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*Based on current work with Amber Puha.
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A Service System Model: The Multiclass Many Server Queue
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Call Centers: Garnett, Mandelbaum, Reiman (2002)
Hospital Emergency Department: Green, Soares, Giglio, and Green (2006)



A Service System Model: The Multiclass Many Server Queue
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Q: Which class should the available server next serve?




Why is Scheduling Important?

Poisson arrivals, 60 per hour for both classes; 100 Servers;
Exponential(1) service times; Exponential(1) patience times.
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Specialize to the M/M/N+M Queue
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Atar, Giat, Shimkin (2010) The ¢;u;/6; rule asymptotically minimizes
long-run average cost in the overloaded regime (Ej =¢ + Hjaj).




The Need for Non-Static Priority Scheduling Rules

1. Static priority scheduling is not in general optimal.

e Kim, Randhawa, and Ward (2018) for numerical experiments
with non-exponential patience time distribution

e Down, Koole, Lewis (2011), Harrison and Zeevi (2004),
Atar, Mandelbaum, and Reiman (2004) for exponential patience
time distribution in non-overloaded systems

2. Static priority scheduling is unfair, which can prevent its adoption.

e Wierman (2007) for discussion in the context of computer systems



Our Research Objective
(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with
abandonment, without making any distributional assumptions.

1a. Provide a fluid model relevant for a
very general class of scheduling rules.

1b. Analyze a policy class with full flexibility
to partially serve classes (“as fair as desired”).

2. Use fluid model invariant states to define an
approximating scheduling control problem.
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Some Related Works

e Single Class Fluid Model.
— Whitt (2006) proposed a Fluid Model.

— Reed (2009) and Kaspi and Ramanan (2011) proved
convergence, without abandonment.

— Kang and Ramanan (2010 and 2012) proved convergence, with
abandonment.

— Provided the framework for approaching the multiclass case.
e Multiclass Scheduling.

— Atar, Kaspi and Shimkin (2014) analyzed static priority for
multiclass G/G/N+G.

— We extend to non-static priority.
* Very Recent
— Mukherjee, Li, and Goldberg (2018)
— Large deviations analysis in Halfin-Whitt regime (M/H,/N+M).



The Multiclass Many-Server Queue
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An admissible scheduling policy cannot know the future,
does not preempt service, and satisfies mild conditions to
control entry-into-service oscillations.




Weighted Random Buffer Selection (WRBS) Scheduling
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At the moment of departure, the available server next serves

class j with probability p; (if possible), where Z§=1 pj = L.




The Multiclass Many-Server Queue
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Time elapsed since last class j arrival.  The number of class j customers in the system.

AN

The State Space: (&, XV, vV, ™).

\VA

Measure-valued processes.




The v Measure (for given Class j)
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Each dot is a unit atom whose position represents the time elapsed
since a customer began service, and shifts to the right at rate 1.



The 1 Measure (for given Class j)
Note: Independent of Scheduling Control.
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Each dot is a unit atom whose position represents the time elapsed
since a customer arrival, and shifts to the right at rate 1.



Theorem (Convergence)

Scaled arrival process. Number of servers.
.\‘EN | EN®)

Suppose lim —/= E almost surely, and lim [E = E[E;(t)] forall t = 0.
Nooo N N—>oo N

When the queue operates under an admissible scheduling rule, under mild initial
conditions, a sequence of fluid-scaled state processes operating
(aV, XN, vN, nN)/N is tight.
N N N
Suppose that (X, v,n) is a distributional limit point of {(XN ,VN ,"N )}
i

Scaled system processes.

men, [

We need to characterize (X,v,n).
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The Fluid Model Solution Space and Auxiliary Functions

Number of jobs in system. Age-in-service measure. Potential queue measure.

Let S be the set of r.c.l.l. functions (X, v,n) such that foralljandt > 0,
ft<1\5] ’ (u))du < oo and f (T J ,nj(u))du < oo (Finiteness).

