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In brief: 

Combine machine learning and discrete 
optimization to solve a problem that we 
could not solve with any existing 
methodology. 

Challenges: 

Very restricted computing time budget. 
Imperfect information.
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2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are
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y∈Y(x)

C(x, y)
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Containers have different 
characteristics, for example: 

Size 

Weight 

The loading (operational problem) of 
the containers onto railcars crucially 
depends on weight 

Weight is unknown at the tactical 
level
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We know how to solve the deterministic problem - let’s 
use that! 

Generate a lot of data and pretend that we have 
perfect information - solve the discrete optimization 
problem with an existing solver 

Let machine learning take care of the uncertain part: 
hide the information that is not available at prediction 
time - find best possible prediction of ȳ*

State-of-the-art ML model Parameters

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4



intermodal.iro.umontreal.ca | Page  

    

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

Optimal solution to deterministic problem for given 
Optimal prediction conditional on      , expectation over distribution of 
Two-stage stochastic programming formulation

11

xa xu

x = [xa, xu]

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &
 

pe
rf

or
m

an
ce

Machine learning

training, validation, test data



intermodal.iro.umontreal.ca | Page  

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

12

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are
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a , ȳ*(i) ) i = 1,…, m

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

( x(i) , y*(i) ) i = 1,…, m

13

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are
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2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:
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where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are
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of discrete optimization problems, constraints are imposed 
by changing the NMT model architecture 

Nair et al. (2017) propose a reinforcement learning algorithm 
combined with ILP solver for a two-stage binary stochastic 
program (unconstrained binary decisions)

16
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DATA GENERATION

Random sampling of container/railcar types and container weights

17

Class Description # of containers # of platforms

A Simple ILP [1,150] [1,50]

B More containers than A 
(excess demand) [151,300] [1,50]

C More platforms than A 
(excess supply) [1,150] [51,100]

D Larger and harder [151,300] [51,100]
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INPUT-OUTPUT

18

40 ft

40 ft

53 ft

40 ft

53 ft

Input: problem instance 
2 container types: 40 and 53 ft 
10 railcar types: 10 most numerous in 
the North American fleet

Output: tactical solution

MULTILAYER PERCEPTRON / 
FEED-FORWARD NETWORK
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TACTICAL: MULTILAYER PERCEPTRON

19

Input 
Fixed-size vector

Output 
Fixed-size vector

Nb of available 
containers of each type

Nb of of available 
railcars of each type

Nb of containers of each 
type in the solution

Nb of railcars of each 
type in the solution

ȳ*xa



intermodal.iro.umontreal.ca | Page  

Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear 
units (ReLU) per layer (hyper parameters) 

Classification / Regression (linear units in output layer and rounding to the 
nearest integer) 

Training and validation 
Minimization of neg. likelihood function / sum of absolute errors 
Mini-batch stochastic gradient descent and learning rate adaptation by the 
adaptive moment estimation (Adam) method 
Regularization: early stopping 
Random search for hyper parameter selection  

Mean Absolute Error (MAE) over slots and containers

20

TACTICAL: MULTILAYER PERCEPTRON
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Average performance of the MLP model is very good 
MAE of only 2.1 containers/slots for classes A, B and C (up to 
100 platforms and 300 containers) with very small standard 
deviation (0.01) 

MLP results are considerably better than benchmarks 

The marginal value of using 100 times more observations is fairly 
small: modest increase in MAE from 0.985 to 1.304 on class A 
instances) 

Prediction times are negligible, milliseconds or less and with very 
little variation

21
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The models trained and validated on simpler instances (A, B and 
C) generalize well to harder instances (D) 

MAE of 2.85 (training on class A) 
MAE of 0.32  (training on classes A, B and C) 
Still, significant variability across models with different hyper 
parameters when only trained on class A (MAE varies between 
0.74 and 9.05) 

Numerical analysis of feasibility: there exists a feasible 
operational solution for a given predicted tactical solution in 96.6% 
of the instances (the share is much lower for the benchmarks)

22
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Class A instances 

The average absolute error of the SAA solution is similar to 
that of the ML algorithm: 0.82 compared to 0.985 

The computing times for SAA vary between 1 second to 4 
minutes with an average of 1 minute

23

TACTICAL: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA) 
of the two stage stochastic program?



Conclusion and perspectives

Novel combinations of machine 
learning and operations research 
methodologies have potential to 
solve hard decision-making 
problems under imperfect 
information. 

We presented such a methodology 
that allows to predict solutions to a 
decision-making problem in very 
short computing time. 

A lot of research left to be done and 
numerous applications to explore. 



Thank you! 
andrea.lodi@polymtl.ca
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