A Fluid Limit for an Overloaded Multi-class Many-server Queue with General Reneging Distribution

Amy R. Ward The University of Chicago Booth School of Business

*Based on current work with Amber Puha.

A Service System Model: The Multiclass Many Server Queue

Call Centers: Garnett, Mandelbaum, Reiman (2002) Hospital Emergency Department: Green, Soares, Giglio, and Green (2006)

A Service System Model: The Multiclass Many Server Queue

Q: Which class should the available server next serve?

Why is Scheduling Important?

Poisson arrivals, 60 per hour for both classes; 100 Servers; Exponential(1) service times; Exponential(1) patience times.

Specialize to the M/M/N+M Queue

Atar, Giat, Shimkin (2010) The $\tilde{c}_j \mu_j / \theta_j$ rule asymptotically minimizes long-run average cost in the overloaded regime $(\tilde{c}_j = c_j + \theta_j a_j)$.

The Need for Non-Static Priority Scheduling Rules

- 1. Static priority scheduling is not in general optimal.
 - Kim, Randhawa, and Ward (2018) for numerical experiments with non-exponential patience time distribution
 - Down, Koole, Lewis (2011), Harrison and Zeevi (2004), Atar, Mandelbaum, and Reiman (2004) for exponential patience time distribution in non-overloaded systems
- 2. Static priority scheduling is unfair, which can prevent its adoption.
 - Wierman (2007) for discussion in the context of computer systems

Our Research Objective

(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with abandonment, without making any distributional assumptions.

1a. Provide a fluid model relevant for a very general class of scheduling rules.

- 1b. Analyze a policy class with full flexibility to partially serve classes ("as fair as desired").
- 2. Use fluid model invariant states to define an approximating scheduling control problem.

Some Related Works

- Single Class Fluid Model.
 - Whitt (2006) proposed a Fluid Model.
 - Reed (2009) and Kaspi and Ramanan (2011) proved convergence, without abandonment.
 - Kang and Ramanan (2010 and 2012) proved convergence, with abandonment.
 - Provided the framework for approaching the multiclass case.
- Multiclass Scheduling.
 - Atar, Kaspi and Shimkin (2014) analyzed static priority for multiclass G/G/N+G.
 - We extend to non-static priority.
- Very Recent
 - Mukherjee, Li, and Goldberg (2018)
 - Large deviations analysis in Halfin-Whitt regime $(M/H_2/N+M)$.

The Multiclass Many-Server Queue E_2^N E_1^N $G_{a,2}$ FIFO $G_{a,J}$, G_{a,1} FIFO **FIFO N** Servers $G_{s,J}$ $G_{s,1}$ $G_{s,2}$

An **admissible scheduling policy** cannot know the future, does not preempt service, and satisfies mild conditions to control entry-into-service oscillations.

At the moment of departure, the available server next serves class j with probability p_j (if possible), where $\sum_{j=1}^{J} p_j = 1$.

The ν Measure (for given Class j)

Each dot is a unit atom whose position represents the time elapsed since a customer began service, and shifts to the right at rate 1.

The η Measure (for given Class j)

Note: Independent of Scheduling Control.

Each dot is a unit atom whose position represents the time elapsed since a customer arrival, and shifts to the right at rate 1.

Theorem (Convergence)

We need to characterize (X, ν, η) .

The Fluid Model Solution Space and Auxiliary Functions

For $(X, \nu, \eta) \in \mathbf{S}$, define for all j and $t \ge 0$,

$$\begin{split} B_{j}(t) &:= \langle 1, \nu_{j}(t) \rangle, I_{j}(t) = 1 - \sum_{j=1}^{J} B_{j}(t) & (\text{Proportion of class j fluid in service}); \\ D_{j}(t) &:= \int_{0}^{t} \langle h_{s,j}, \nu_{j}(u) \rangle du & (\text{Cumulative departure process}); \\ Q_{j}(t) &:= X_{j}(t) - B_{j}(t) & (\text{Queue-length process}); \\ \chi_{j}(t) &:= \inf\{x \geq 0 : \langle 1_{[0,x]}, \eta_{j}(t) \rangle \geq Q_{j}(t)\} & (\text{Class } j \text{ head-of-line wait time process}); \\ R_{j}(t) &:= \int_{0}^{t} \langle 1_{[0,\chi_{j}(u)]} h_{a,j}, \eta_{j}(u) \rangle du & (\text{Cumulative abandonment process}); \\ K_{j}(t) &:= B_{j}(t) + D_{j}(t) - B_{j}(0) & (\text{Cumulative entry-into-service process}). \end{split}$$

A Fluid Model Solution (Not Unique)

Non-negative, continuous, and non-decreasing J-dimensional function having domain \Re_+ .

