Learning to
Solve OR
Problems

Max Welling

University of Amsterdam

Qualcomm Technologies

Qualcomwn

Joint work with Wouter Kool
PhD student AMLAB

(thanks to Wouter for slides)



Outline

* Motivation: man versus machine
* Intro Reinforcement learning
* Solving the TSP with RL

e Afterthoughts



What happened around 20107

| - -
‘] X Il
Image gradients Keypoint descriptor __:l:| o . I R
! 13 m [
Sift features = L
S— Input Conv Pool Conv Pool FC FC Softmax

Learned features
Gradient Vector

=] DE Nt

Ef”&*
EREDUGE
NSO UL

Input Image Eggggg HOG Features -

Cell Histogram

S

FeaEEN
a1

hand designed features = learned features

HOG features



ImageNet Competition

Introduction deep learning

30 28.2

25.8

25
20
15

10

16.4
11.7
7.3 6.7 .1
. “E

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Linetal Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedyetal Heetal Shao et al Huetal Russakovsky
Perronnin (AlexNet) Fergus  Zisserman (GoogleNet) (ResNet) (SENet) etal
(VGG)




What can we learn from this in OR?

* What are the equivalent of “hand-designed designed features” in OR?

* Can we replace those hand-designed components by learning them?



observation

17 /
# ¥ N R f
Vi {

Introduction Reinforcement Learning

Agent acts in the real world
Agents tries to maximize total future reward
Environment delivers back observations and reward signal

Tradeoff between information gathering (exploration) and
maximizing immediate reward (exploitation).



Bellman Equation

For a given policy, compute the value V(s) of each state: Discount factor <1 to discount future

V7(s) = D w(s,0) 3 Pl | RSy + V()

a

Reward received for transition s=s’ under action a.

Policy: probability of taking

oun

action “@” in state ”s”). Transition probability for moving to state ¢/,
given state s and action a.



Policy Improvement

Given optimal values for given policy, choose the policy that moves you to the state with highest value:

W(&‘S) — arg ma?;X ;Pgs’ [Rgs’ _l_’yvﬂ-(sl)}

\ }
f

Starting in state ’s’, average value of next state ‘s”
if you take action ‘@’

This process converges!



Intultion

maze values / policy



Modern “Deep RL” a lot more sophisticated

O Agent LSTM

(a) Base A3C Agent

C Aux FC net

Replay Buffer

.....
_____
.t

(From Jaderberg et al, 2016)

* Input sequence gets analyzed by CNN

» Data (experiences) are stored in a replay buffer
* Both value and policy are predicted by NN

» State transitions modeled by LSTM

* Future rewards are recorded as targets for V

e Policy is trained with policy-gradient



Pancake Flipping Demonstration

Reinforcement Leaming = _~Using motion capture
First trial... to evaluate the rollouts

Petar Kormushey, Silvain Calinon, Sarwin Caldwell, Italian Institute of Technology

11



AlphaGO: Man against Machine 1-4

The current best reinforcement learning system

ALPHAGO o000 o
10 - BN (- LEE SEDOL
Ll @@ (. 00:01:00

AlphaGo

Google DeepMind

AlphaZero only played against itself and became better than the best human overnight



Traveling Scientist Problem

Kool et al, ICLR 2019

(xliyl) (x2!y2)

(x3,¥3)

(x4,Ya)

(x3,y3)

7
GORNER T

(x3,¥3)

(x1,¥1)

(x4,y4)

(x2,¥2)

Learn Policy, 7T(CL

by generating lots of example trajectories

s) = P(next node is i|previous nodes)




Confusion alert: in these slides 7T is not the policy but the tour and ’s’ is the instance TSP

Model

* Instance s = ((x1,¥1), (x2,¥2), (x3,¥3), (X4, Y4))
«  Solution = (mrq, m,, ...) €.9. (3,1,4,2)
* Model p(m|s) = p(my, Ty, ... |S)

Factorize!

Ly (1 |s)p(myls, mp)p(msls, my, m3) ...

- ]‘[}?zl\p(nj‘s,nj,:j' <j)}
f

po(mi|s, m<;)F pe(next node | partial tour)




Randomized algorithm

© Sample my~pg(my|s)

© Sample my~pg(m;ls, )

’ Samp e 7-[3""’p0 (7T3 S, 4, 7T2)
 Etc...

