
1

Optimisation strategies for machine learning -
harnessing inexactness

Tristan van Leeuwen

2

3

Outline

I From Learning to Optimisation
I A Prototype algorithm
I Harnessing inexactness
I Wrap-up

4

From Learning to Optimisation

5

Supervised learning

We are given
I samples x(i) ∈ Rn,
I labels y (i) ∈ R

for i = 1, . . . ,m.

The goal is to construct a function

f (x(i)) ≈ y (i)

I Today, we focus on constructing f through optimisation.

5

Supervised learning

We are given
I samples x(i) ∈ Rn,
I labels y (i) ∈ R

for i = 1, . . . ,m.

The goal is to construct a function

f (x(i)) ≈ y (i)

I Today, we focus on constructing f through optimisation.

5

Supervised learning

We are given
I samples x(i) ∈ Rn,
I labels y (i) ∈ R

for i = 1, . . . ,m.

The goal is to construct a function

f (x(i)) ≈ y (i)

I Today, we focus on constructing f through optimisation.

6

Fit a line through a set of points

7

Fit a line through a set of points

8

Find out which papayas are yummy

9

Find out which papayas are yummy

10

Machine learning

Typical machine learning workflow consists of
I preprocessing of data
I training model on training data
I testing and tuning model on a test data set
I validating the final tuned model on a validation data set

11

The supervised learning zoo

I Regression
I Neural networks
I Support Vector Machines
I Decision Trees
I . . .

12

Example: linear regression

f (x) = b + aT x,

where w = (b, a) ∈ Rn+1 is determined by solving

min
w

m∑
i=1

(
f
(
x(i)
)
− y (i)

)2
.

13

Example: binary classification

f (x) = σ
(
b + aT x

)
,

where σ(·) is the activation function (e.g., σ(y) = sign(y)) and
w is determined by

min
w

m∑
i=1

(
1− y (i)f

(
x(i)
))2

.

14

Example: Neural Network

f (x) = fk ◦ fk−1 ◦ . . . ◦ f1(x),

with

fi(x) = σ (Aix + bi) .

I The network architecture is determined by the size and
structure of the matrices Ai

I The weights Ai and bi are determined by training:

min
w

m∑
i=1

`
(
f
(
x(i)
)
, y (i)

)
.

15

Example: Support vector machines

f (x) =
m∑

i=1
wik(x, x(i)),

and the weights are determined by solving

min
w
`
(
f
(
x(i)
)
, y (i)

)
+ wT Kw,

with kij = k(x(i), x(j))

16

Optimisation

Most supervised learning methods lead to a structured
optimisation problem:

min
w

m∑
i=1

`
(
f
(
x(i)
)
, y (i)

)
+ r(w),

I w parametrizes the function
I ` measures the difference between prediction and label for
the i th sample

I r is a regularisation term

I Evaluation of the cost function may be computationally
expensive

I Computing the gradient exactly may be difficult

16

Optimisation

Most supervised learning methods lead to a structured
optimisation problem:

min
w

m∑
i=1

`
(
f
(
x(i)
)
, y (i)

)
+ r(w),

I w parametrizes the function
I ` measures the difference between prediction and label for
the i th sample

I r is a regularisation term
I Evaluation of the cost function may be computationally
expensive

I Computing the gradient exactly may be difficult

17

The loss function

18

The regulariser

19

Structure of the cost function

c(w) = 1
m

m∑
i=1

ci(w).

I smoothness and convexity of c are important properties
when designing optimisation algotithms.

We assume that c is
I Smooth (‖∇c(w)−∇c(w′)‖ ≤ L‖w−w′‖)
I Strongly convex (‖∇c(w)−∇c(w′)‖ ≥ µ‖w−w′‖)

19

Structure of the cost function

c(w) = 1
m

m∑
i=1

ci(w).

I smoothness and convexity of c are important properties
when designing optimisation algotithms.

We assume that c is
I Smooth (‖∇c(w)−∇c(w′)‖ ≤ L‖w−w′‖)
I Strongly convex (‖∇c(w)−∇c(w′)‖ ≥ µ‖w−w′‖)

20

Smooth, strongly convex functions

21

Practical aspects

I Many cost functions in ML are only locally convex
I We can make any convex function strongly convex by
adding β‖w‖2

I We can make any convex function smooth by computing
the Moreau envelope

22

A Prototype algorithm

23

Simplified setting

I Assume c is strongly convex and smooth:

µ‖w−w∗‖2 ≤ c(w)− c(w∗) ≤ L‖w−w∗‖2.

I Computational cost of evaluating c is linear in m
I Goal is to find a minimizer wk for which
|c(wk)− c(w∗)| ≤ ε.

What is the computational complexity in terms of m and ε ?

23

Simplified setting

I Assume c is strongly convex and smooth:

µ‖w−w∗‖2 ≤ c(w)− c(w∗) ≤ L‖w−w∗‖2.

I Computational cost of evaluating c is linear in m
I Goal is to find a minimizer wk for which
|c(wk)− c(w∗)| ≤ ε.

What is the computational complexity in terms of m and ε ?

24

Gradient descent

The basic iteration

wk+1 = wk − αk∇c (wk) ,

I requires m evaluations at each iteration
I converges to a minimum at a linear rate (O(ρk))

25

Convergence

In terms of the values we have

c(wk+1)− c(w∗) ≤
(
1− 2αkµ+ α2

kµL
)

(c(wk)− c(w∗)) .

