X,, Xy ) := ar inf C(xa., Xy,
o Y ( ) gyey(xa,xu) ( y)
Problem instances and solutions Machine learning
S (perfect information) training, validation, test data
©
o
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.
METHODOLOGY

E, ¥ (Xa) = arg
o)
o)
| S
o
Problem instances and solutions Machine learning
,,g (perfect information) training, validatior ,Vtest data
o {

C (xO,yD)y i=1,..,m
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.
METHODOLOGY

E, Y (Xa) := arg
o)
o)
| S
o
Problem instances and solutions Machine learning 4
,,g (perfect information) training, validatior ,Vtest data
0 {

W (xO,yD)y j=1,...m
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.
METHODOLOGY

» Data
» Historically observed instances and their solutions
» Purpose: « mimic » behaviour in such data

» Our approach: generate data by sampling problem instances and computing
the corresponding solutions using existing optimization model and solver

» Purpose: generalization over the domain of X
» The input structure is governed by the information available at prediction time

» The output structure is governed by the choice of solution description and can
be of fixed or variable size

» Model architecture depends on input and output structures and on constraints
linking the two
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.
RELATED LITERATURE

» Closest to our work are those based on supervised learning
but they focus on deterministic problems

» Fischetti and Fraccaro (2017) predict optimal objective
function value

» Vinyals et al. (2015) define pointer networks to solve a class
of discrete optimization problems, constraints are imposed
by changing the NMT model architecture

» Nair et al. (2017) propose a reinforcement learning algorithm
combined with ILP solver for a two-stage binary stochastic
program (unconstrained binary decisions)
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.
DATA GENERATION

» Random sampling of container/railcar types and container weights

Description # of containers # of platforms

Simple ILP [1,150] [1,50]

More containers than A

(excess demand) [151,300] [1,50]
More platforms than A 11,150] 151,100]
(excess supply)
Larger and harder [151,300] [51,100]
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.
INPUT-OUTPUT

Input: problem instance

2 container types: 40 and 53 ft Output: tactical solution

10 railcar types: 10 most numerous in
the North American fleet

N N
! B ° e
40 ft :
. N N
40 ft : B E .
53 ft = -
E MULTILAYER PERCEPTRON /
204 R — E FEED-FORWARD NETWORK
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.
TACTICAL: MULTILAYER PERCEPTRON

Input Output
Fixed-size vector Fixed-size vector
vk
X, y

Nb of available - Nb of containers of each
containers of each type type in the solution

Nb of of available B B Nb of railcars of each

railcars of each type type in the solution
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.
TACTICAL: MULTILAYER PERCEPTRON

» Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear
units (ReLU) per layer (hyper parameters)

» Classification / Regression (linear units in output layer and rounding to the
nearest integer)
» Training and validation
» Minimization of neg. likelihood function / sum of absolute errors

» Mini-batch stochastic gradient descent and learning rate adaptation by the
adaptive moment estimation (Adam) method

» Regularization: early stopping
» Random search for hyper parameter selection

» Mean Absolute Error (MAE) over slots and containers
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.
TACTICAL: MULTILAYER PERCEPTRON

» Average performance of the MLP model is very good

» MAE of only 2.1 containers/slots for classes A, B and C (up to
100 platforms and 300 containers) with very small standard
deviation (0.01)

» MLP results are considerably better than benchmarks

» The marginal value of using 100 times more observations is fairly
small: modest increase in MAE from 0.985 to 1.304 on class A
iInstances)

» Prediction times are negligible, milliseconds or less and with very
little variation
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.
TACTICAL: MULTILAYER PERCEPTRON

» The models trained and validated on simpler instances (A, B and
C) generalize well to harder instances (D)

» MAE of 2.85 (training on class A)

» MAE of 0.32 (training on classes A, B and C)

» Still, significant variability across models with different hyper
parameters when only trained on class A (MAE varies between
0.74 and 9.05)

» Numerical analysis of feasibility: there exists a feasible
operational solution for a given predicted tactical solution in 96.6%
of the instances (the share is much lower for the benchmarks)
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.
TACTICAL: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA)
of the two stage stochastic program?

» Class A instances

» The average absolute error of the SAA solution is similar to
that of the ML algorithm: 0.82 compared to 0.985

» The computing times for SAA vary between 1 second to 4
minutes with an average of 1 minute
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Novel combinations of machine
learning and operations research
methodologies have potential to
solve hard decision-making
problems under imperfect
information.

We presented such a methodology
that allows to predict solutions to a
decision-making problem in very
short computing time.

A lot of research left to be done and
numerous applications to explore.



Thank you!

andrea.lodi@polymtl.ca