» With tour length L(7r) expected cost of solution:

Ep

[L (Tl')] ..— How to optimize 67

g (7|s) ‘ .
Cannot ‘backprop through expectation’!



REINFORCE

[ Do something ] Sample T ~ py (- |s)
A Reference
Resicrust !
[ Result = ? ] L(n') — 7.43
\
dl

W \%‘ We need a baseline

[ ] [ ] to compare against
Do more often! Do less often

Increase pg(TT|S) H Decrease pg (TT|s) l



The Rollout Baseline
\

N -
/@\ Use (rollout) the model but greedy instead of sampling!
LDtA
Sample T ~ pg(- |s)

Rollout 2" ~ pui(- |s) (greedyy)

L(m) < L(Ttbl) Good! Adjust py (7t|s)
proportional to

L(rr) > L(m®) Bad! L(m) — L(a™)



Learning Algorithm (roughly)

Init 9,0%" < @
For ever(y epoch):
For iteration:
Sample s
Sample ™ ~ pg(: |s)
Rollout 2" ~ pgui(- |s) (greedy!)

Update @ « 8 —n Viogpg(m|s) (L(m) — L(n™))

* bl
If 9 better than 9 * Paired t-test on solution of 10 000
U pd ate Bb l — 9 instances with greedy rollout



How do we represent the policy?

* We want to use the power of deep learning to embed the nodes (e.g. learn features).

* But, the embedding can not depend on the order of the input sequence.

« Different number of neighbors

* No natural orientation/order of neighbors



Graph Convolutions (ipf & W. 2017

Use attention to compute weights



Input as (fully connected) graph




We encode the input nodes using a graph CNN

/Encoder

O Node input

O Node embedding

O Graph embedding

¢ Message
+ Projection

+ Skip connection

; Attention query

¢ ¢
\ \\ \\ /

, Node embeddings
Graph embedding ’ Decoder context:

(graph, first node, last node)



We decode the sequence iteratively

O Node embedding

Decoder context:

(graph, first node, last node)

@

O Graph embedding Concatenation

h(N 1)

S

/ h(N)¢ ‘_'t

b O@@

%

h‘N’ h(N) h‘N’ h‘ﬂ:

v ol el it
q“" Decoder t = | J

Context node embedding

Learned input symbol

Output probability

,L Message

‘;. Attention query

© Compatibility

. Identity / reference

.............................................................................................

\Q(c)_’//'/ -

Decodert = 4

4
o




Experiments

Travelling Salesman Orienteering (Stochastic) Prize  Vehicle Routing
Problem (TSP) Problem (OP) Collecting TSP Problem (VRP)
7—a y Ry (OPCTSP) N

\ \ ([Z[IFFEE= cuc[]FEN; d
_—_’_’_E}_[]RNER / i (]
.*l\.“ F 5 a3
Q’: / \/ Enq:.” : E’E‘E‘?: @ 10
Minimize length Maximize total prize Minimize length + Minimize length
Visit all nodes Max length constraint penalties of unvisited nodes Visit all nodes

Collect minimum total prize

Train for each problem, same hyperparameters!

Total route demand must
fit vehicle capacity



Experimental setup

* Implementation in PYTHRCH
* Use Adam optimizer, gradient clipping

 Train forn = 20,50,100

* Train 100 epochs of 2500%x512 =1 280 000 instances
Takes 8 hours, 1 day (1GPU) and 2 days (2GPUs) respectively

« Testforvariousn=35,..,125
» Test using greedy decoding or sampling (best of 1280)
 Compare against other approaches and heuristics



14.0%

Optimality Gap

12.0%

10.0%

-

:

4.0%

2.0%

-—eo— RL PN, Greedy" (Bello et al.)
—e— SL PN, Beam Search** (Vinyals et
= ~—e— S2V DQN*** (Dai et al.)
~a— GNN, Beam Search*™** (Nowak et {
weae= TSP20, Greedy
e TSP50, Greedy
o wepe= TSP100, Greedy

:
A

From 1.52% to 0.33%

Problem Size

100 120

Sampling 1280 solutions

Random Insertion
Farthest Insertion
Nearest Insertion
Nearest Neighbor
Christofides*

TSP20/50/100, Sampling

OR Tools Local Search*
Christofides + 20PT**

RL PN, Sampling* (Bello et al.)




