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Q:  How many employees to staff?
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routing
= LISF

60 customers arrive
per hour on average

Customers do not 
wait forever. Each service takes on 

average one min.



Q:  Did you account for server behavior?
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60 customers arrive
per hour on average

Customers do not 
wait forever.

Each service takes on 
average one min.

routing
= LISF



Example:  Employees are not Machines
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Imagine:

How do you respond?
You respond strategically.  

What if you were paid per review?
The takeaway:  We cannot necessarily assume a 
fixed average processing rate and staff accordingly. 



Research Positioning
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• Traditional queueing system
• Arrival rate
• Service rate

• Many queueing games 
• Customer utility
• Service rate

• Our model
• Arrival rate
• Server utility

System performance 
System design 

We know We want

• Next step
• Customer utility
• Server utility



Talk Outline

• The Problem Formulation
• The Centralized Control Problem
• The Decentralized Control Problem
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Our Model:  M/M/Nstrategic + M 
µ1

strategic 
servers

• Each server 𝑖𝑖 selfishly chooses 𝜇𝜇𝑖𝑖 ∈ [𝜇𝜇, 𝜇𝜇] to maximize payment.

• We assume a decreasing function 𝑝𝑝 𝜇𝜇 that 
represents the probability of successful service.

𝜆𝜆

𝜃𝜃

We must decide:
• How many employees to staff; 
• How to route work; 
• How to compensate work.
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routing
= ???

µ2

µΝ

risk neutral expected



Preliminaries:  The Class of Routing Policies
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• An idle-time-order-based (IOB) routing policy is one that 
decides which server should handle an incoming arrival 
based only on the order in which the servers became idle 
(and cannot use service rate information). 

• An IOB(𝑇𝑇) policy delays each arriving customer for 
𝑇𝑇 ∈ 0,∞ time units (a “soft” admission control.)

• Common examples are:  LISF, random.

Lemma 1.  (Modification of Theorem 9 in Gopalakrishnan et al, 2016.)
In an M/M/N+M queue, all IOB(𝑇𝑇) routing policies
have the same steady-state probabilities, and, as a consequence,
result in the same expected steady-state utilization of server 𝑖𝑖,

𝐵𝐵𝑖𝑖 �⃗�𝜇,𝑁𝑁,𝑇𝑇 = ∎, 𝑖𝑖 ∈ 1, … ,𝑁𝑁 .

Closed-form expression is messy, and so not written on slides.



Some Related OM Literature 
• Queueing games 

• Hassin and Haviv (2003), Hassin (2016)
• Strategic servers 

• Kalai, Kamien, Rubinovitch (1992), Gilbert and Weng (1998), Cachon and 
Harker (2002) , Cachon and Zhang (2007), Geng, Huh, and Nagarajan (2015)

• Speed-quality trade-off decisions
• Hopp, Iravani, and Yuen (2007), Lu, Van Mieghem, and Savaskan (2009), 

Anand, Pac, and Veeraraghavan (2011)
• Large-scale “strategic” (customer or server) systems

• Maglaras and Zeevi (2003) (2005), Armony and Maglaras (2004), Allon and 
Gurvich (2010), Armony and Gurvich (2010), Allon, Bassamboo and Cil
(2014), Chan, Yom-Tov, and Escobar (2014), Gopalakrishnan, Doroudi, Ward, 
and Wierman (2016), Gurvich, Lariviere, Moreno-Garcia (2018), Ibrahim 
(2018)

• Empiric work 
• Hasija, Pinker, Shumsky (2010), Buell, Kim, Tsay (2016), Song, Tucker, 

Murrell (2015), Shunko, Niederhoff, Rosokha (2018)
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A “Typical” Problem Formulation

Abandonment cost.

Failed services cost.

Utilization cost.

+(𝜆𝜆 − 𝜇𝜇𝑁𝑁𝛽𝛽)𝑔𝑔𝐴𝐴
𝜆𝜆 − 𝜇𝜇𝑁𝑁𝛽𝛽

𝜆𝜆

+ 1 − 𝑝𝑝 𝜇𝜇 𝜇𝜇𝑁𝑁𝛽𝛽𝑔𝑔𝐹𝐹 1 − 𝑝𝑝(𝜇𝜇 )

𝐶𝐶 𝑁𝑁,𝛽𝛽 =

𝑔𝑔𝑈𝑈(𝛽𝛽) × 𝑁𝑁
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Assume all homogeneous servers work at the same rate. 
The manager decides the staffing level 𝑁𝑁 and utilization 𝛽𝛽 to:

𝑐𝑐𝑠𝑠𝑁𝑁 + 𝐶𝐶 𝑁𝑁,𝛽𝛽 .Minimize

Performance-based costs; 
See, for example, BMR (2004).
BMR = Borst, Mandelbaum, and Reiman.

Equivalently, 
admission delay T.𝑁𝑁 ∈ 0,1, …

𝛽𝛽 ∈ [0,𝐵𝐵 𝜇𝜇,𝑁𝑁,𝑇𝑇 = 0 ]

Busy time when all 
servers work at rate 𝜇𝜇.