I Convergence ensured when 0 < αk < 2/L.
I Convergence may be arbitrarily slow when c is
ill-conditioned (µ� L)

26

Computational complexity

I Assuming a linear rate of convergence we need O(log ε−1)
iterations

I The overall computational cost is linear in the sample size:
O(m · log ε−1)

27

Computational complexity

28

Practical aspects

I We don’t know L, µ; they need to be estimated
I Performance (constants) can be improved by adaptive
stepsize (linesearch)

I Convergence rate can be improved by using (Quasi)-Newton
methods

29

Faster convergence

30

Harnessing inexactness

31

Sample average approximation

Approximate the cost function

c(w) = 1
m

m∑
i=1

ci(w) ≈ 1
|I|

∑
i∈I

ci(w),

with I ⊆ {1, 2, . . . ,m}.

I Use same the approximation for the gradient

∇c(w) = 1
|I|

∑
i∈I
∇ci(w) + e

I Cost per iteration is proportional to m′ = |I|

31

Sample average approximation

Approximate the cost function

c(w) = 1
m

m∑
i=1

ci(w) ≈ 1
|I|

∑
i∈I

ci(w),

with I ⊆ {1, 2, . . . ,m}.
I Use same the approximation for the gradient

∇c(w) = 1
|I|

∑
i∈I
∇ci(w) + e

I Cost per iteration is proportional to m′ = |I|

32

Sampling schemes

An (arbitrary) deterministic approximation yields

I ‖e‖2 = O
((

m−m′
m

)2
)

Sampling uniformly at random with replacement yields an
unbiased approximation with

I E(‖e‖2) = O
(

1
m′
)
,

Sampling uniformly at random without replacement yields a
biased approximation with

I E(‖e‖2) = O
(

m−m′
mm′

)
.

32

Sampling schemes

An (arbitrary) deterministic approximation yields

I ‖e‖2 = O
((

m−m′
m

)2
)

Sampling uniformly at random with replacement yields an
unbiased approximation with

I E(‖e‖2) = O
(

1
m′
)
,

Sampling uniformly at random without replacement yields a
biased approximation with

I E(‖e‖2) = O
(

m−m′
mm′

)
.

32

Sampling schemes

An (arbitrary) deterministic approximation yields

I ‖e‖2 = O
((

m−m′
m

)2
)

Sampling uniformly at random with replacement yields an
unbiased approximation with

I E(‖e‖2) = O
(

1
m′
)
,

Sampling uniformly at random without replacement yields a
biased approximation with

I E(‖e‖2) = O
(

m−m′
mm′

)
.

33

Gradient descent with errors

Use a modified iteration instead

wk+1 = wk − αkgk ,

where

gk = ∇c (wk) + ek .

34

Convergence with errors

In terms of the values we have

c(wk+1)−c(w∗) ≤ ρk (c(wk)− c(w∗))+λk∇c (wk)T ek+α2
kL
2 ‖ek‖2,

with
I ρk = 1− 2αkµ+ α2

kµL
I λk = αk(αkL− 1)

Can we ensure convergence?

34

Convergence with errors

In terms of the values we have

c(wk+1)−c(w∗) ≤ ρk (c(wk)− c(w∗))+λk∇c (wk)T ek+α2
kL
2 ‖ek‖2,

with
I ρk = 1− 2αkµ+ α2

kµL
I λk = αk(αkL− 1)

Can we ensure convergence?

35

Convergence and complexity

I We can control the error by increasing the samplesize or
decreasing the stepsize

I We expect a tradeoff between accuracy, complexity and
speed of convergence

36

Convergence and complexity - deterministic

With fixed step size αk ≡ 1/L we have

c(wk+1)− c(w∗) ≤ ρ (c(wk)− c(w∗)) + 1
2L

(m −m′k
m

)2
.

I linear convergence with increasing samplesize
m −m′k = O(γk/2)

I overall complexity is not asymptotically better;
O(m · log ε−1)

36

Convergence and complexity - deterministic

With fixed step size αk ≡ 1/L we have

c(wk+1)− c(w∗) ≤ ρ (c(wk)− c(w∗)) + 1
2L

(m −m′k
m

)2
.

I linear convergence with increasing samplesize
m −m′k = O(γk/2)

I overall complexity is not asymptotically better;
O(m · log ε−1)

37

Convergence and complexity - stochastic

With fixed sample size m′k ≡ 1 we have

E (c(wk+1)− c(w∗)) ≤ ρkE (c(wk)− c(w∗)) + α2
kL
2 E‖ek‖2.

I sublinear convergence with diminishing stepsize
αk = O(1/k)

I overall complexity is O(ε−1) (independent of m)

38

Convergence and complexity - hybrid

With increasing sample size and fixed step size we have
I Linear convergence with increasing sample size

(m −m′k)/m′k = O(γk)
I Overall complexity is asymptotically better; O(m·log(ε−1)

1+ε·m)

39

Convergence - example

40

Complexity - example

41

Practical aspects

I How fast should we increase the sample size
I Adaptive step sizes
I Second order information

42

Wrap-up

43

Take home message

I Supervised learning give rise to structured optimisation
problems

I Inexactness is a powerful tool to speed up computations
I Careful analysis is needed to guarantee convergence
I Many practical issues remain to be resolved

44

Further reading

Friedlander, M. P., & Schmidt, M. (2012). Hybrid
Deterministic-Stochastic Methods for Data Fitting. SIAM
Journal on Scientific Computing, 34(3), A1380–A1405.
https://doi.org/10.1137/110830629

Curtis, F. E., & Nocedal, J. (2018). Optimization Methods for
Large-Scale Machine Learning. SIAM Review, 60(2), 223–311.
https://doi.org/10.1137/16M1080173