Service distribution hazard rate. Abandonment distribution hazard rate.

For (X,v,n) €S, defineforalljandt = 0,

B;(t): = (1 V; (t)) L(t) =1- Z] . Bj(t) (Proportion of class j fluid in service);
D;(t):= f ( Sj,vj(u))du (Cumulative departure process);
Q;(t):= X;(t) — B;(t) (Queue-length process);

xj(t): = infix = 0: (1[0’x],77j(t)) > Qj(t)} (Class j head-of-line wait time process);
R;(t):= fotz

K;(t): = B;(t) + D;(t) — B;(0) (Cumulative entry-into-service process).

15/30

1[0,Xj(u)]ha,j, nj(w))du (Cumulative abandonment process);



A Fluid Model Solution (Not Unique)

Non-negative, continuous, and non-decreasing J-dimensional function having domain R,..

|

Let E be an arrival function. Then, (X,v,n) €S is a fluid model solution
for E if the following hold.

(1) For each j, K; is non-decreasing and Z;leJ-(t) € [0,1] forallt = 0.
(No service rule specified.)

(2) Foralljandt = 0, X;(t) = X;(0) + E;(t) — R;j(t) — D;(t),and 0 < Q;(t) < fOHJr n;(dy).

(3) Forallj, f € C,([0,)),and t = 0,

Service ccdf.

Gs (- t v
(f,vj(t))z f( +t) '_]( +t),vj(0) + rf(t—u)GSJ-(t—u)dl(j(u)
Gs,j(') Jo
@) =lre 1050 L oV [ —wé, (- wdE,
(f.nj@) = {f(+t)—= Vi(0))+ | fE—w)Gy;(t —w)dEj(u).
Ga,j(') JO

Abandonment ccdf.
(As in Atar, Kaspi, and Shimkin 2014, with static priority equation eliminated.) 16/30




A WRBS Fluid Model Solution (Unique)

A specified WRBS fluid model solution also satisfies

D, j 1{Q;(w) > 0}dDy(w) < K;(8) — K (s) < p; dDz(u) 1<j<]J

Entry into service process.

and

1) = [1(0) — @,

Lemma: If E; is absolutely continuous with density 4;(-) for each j,
then so are the coordinates of X and the auxiliary functions, and

t
K;(t) = f (Aj(u) /\ij(u))l{Qj(u) = O} + pj5(u)1{Qj(u) > O}du,
where is(%he density of Ds.



Theorem (Non-Policy Specific Convergence)

Scaled arrival process.

\2
S lim & = E al y, and lim E |22 = E[E;(t)] forall £ = 0
uppose lim - = almost surely, an Jim —| = |Ej(t)] forallt = 0.

Under mild initial conditions, a sequence of fluid-scaled state processes
(aV, XN, vN, nN)/N is tight.
N N N
Suppose that (X, v,n) is a distributional limit point of {(XN ,VN ,nN )}
i

Scaled system processes.

Then, under mild conditions*, (X, v, n) is, almost surely, a fluid model
solution for E with specified initial state.

Conditions are similar to the single class case. Hazard rates of abandonment and service distributions
are either bounded or lower semi-continuous, and Ej is continuous for all j (for example, E;(t) = 4;t).
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Theorem (Weak Convergence)

Su lim £ = F al y, and lim E|22| = E[£
ppose lim —- = E'a most surely, an Lim —| = |E;(t)]
forallt = 0.

Under the conditions of the previous theorem, and also assuming

the abandonment distributions have bounded hazard rate, the
. XN N N
sequence of fluid-scaled processes {( y ‘;v 1:\/ )} weakly

converges to the unique WRBS(p) fluid model solution.

*Bounded hazard may seem strong, but consistent with what was assumed for SP.
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Our Research Objective
(Also serves as Talk Outline.)

We want to understand the multiclass many server queue with
abandonment, without making any distributional assumptions.

la. Previde-a-fluid-modelrelevantfora-
—verygeneral-class-ofschedulingrules.