Validation Optimality Gap

4. 0%y

5

g

s

1.00%

0.504

L] T LN " l!."i-
[ L L "" w¥ & "" :' R
ANV SO e PM / Exponential
L ."Hu.F L] L l‘ ..* .y
. ‘._*.-"1 o x ===== PN/ Critic
T T, . --==- PN/ Rollout
. * .‘t.:h it "'.‘. .l{ .'Ip"'..I e :
'“ "». "--:',"‘.‘.[*'-*‘t S e A T T L T T = AM / Exponential
- r ‘.*‘i-f" ! I'L ‘1- u = | . R .
bl ‘~ AT e e — AN Critic ]
Ya - # 'Id'---q-'f‘*-" J-‘."'I '-"""r — —
\1.1: ‘ e ¥ *--" = -‘l“- :l‘-i“:.f i .-li'h-; ] ) ‘1,."_'..*'_‘..'- AM-{HG”GUI
. Yaa *t Vo v -"-"-.'_r':- r am L 2 o
f *-"'.. - - (s .."“1.l:pﬁ‘_'.'__:-‘l:_';-.'-'h*“'q-.‘ Y L.
v, l||| e - '."'l-"-‘-*q,iq.. ) -'-.-k-‘.:“:'-'."-l‘-*-‘t‘hwh\“\
t"‘*- -‘*"'gia- --.-“"'-"i-i--- -
Y -f.-‘h- L - --.--‘--"'"'“'"h--"""'""'!---ll---u..
" F’-.‘r ) - i'-l--h-*--h---- .
f"i * B i T R
Q LY,
A )
e
- he e —_

0.0

20

40

Epochs

60

80



Lots of problems can be tackled
with this model!

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

n =20 n = 50 n =100

Method Obj. Gap Time | Obj. Gap Time | Obj. Gap Time

Concorde 384 0.00% (Im)| 570 0.00% (@m)| 7.76 0.00% (3m)

3.84 0.00% (18s)| 570 0.00% (5Sm)| 7.76  0.00% (21m)

Gurobi 3.84 0.00% (7s)| 5.70 0.00% (2m)| 7.76 0.00% (17m)

Gurobi (1s) 384 0.00% (8s)| 570 000% (2m) -

Nearest Insertion | 4.33 12.91% (1s)| 6.78 19.03% (2s)| 9.46 21.82%  (6s)

Random Insertion | 4.00 4.36%  (0s)| 6.13 7.65% (ls)| 8.52 9.69%  (3s)

Farthest Insertion | 3.93 2.36% (I1s)| 6.01 5.53% (2s)| 835 7.59% (7s)

Nearest Neighbor | 4.50 17.23%  (0s)| 7.00 22.94% (0s)| 9.68 24.73%  (0s)
% Vinyalsetal. (gr) | 3.88 1.15% 7.66 34.48% -
= Bello et al. (gr.) 3.89 1.42% 595  4.46% 8.30  6.90%

Dai et al. 3.89 1.42% 599 5.16% 8.31 7.03%

Nowak et al. 3.93 2.46% - -

EAN (greedy) 386 0.66% (m)| 592 3.98% (m)| 842 8.41% (8m)

AM (greedy) 3.85 0.34% (0s)| 5.80 1.76% (25| 8.12 4.53%  (65)

OR Tools 3.85 0.37% 5.80 1.83% 799  2.90%

Chr.f. + 20PT 3.85 0.37% 5.79 1.65% -

Bello et al. (s.) - 575  0.95% 8.00  3.03%

EAN (gr. +20PT) | 3.85 0.42% (4m)| 585 2.77% (26m)| 817 521% (3h)

EAN (sampling) | 3.84 0.11% (5m)| 577 1.28% (17m)| 875 12.70% (S6m)

EAN(s. +20PT) | 3.84 0.09% (6m)| 575 1.00% (32m)| 812 4.64% (5h)

AM (sampling) ~ |3.84 0.08% (Sm)| 5.73 0.52% (24m)| 7.94 2.26% (lh)

Gurobi 6.10 0.00% ‘ - ‘ -

LKH3 6.14 0.58% (2h)| 10.38  0.00% (7h)| 15.65 0.00% (13h)
& RL (greedy) 6.59 8.03% ‘ 1139  9.78% | 17.23  10.12%

Z AM (greedy) 6.40 4.97% (1s)|10.98 5.86% (35)|16.80 7.34%  (8s)

