
E. Larsen, S. Lachapelle, Y. Bengio,
E. Frejinger, S. Lacoste-Julien, A. Lodi

Predicting tactical solutions to
operational planning problems
under imperfect information

ArXiv:1807.11876v3

45th Conference on the Mathematics of Operations Research
Lunteren, The Netherlands, January 14, 2020

In brief:

Combine machine learning and discrete
optimization to solve a problem that we
could not solve with any existing
methodology.

Challenges:

Very restricted computing time budget.
Imperfect information.

intermodal.iro.umontreal.ca | Page 3

CONTEXT
LE

VE
L

O
F

D
ET

A
IL

 O
F

SO
LU

TI
O

N Fully detailed solution -
implementable

Description of solution -
level of detail that is relevant

to the tactical decision
problem

Value of the
solution

Medium term
« tactical »

Short term
« operational »

Long term
« strategic »

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca | Page 4

CONTEXT
C

O
M

PU
TI

N
G

 T
IM

E
B

U
D

G
ET

Reasonable computing time -
within the time budget for the

operational problem

Much shorter than the
time it takes to solve the

full problem under perfect
information

seconds to
minutes

milli-
seconds

Medium term
« tactical »

Short term
« operational »

Operational problem of interest:
Compute solution under

perfect information

Compute description of solution
to operational problem under

imperfect information

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca | Page 5

CONTEXT

Solve deterministic
optimization problem

mathematical programming

High-precision solution

Reasonable computing time

Operational problem of interest:
Compute solution under

perfect information

Machine learning
predict the tactical solution

descriptions

High-level solution

Very short computing time
Stochastic programming

Compute description of solution
to operational problem under

imperfect information

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

intermodal.iro.umontreal.ca | Page

SOME NOTATION

Solution

Problem instance x = [xa, xu]xa

ȳ* = g(y*(x))

Perfect

information

Imperfect

information

Deterministic

problem

Tactical solution
description

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

6

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

y*(x) = arg min
y∈Y(x)

C(x, y)

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

Short term
« operational »

Medium term
« tactical »

Load planning for
double-stack trains

Capacity management,
e.g., bookings

Request Railcar

supply

Accepted

bookings

Accept / reject

Planning horizon and increasing level of information

7

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

8

x = [xa, xu]

Pr
ob

le
m

in

st
an

ce

y*(x) = arg min
y∈Y(x)

C(x, y)

O
pe

ra
tio

na
l

so
lu

tio
n

ȳ* = g(y*(x))

Ta
ct

ic
al

so

lu
tio

n

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

9

Containers have different
characteristics, for example:

Size

Weight

The loading (operational problem) of
the containers onto railcars crucially
depends on weight

Weight is unknown at the tactical
level

intermodal.iro.umontreal.ca | Page

IDEA IN BRIEF

10

We know how to solve the deterministic problem - let’s
use that!

Generate a lot of data and pretend that we have
perfect information - solve the discrete optimization
problem with an existing solver

Let machine learning take care of the uncertain part:
hide the information that is not available at prediction
time - find best possible prediction of ȳ*

State-of-the-art ML model Parameters

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

Optimal solution to deterministic problem for given
Optimal prediction conditional on , expectation over distribution of
Two-stage stochastic programming formulation

11

xa xu

x = [xa, xu]

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

12

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

intermodal.iro.umontreal.ca | Page

METHODOLOGY

(x(i)
a , ȳ*(i)) i = 1,…, m

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

(x(i) , y*(i)) i = 1,…, m

13

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

intermodal.iro.umontreal.ca | Page

METHODOLOGY

(x̃(i)
a , ȳ*(i)) i = 1,…, m

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

(x(i) , y*(i)) i = 1,…, m

Machine learning

training, validation, test data

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Assess predictive performance, e.g.Train and validate model

14

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

MAEtest =
1
n

n

∑
i=1

f(x(i)
a ; ̂θ) − ȳ*(i)̂θ = arg min

θ

1
m′

m′

∑
i=1

L (f(xa; θ), ȳ*(i))

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Data
Historically observed instances and their solutions