Let \check{E} be an arrival function. Then, $(X, \nu, \eta) \in \mathbf{S}$ is a fluid model solution for E if the following hold.

(1) For each j, K_j is non-decreasing and $\sum_{j=1}^{J} B_j(t) \in [0,1]$ for all $t \ge 0$. (No service rule specified.)

(2) For all j and $t \ge 0$, $X_j(t) = X_j(0) + E_j(t) - R_j(t) - D_j(t)$, and $0 \le Q_j(t) \le \int_0^{H'_j} \eta_j(dy)$.

(3) For all
$$j, f \in C_b([0, \infty))$$
, and $t \ge 0$,
 $\langle f, v_j(t) \rangle = \left\langle f(\cdot + t) \frac{\overline{G}_{s,j}(\cdot + t)}{\overline{G}_{s,j}(\cdot)}, v_j(0) \right\rangle + \int_0^t f(t - u) \overline{G}_{s,j}(t - u) dK_j(u)$
 $\langle f, \eta_j(t) \rangle = \left\langle f(\cdot + t) \frac{\overline{G}_{a,j}(\cdot + t)}{\overline{G}_{a,j}(\cdot)}, v_j(0) \right\rangle + \int_0^t f(t - u) \overline{G}_{a,j}(t - u) dE_j(u).$
Abandonment ccdf.

(As in Atar, Kaspi, and Shimkin 2014, with static priority equation eliminated.) 16/30

A WRBS Fluid Model Solution (Unique)

A specified WRBS fluid model solution also satisfies

$$p_{j} \int_{s}^{t} 1\{Q_{j}(u) > 0\} dD_{\Sigma}(u) \leq K_{j}(t) - K_{j}(s) \leq p_{j} \int_{s}^{t} dD_{\Sigma}(u), 1 \leq j < J$$

Entry into service process.

$$I(t) = \left[I(t) - Q_{j}(t)\right]^{+}.$$

Lemma: If E_j is absolutely continuous with density $\lambda_j(\cdot)$ for each j, then so are the coordinates of X and the auxiliary functions, and $K_j(t) = \int_0^t (\lambda_j(u) \wedge p_j \delta(u)) 1\{Q_j(u) = 0\} + p_j \delta(u) 1\{Q_j(u) > 0\} du$, where δ is the density of D_{Σ} .

Theorem (Non-Policy Specific Convergence)

Scaled arrival process.

Suppose $\lim_{N \to \infty} \frac{\frac{E^N}{N}}{N} = E$ almost surely, and $\lim_{N \to \infty} \mathbb{E}\left[\frac{E_j^N(t)}{N}\right] = \mathbb{E}[E_j(t)]$ for all $t \ge 0$.

Under mild initial conditions, a sequence of fluid-scaled state processes $(\alpha^N, X^N, \nu^N, \eta^N)/N$ is tight.

Suppose that (X, ν, η) is a distributional limit point of $\left\{ \left(\frac{X^N}{N}, \frac{\nu^N}{N}, \frac{\eta^N}{N} \right) \right\}$. Scaled system processes.

Then, under mild conditions*, (X, ν, η) is, almost surely, a fluid model solution for *E* with specified initial state.

• Conditions are similar to the single class case. Hazard rates of abandonment and service distributions are either bounded or lower semi-continuous, and E_j is continuous for all j (for example, $E_j(t) = \lambda_j t$).

