

Advanced modelling techniques applied on a Revenue Management solution

Eline Werkman

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast

Price Elasticities

Price Optimization

Eline Werkman

Education

- MSc. Econometrics and Operations Research
- VU Amsterdam
- Graduated 2011

Professional

- Revenue Management Consultant
- ORTEC
- Since 2011

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

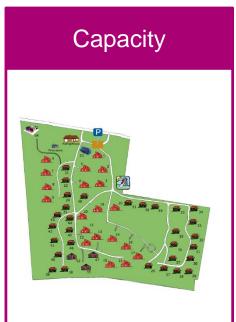
Demand Forecast

Price Elasticities

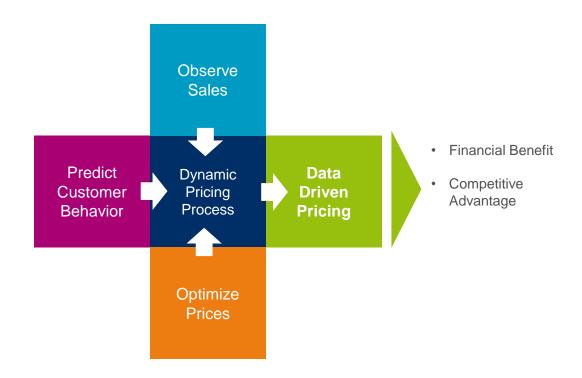
Price Optimization

The Idea behind Revenue Management

Characteristics pricing for Holiday Resorts


- A lot of holiday providers
- Customer used to using brochures (one price independent of time)
- Customer not entirely ready for continuous dynamic pricing
- Using legacy reservation systems (not ready for heavy price changes)
- Typically accommodations are owned by an investor (not necessarily the holiday provider)

Terminology



ORTEC's Vision on Dynamic Pricing

- In this age of Big Data most companies have a wealth of data on customer behavior available
- Use this data to predict future customer behavior
- Optimize prices to maximize profit using these predictions

Dynamic Pricing in holiday resort case

OBSERVE SALES

- PREDICT CUSTOMER BEHAVIOR

OPTIMIZE PRICES

- Bookings
- Availability

- Unconstrained demand forecast
- Price elasticity

Optimize prices per price point

PREDICTIONS

DECISIONS

Data engineering

Machine Learning

Operations Research

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast

Price Elasticities

Price Optimization

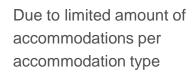
General Holiday Resorts RM Challenges

Different products

Products using same capacity

- A lot of resorts
- A lot of different accommodation types on each resort
- Resulting in a lot of price points

Constant capacity


 Accommodations are available entire year (even in low season)

- No resort is the same due to different facilities and geographical location
 - No accommodation type is alike

• N

 Multiple length of stay and arrival day of week options require the same capacity

Small number of observations

Seasonality

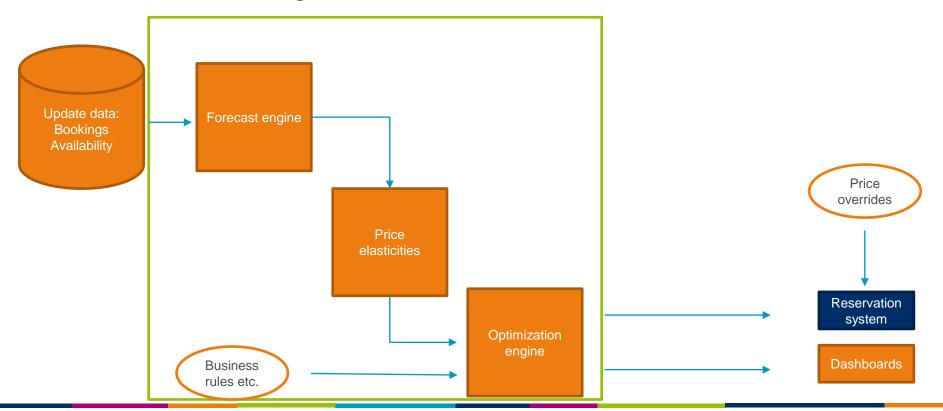
Huge impact of holiday periods on demand forecast

Introduction Topic


Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast


Price Elasticities

Price Optimization

The Revenue Management Process

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast

Price Elasticities

Price Optimization

Demand Forecast method

Additive Booking Curve Forecast

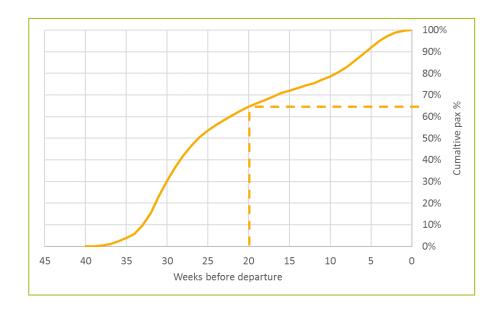
Forecast based on historical number of bookings

- + Forecast stable
- + Reliable forecast long before arrival
- Forecast does not pick up trends in current bookings

Multiplicative Booking Curve Forecast

Forecast based on current number of bookings

- + Forecast picks up trends in current bookings
- + Reliable forecast short before arrival
- Volatile forecast long before arrival, not reliable



Final Forecast

Demand forecast explained

- Based on historical data we expect 35% of the historical number of bookings is still to come
- Based on current data we assume this number of bookings represent 65% of the final forecast

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast

Price Elasticities

Price Optimization

Price Elasticities

What: Indicator for price sensitivity of customers

Why: Determine forecast using another price

How: Machine learning approach Split two years of historical data in:

- Training set
- 2. Test set

Minimize error while not overfitting

Price elasticity value depends on multiple characterists

Introduction Topic

Pricing challenges for Holiday Resorts

Revenue Management process

Demand Forecast

Price Elasticities

Price Optimization

Price Optimization

What: Find optimal price per price point taking into account:

- optimal ratio between offered products
- business rules

Why: Optimize turnover

How: LP-model using coin solver

Business rules applied:

- Individual prices (e.g. price overrides / rounding)
- Other revenues (e.g. on park spends)

Questions

eline.werkman@ortec.com