© "RL (beam 10) 6.40 4.92% 1115 7.46% 16.96  8.39%

Random CW 6.81 11.64% 12.25 18.07% 18.96 21.18%

Random Sweep 7.08 16.07% 12.96 24.91% 20.33  29.93%

OR Tools 6.43 5.41% 11.31 9.01% 17.16  9.67%

AM (sampling) | 6.25 2.49% (6m)|10.62 2.40% (28m)|16.23 3.72% (2h)
& RL (greedy) 6.51 4.19% ‘ 11.32  6.88% 1712 5.23%
£ AM (greedy) 6.39 234% (l1s)|10.92 3.08% (45)|16.83 3.42% (lls)
2 RL (beam 10) 6.34  1.47% 11.08  4.61% 16.86  3.63%

AM (sampling)  |6.25 0.00% (9m)|10.59 0.00% (42m)|16.27 0.00% (3h)

Gurobi 5.39 0.00% (16m) - -

Gurobi (1s) 4.62 14.22% (4m)| 1.29 92.03% (6m)| 0.58 98.25% (7m)
< Gurobi (10s) 5.37 0.33% (12m)| 10.96 32.20% (51m)| 1.34 95.97% (53m)
2 Gurobi (30s) 5.38 0.05% (14m)| 13.57 16.09% (2h)| 3.23 90.28% (3h)
£ Compass 537 0.36% (2m)| 16.17 0.00% (5m)| 33.19  0.00% (15m)
S "Tsili (greedy) 408 24.25% (4s)| 1246 22.94% (4s)| 25.69 22.59%  (55)
&AM (greedy) 519 3.64% (0s)|15.64 3.23% (ls)|31.62 4.75% (55

GA (Python) 5.12 4.88% (10m)| 10.90 32.59% (lh)| 14.91 55.08%  (5h)

OR Tools (10s) | 4.09 24.05% (52m) ; -

Tsili (sampling) | 5.30 1.62% (28s)| 1550 4.14% (m)| 30.52 8.05% (6m)

AM (sampling)  |5.30 1.56% (4m)|16.07 0.60% (16m) 32.68 1.55% (53m)

Gurobi 3.13 0.00% (2m) - -

Gurobi (1s) 3.14 0.07% (Im) - -

Gurobi (10s) 313 0.00% (m)| 4.54 1.36% (32m) -

& Gurobi (30s) 313 0.00% (2m)| 4.48 0.03% (54m) ;

[‘;’_ AM (greedy)  |3.18 1.62% (0s)| 4.60 2.66% (25)| 6.25 4.46% (55
ILS (C++) 316 0.77% (16m)| 450 0.36% (2h)| 5.98 0.00% (12h)
ORTools (10s) | 3.14 0.05% (52m)| 451 0.70% (52m)| 6.35 6.21% (52m)
OR Tools (60s) |3.13 0.01% (5h)| 4.48 0.00% (5h)| 6.07 1.56% (Sh)
ILS (Python 10x) | 5.21 66.19% (4m)| 12.51 179.05% (3m)| 23.98 300.95% (3m)
AM (sampling) | 315 0.45% (5m)| 452 0.74% (19m)| 6.08 1.67% (b

% REOPT (all) 3.34 2.38% (17m)| 4.68 1.04% (2h)| 6.22 1.10% (12h)

E REOPT (half) 3.31 1.38% (25m)| 4.64 0.00% (3h)| 6.16 0.00% (16h)

& REOPT (first) 3.31 1.60% (lh)| 4.66 0.44% (22h) -

© AM (greedy) 3.26 0.00% (0s)| 4.65 033% (2s)| 6.32 2.69%  (5s)




Results Attention Model + Rollout Baseline

* Improves over classical heuristics!

* Improves over prior learned heuristics!
» Attention Model improves
* Rollout helps significantly

* Gets close to single-purpose SOTA (20 to 100 nodes)!
TSP 0.34% to 4.53% (greedy)
TSP 0.08% to 2.26% (best of 1280 samples)



Afterthoughts

Intellectual Level/Power

THE
SINGULARITY

)

Trans-
Humans?

Human Intellect

Machine
" 4 Intelligence
Time / S
i
Rise in human intellect could be driven by integrating with machines i/lhr:? future

Learn to solve OR problems by simulating
lots of examples and finding patterns.

Right now not competitive with hand designed
solvers for large problems.

However, we can quickly generate new
solutions for new problems in the same family.

Perhaps hybrid methods will do better than either in isolation?

We are here for OR

In the long run, will ML overtake human designed methods (similar to computer vision)?