Theorem (Weak Convergence)

Suppose
$$\lim_{N\to\infty} \frac{E^N}{N} = E$$
 almost surely, and $\lim_{N\to\infty} \mathbb{E}\left[\frac{E_j^N(t)}{N}\right] = \mathbb{E}[E_j(t)]$
for all $t \ge 0$.
Under the conditions of the previous theorem, and also assuming
the abandonment distributions have bounded hazard rate, **the**
sequence of fluid-scaled processes $\left\{\left(\frac{X^N}{N}, \frac{\nu^N}{N}, \frac{\eta^N}{N}\right)\right\}$ weakly
converges to the unique WRBS(*p***) fluid model solution**.

*Bounded hazard may seem strong, but consistent with what was assumed for SP.

Our Research Objective

(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with abandonment, without making any distributional assumptions.

1a. Provide a fluid model relevant for a
very general class of scheduling rules.

1b. Analyze a policy class with full flexibility — to partially serve classes ("as fair as desired").

2. Use fluid model invariant states to define an approximating scheduling control problem.

Fluid Model Invariant States

Assumptions.

- (Fluid arrival process) For some $\lambda \in (0, \infty)^J$, $E_j(t) = \lambda_j t$ for all j and $t \ge 0$.
- (Overloaded) For each j, $\rho_1 + \rho_2 + \dots + \rho_J > 1$ for $\rho_j = \frac{\lambda_j}{\mu_j}$.
- (Mean abandonment time) For each j, $\int_0^\infty \overline{G}_{a,j}(x) dx = \frac{1}{\theta_j}$. Definition (Feasible server effort allocation).

•
$$\boldsymbol{B} = \left\{ b \in \mathfrak{R}^{J}_{+} : b_{j} \leq \rho_{j}, \sum_{j=1}^{J} b_{j} \leq 1 \right\}$$

Theorem. For each $b \in B$, there exists an invariant state such that b_j is the proportion of server effort devoted to class j, and $Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j}\right)$ for all $t \ge 0$, where $f_j(x) = \underset{\uparrow}{G}_{a,e,j} \left(\left(\underset{\uparrow}{G}_{a,j} \right)^{-1}(x) \right)$. Abandonment stationary excess cdf. Abandonment cdf.

Intuition: If exponential abandonment distribution, then

$$\frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j} \right) = \frac{1}{\theta_j} \left(\lambda_j - b_j \mu_j \right) = q_j.$$

Flow balance implies $\lambda_j - b_j \mu_j = \theta_j q_j$.

21/30

Fluid Model Invariant States

Assumptions.

- (Fluid arrival process) For some $\lambda \in (0, \infty)^J$, $E_j(t) = \lambda_j t$ for all j and $t \ge 0$.
- (Overloaded) For each j, $\rho_1 + \rho_2 + \dots + \rho_J > 1$ for $\rho_j = \frac{\lambda_j}{\mu_j}$.
- (Mean abandonment time) For each j, $\int_0^\infty \overline{G}_{a,j}(x) dx = \frac{1}{\theta_j}$. Definition (Feasible server effort allocation).

•
$$\boldsymbol{B} = \left\{ b \in \mathfrak{R}^{J}_{+} : b_{j} \leq \rho_{j}, \sum_{j=1}^{J} b_{j} \leq 1 \right\}$$

Theorem. For each $b \in B$, there exists an invariant state such that b_j is the proportion of server effort devoted to class j, and $Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j}\right)$ for all $t \ge 0$, where $f_j(x) = \underset{\uparrow}{G_{a,e,j}} \left(\left(\underset{\uparrow}{G_{a,j}} \right)^{-1}(x) \right)$. Abandonment stationary excess cdf. Abandonment cdf.

Q1: For any given $b \in B$, how should I schedule so as to achieve b?

Q2: What is my approximating control problem?

The Fluid Control Problem

Solution Properties. When is static priority (asymptotically) optimal?

If there is no holding cost; that is, $c_j = 0$.

If the abandonment distribution has non-decreasing hazard rate (IFR), then

- f_i is concave, and m^* is achieved by a feasible vertex.
- I.E., the solution motivates a static priority policy. (Consistent with earlier, but don't know ordering).

If the abandonment distribution has non-increasing hazard rate (DFR), then

- f_i is convex, and m^* could be attained by a non-vertex feasible point.
- I.E., the solution motivates partially serving classes (not static priority). (We have numeric examples with non-vertex feasible point solution.)