1b. c I I. I .II E II ﬁl .I .I.l
I. II I ((( E . l 5':EE|”),

2. Use fluid model invariant states to define an
approximating scheduling control problem.
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_ Fluid Model Invariant States
Assumptions.

e (Fluid arrival process) For some 1 € (0,0)/, E;(t) = Ajt foralljandt = 0.

A.

* (Overloaded) For each j, p; + p, + -+ p; > 1forp; = u_]
J

e (Mean abandonment time) For each j, fooo Gg j(x)dx = %.
J

Definition (Feasible server effort allocation).
e B = {b (S mib] < pj'2§=1bj < 1}

Theorem. For each b € B, there exists an invariant state such that bj
is the proportion of server effort devoted to class j, and

Qj(t) — g—jf]( )for allt = 0, wheref](x) = : ae,] ((G J) (x))

Abandonment stationary excess cdf. Abandonment cdf.

Pj

Intuition: If exponential abandonment distribution, then

—ff( p]> = (4 — bw;) = q;

Flow balance |mpI|es Aj — bju; = 6;q;. 21/30



_ Fluid Model Invariant States
Assumptions.

e (Fluid arrival process) For some 1 € (0,0)/, E;(t) = Ajt foralljandt = 0.

A.

* (Overloaded) For each j, p; + p, + -+ p; > 1forp; = u_]
J

e (Mean abandonment time) For each j, fooo Gg j(x)dx = %.
]

Definition (Feasible server effort allocation).
e B = {b (S ERfrb] < pj'2§=1bj < 1}

Theorem. For each b € B, there exists an invariant state such that bj
is the proportion of server effort devoted to class j, and

Qj(t) — /;—jf] ( — Z—j:) forallt = 0, where fj(x) — TGa,e,j ((?a’j)‘l(X))

Abandonment stationary excess cdf. Abandonment cdf.

Q1: For any given b € B, how should | schedule so as to achieve b?

Q2: What is my approximating control problem?
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The Fluid Control Problem

J A b
w2, o5 (1) ol -om)
v Y

Queue Abandonments

Solution Properties. When is static priority (asymptotically) optimal?
If there is no holding cost; that is, ¢; = 0.

If the abandonment distribution has non-decreasing hazard rate (IFR), then
* fjisconcave, and m”™ is achieved by a feasible vertex.
e |.E., the solution motivates a static priority policy.

(Consistent with earlier, but don’t know ordering).

If the abandonment distribution has non-increasing hazard rate (DFR), then

* fjis convex, and m™ could be attained by a non-vertex feasible point.

e |.E., the solution motivates partially serving classes (not static priority).
(We have numeric examples with non-vertex feasible point solution.)



Performance Measure Approximation
Assume No Holding Costs and Static Priority Scheduling.

A two-class M/LN (1,4)/100 + LN(1,v)* queue,
with each class having arrival rate 60 per hour.
* LN is neither IFR or DFR.

Low Priority Queue Size
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Variability

o

o u o

H Predicted M Approximated

(High priority queue has predicted size 0, and simulated
size about 1.5 for all values of the variability v.)

Q: Why does queue size decrease as variability increases?
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What are the Predicted Abandonment Rates?

(Recall: Two-class M/LN(1,4)/100 + LN (1, v) queue,
with each class having arrival rate 60 per hour.)
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A: Even though the same number of jobs abandon, jobs that
abandon do so sooner, reducing average queue-size and wait time.
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The Fluid Control Problem

“ = mi z] Ajf(l bf>+ (4 — biu;)

m = Imin C:i—1T; — —= a;: p— . .

beB) Loy J‘gj Jj D/ , 1\ j 1“1’
| |

Queue Abandonments

Solution Properties. When is static priority (asymptotically) optimal?

If the abandonment distribution has non-increasing hazard rate (DFR), then

* fjis convex, and m™ could be attained by a non-vertex feasible point.

e |.E., the solution motivates partially serving classes (not static priority).
(We have numeric examples with non-vertex feasible point solution.)