Purpose: « mimic » behaviour in such data
Our approach: generate data by sampling problem instances and computing
the corresponding solutions using existing optimization model and solver

Purpose: generalization over the domain of

The input structure is governed by the information available at prediction time

The output structure is governed by the choice of solution description and can
be of fixed or variable size

Model architecture depends on input and output structures and on constraints
linking the two

15

x

intermodal.iro.umontreal.ca | Page

RELATED LITERATURE

Closest to our work are those based on supervised learning
but they focus on deterministic problems

Fischetti and Fraccaro (2017) predict optimal objective
function value
Vinyals et al. (2015) define pointer networks to solve a class
of discrete optimization problems, constraints are imposed
by changing the NMT model architecture

Nair et al. (2017) propose a reinforcement learning algorithm
combined with ILP solver for a two-stage binary stochastic
program (unconstrained binary decisions)

16

intermodal.iro.umontreal.ca | Page

DATA GENERATION

Random sampling of container/railcar types and container weights

17

Class Description # of containers # of platforms

A Simple ILP [1,150] [1,50]

B More containers than A
(excess demand) [151,300] [1,50]

C More platforms than A
(excess supply) [1,150] [51,100]

D Larger and harder [151,300] [51,100]

intermodal.iro.umontreal.ca | Page

INPUT-OUTPUT

18

40 ft

40 ft

53 ft

40 ft

53 ft

Input: problem instance
2 container types: 40 and 53 ft
10 railcar types: 10 most numerous in
the North American fleet

Output: tactical solution

MULTILAYER PERCEPTRON /
FEED-FORWARD NETWORK

intermodal.iro.umontreal.ca | Page

TACTICAL: MULTILAYER PERCEPTRON

19

Input
Fixed-size vector

Output
Fixed-size vector

Nb of available
containers of each type

Nb of of available
railcars of each type

Nb of containers of each
type in the solution

Nb of railcars of each
type in the solution

ȳ*xa

intermodal.iro.umontreal.ca | Page

Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear
units (ReLU) per layer (hyper parameters)

Classification / Regression (linear units in output layer and rounding to the
nearest integer)

Training and validation
Minimization of neg. likelihood function / sum of absolute errors
Mini-batch stochastic gradient descent and learning rate adaptation by the
adaptive moment estimation (Adam) method
Regularization: early stopping
Random search for hyper parameter selection

Mean Absolute Error (MAE) over slots and containers

20

TACTICAL: MULTILAYER PERCEPTRON

intermodal.iro.umontreal.ca | Page

Average performance of the MLP model is very good
MAE of only 2.1 containers/slots for classes A, B and C (up to
100 platforms and 300 containers) with very small standard
deviation (0.01)

MLP results are considerably better than benchmarks

The marginal value of using 100 times more observations is fairly
small: modest increase in MAE from 0.985 to 1.304 on class A
instances)

Prediction times are negligible, milliseconds or less and with very
little variation

21

TACTICAL: MULTILAYER PERCEPTRON

intermodal.iro.umontreal.ca | Page

The models trained and validated on simpler instances (A, B and
C) generalize well to harder instances (D)

MAE of 2.85 (training on class A)
MAE of 0.32 (training on classes A, B and C)
Still, significant variability across models with different hyper
parameters when only trained on class A (MAE varies between
0.74 and 9.05)

Numerical analysis of feasibility: there exists a feasible
operational solution for a given predicted tactical solution in 96.6%
of the instances (the share is much lower for the benchmarks)

22

TACTICAL: MULTILAYER PERCEPTRON

intermodal.iro.umontreal.ca | Page

Class A instances

The average absolute error of the SAA solution is similar to
that of the ML algorithm: 0.82 compared to 0.985

The computing times for SAA vary between 1 second to 4
minutes with an average of 1 minute

23

TACTICAL: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA)
of the two stage stochastic program?

Conclusion and perspectives

Novel combinations of machine
learning and operations research
methodologies have potential to
solve hard decision-making
problems under imperfect
information.

We presented such a methodology
that allows to predict solutions to a
decision-making problem in very
short computing time.

A lot of research left to be done and
numerous applications to explore.

Thank you!
andrea.lodi@polymtl.ca

25