Performance Measure Approximation Assume No Holding Costs and Static Priority Scheduling.

A two-class $M/LN(1,4)/100 + LN(1,v)^*$ queue, with each class having arrival rate 60 per hour.

Low Priority Queue Size

* LN is neither IFR or DFR.

Predicted Approximated

(High priority queue has predicted size 0, and simulated size about 1.5 for all values of the variability *v*.)

Q: Why does queue size decrease as variability increases?

What are the Predicted Abandonment Rates?

(Recall: Two-class M/LN(1,4)/100 + LN(1,v) queue, with each class having arrival rate 60 per hour.)

A: Even though the same number of jobs abandon, jobs that abandon do so sooner, reducing average queue-size and wait time.

The Fluid Control Problem

Solution Properties. When is static priority (asymptotically) optimal?

If there is no holding cost; that is, $c_j = 0$.

If the abandonment distribution has non-decreasing hazard rate (IFR), then

- f_{i} is concave, and m^* is achieved by a feasible vertex.
- I.E., the solution motivates a static priority policy.
- (Consistent with earlier, but don't know ordering).

If the abandonment distribution has non-increasing hazard rate (DFR), then

- f_i is convex, and m^* could be attained by a non-vertex feasible point.
- I.E., the solution motivates partially serving classes (not static priority). (We have numeric examples with non-vertex feasible point solution.)

Example with Non-Vertex Optima

Fluid Model Invariant States

Assumptions.

- (Fluid arrival process) For some $\lambda \in (0, \infty)^J$, $E_j(t) = \lambda_j t$ for all j and $t \ge 0$.
- (Overloaded) For each j, $\rho_1 + \rho_2 + \dots + \rho_J > 1$ for $\rho_j = \frac{\lambda_j}{\mu_j}$.
- (Mean abandonment time) For each j, $\int_0^\infty \overline{G}_{a,j}(x) dx = \frac{1}{\theta_j}$. Definition (Feasible server effort allocation).

•
$$\boldsymbol{B} = \left\{ b \in \mathfrak{R}^{J}_{+} : b_{j} \leq \rho_{j}, \sum_{j=1}^{J} b_{j} \leq 1 \right\}$$

Theorem. For each $b \in B$, there exists an invariant state such that b_j is the proportion of server effort devoted to class j, and $Q_j(t) = \frac{\lambda_j}{\theta_j} f_j \left(1 - \frac{b_j}{\rho_j}\right)$ for all $t \ge 0$, where $f_j(x) = \underset{\uparrow}{G_{a,e,j}} \left(\left(\underset{\uparrow}{G_{a,j}} \right)^{-1}(x) \right)$. Abandonment stationary excess cdf. Abandonment cdf.

Q1: For any given $b \in \mathbf{B}$, how should I schedule so as to achieve b?

Q2: What is my approximating control problem?

Conjecture: WRBS is Asymptotically Optimal

Convergence to Fluid Control Problem Solution:

If $b \in \mathbf{B}$ solves the fluid control problem, then the RBS policy that sets^{*}

$$p_j = \frac{\mu_j b_j}{\sum_{k=1}^J \mu_k b_k}$$

7

has cost equal to m^* on fluid scale; that is,

$$\lim_{N \to \infty} \lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{j=1}^{J} \left(\int_{0}^{T} c_{j} Q_{j}^{N}(t; RBS) dt + a_{j} \frac{R_{j}^{N}(T; RBS)}{T}\right)\right] = m^{\star}$$

*To mimic static priority, set $b_j = \rho_j$ for high priority classes.

Lower Bound:

Under any admissible policy $\pi \in \Pi$,

$$\lim_{N \to \infty} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{j=1}^{J} \left(\int_{0}^{T} c_{j} Q_{j}^{N}(t;\pi) dt + a_{j} \frac{R_{j}^{N}(T;\pi)}{T} \right) \right] \geq m^{\star}.$$

**Tutorial paper (with open problems) available soon from my web page (or email me): <u>http://faculty.chicagobooth.edu/Amy.Ward/publications.html</u>