Example with Non-Vertex Optima

=Y (1) refo -

m* = min ¢G;i—fi|1l—— gl

beB j=1 ‘9]' J Pj , Y o
Queue Abandonments

Parameters: py = p, =4 =U, =¢cy =c, =1landa; =a, =0.

!

Then, b, = 1 — by, and we have a 1-D problem.

!

Patience densities: Class 2 is exponential(6,);
e—x_I_ —-2X

Class 1 has density 2 32 for x > 0, which has mean 2.

1

The minimizer by € [0,1] satisfies 03 b1(65)

0.6

2
L 92=£(1+3b1—,/1+3b1). 1
) |

0
1 1.05 11 1.15

1.2 1.25 13 1.35

(This example is developed by Amber Puha’s student Jacques Coulombe.)



_ Fluid Model Invariant States
Assumptions.

e (Fluid arrival process) For some 1 € (0,0)/, E;(t) = Ajt foralljandt = 0.

A.

* (Overloaded) For each j, p; + p, + -+ p; > 1forp; = u_]
J

e (Mean abandonment time) For each j, fooo Gg j(x)dx = %.
J

Definition (Feasible server effort allocation).
e B = {b (S mib] < pj'2§=1bj < 1}

Theorem. For each b € B, there exists an invariant state such that bj
is the proportion of server effort devoted to class j, and

Qj(t) — ;—jf] ( — Z—j:) forallt = 0, where fj(x) — TGa,e,j ((?a’j)‘l(X))

Abandonment stationary excess cdf. Abandonment cdf.

Q1: For any given b € B, how should | schedule so as to achieve b?

Q2: What is my approximating control problem?
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Conjecture: WRBS is Asymptotically Optimal

Convergence to Fluid Control Problem Solution:

If b € B solves the fluid control problem, then the RBS policy

that sets*
H;b;

J
Zk=1 Ui by
has cost equal to m* on fluid scale; that is,

Pj =

N—>00 T—o00

T

J
1 T
e

*To mimic static priority, set b; = p; for high priority classes.

RY (T;RBS)) o
=m .

Lower Bound:
Under any admissible policy € II,

RY (T;m)

1o/ (7
Jim Jim £ ) 1: (f GO (Gmdt + =
L =

)

Vv
S



Concluding Remarks
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Fluid Control Problem Assumptions Scheduling
No holding cost Static Priority RBS
IFR Static Priority RBS
DFR RBS

*xxTutorial paper (with open problems) available soon from my web page
(or email me): http://faculty.chicagobooth.edu/Amy.Ward/publications.html



http://faculty.chicagobooth.edu/Amy.Ward/publications.html

	Slide Number 1
	A Service System Model:  The Multiclass Many Server Queue
	A Service System Model:  The Multiclass Many Server Queue
	Why is Scheduling Important?
	Specialize to the M/M/N+M Queue
	The Need for Non-Static Priority Scheduling Rules
	Our Research Objective
	Some Related Works 
	The Multiclass Many-Server Queue
	Weighted Random Buffer Selection (WRBS) Scheduling
	The Multiclass Many-Server Queue
	The 𝝂 Measure (for given Class j)
	The 𝜼 Measure (for given Class j)
	Theorem (Convergence)
	The Fluid Model Solution Space and Auxiliary Functions
	A Fluid Model Solution (Not Unique)
	A WRBS Fluid Model Solution (Unique)
	Theorem (Non-Policy Specific Convergence)
	Theorem (Weak Convergence)
	Our Research Objective
	Fluid Model Invariant States
	Fluid Model Invariant States
	The Fluid Control Problem
	Performance Measure Approximation�Assume No Holding Costs and Static Priority Scheduling.
	What are the Predicted Abandonment Rates?
	The Fluid Control Problem
	Example with Non-Vertex Optima
	Fluid Model Invariant States
	Conjecture:  WRBS is Asymptotically Optimal 
	Concluding Remarks