Required Changes

Abandonment cost.

Failed services cost.

Utilization cost.

+ 𝜆𝜆 −�
𝑖𝑖=1

𝑁𝑁
𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖 𝑔𝑔𝐴𝐴

𝜆𝜆 − ∑𝑖𝑖=1𝑁𝑁 𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖
𝜆𝜆

+�
𝑖𝑖=1

𝑁𝑁
1 − 𝑝𝑝(𝜇𝜇𝑖𝑖 )𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖𝑔𝑔𝐹𝐹

∑𝑖𝑖=1𝑁𝑁 (1 − 𝑝𝑝 𝜇𝜇𝑖𝑖 𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖
∑𝑖𝑖=1𝑁𝑁 𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖

𝐶𝐶 �⃗�𝜇,𝑁𝑁,𝑇𝑇 =�
𝑖𝑖=1

𝑁𝑁
𝑔𝑔𝑈𝑈(𝛽𝛽𝑖𝑖)
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Assume all homogeneous servers work at the same rate. 
The manager wants to solve the centralized control problem:

𝑐𝑐𝑠𝑠𝑁𝑁 + 𝐶𝐶 �⃗�𝜇,𝑁𝑁,𝛽𝛽𝑇𝑇 .Minimize
𝑁𝑁 ∈ 0,1, … 𝑇𝑇 ∈ [0,∞]𝜇𝜇𝑖𝑖 ∈ 𝜇𝜇, 𝜇𝜇

Let 𝛽𝛽𝑖𝑖 = 𝐵𝐵𝑖𝑖 𝜇𝜇,𝑁𝑁,𝑇𝑇 .  The cost function becomes:

Lower bound on ANY payment function.Payment from outside alternative;
The minimum the manager can pay.



Same Service Rates are Optimal
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Assume that on [0,1]
• 𝑔𝑔𝑈𝑈,𝑔𝑔𝐹𝐹 ,𝑔𝑔𝐴𝐴,𝑝𝑝 are all continuous;
• 𝑔𝑔𝑈𝑈 is weakly increasing and strictly convex;
• 𝑔𝑔𝐹𝐹 is weakly increasing and weakly convex;
• 𝑔𝑔𝐴𝐴 is weakly increasing and 𝑎𝑎𝑔𝑔𝐴𝐴(𝑎𝑎) is strictly convex;
And that on 𝜇𝜇, 𝜇𝜇 :
• 𝑝𝑝 is strictly decreasing and weakly concave.

Proposition 1:
Any solution to the centralized control problem has all servers 
working at the same service rate and having the same utilization. 



Equivalent Centralized Control Problem

Abandonment cost.

Failed services cost.

Utilization cost.

+(𝜆𝜆 − 𝜇𝜇𝑁𝑁𝛽𝛽)𝑔𝑔𝐴𝐴
𝜆𝜆 − 𝜇𝜇𝑁𝑁𝛽𝛽

𝜆𝜆
+ 1 − 𝑝𝑝 𝜇𝜇 𝜇𝜇𝑁𝑁𝛽𝛽𝑔𝑔𝐹𝐹 1 − 𝑝𝑝(𝜇𝜇 )

𝐶𝐶 𝜇𝜇,𝑁𝑁,𝑇𝑇 =

𝑔𝑔𝑈𝑈(𝛽𝛽) × 𝑁𝑁
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The manager decides the service rate 𝜇𝜇, the staffing level 𝑁𝑁, and 
the admission delay 𝑇𝑇 (which implies server utilization 𝛽𝛽) to:

𝑐𝑐𝑠𝑠𝑁𝑁 + 𝐶𝐶 𝜇𝜇,𝑁𝑁,𝑇𝑇 .Minimize

Performance-based costs.𝑁𝑁 ∈ 0,1, …

𝛽𝛽 = 𝐵𝐵 𝜇𝜇,𝑁𝑁,𝑇𝑇

𝜇𝜇 ∈ 𝜇𝜇, 𝜇𝜇

𝑇𝑇 ∈ [0,∞]



Asymptotic Analysis of the Centralized 
Control Problem (1/4)
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We consider a sequence of systems with increasing arrival rate 𝜆𝜆 → ∞.

Definition:  An admissible policy 𝜇𝜇𝜆𝜆,𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 : 𝜆𝜆 ≥ 0 is 
asymptotically optimal if 

lim
𝜆𝜆→∞

𝑐𝑐𝑆𝑆𝑁𝑁𝜆𝜆 + 𝐶𝐶 𝜇𝜇𝜆𝜆,𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆

𝑐𝑐𝑆𝑆𝑁𝑁∗𝜆𝜆 + 𝐶𝐶 𝜇𝜇∗𝜆𝜆 ,𝑁𝑁∗𝜆𝜆,𝑇𝑇∗𝜆𝜆
= 1.

Satisfies the constraints of the centralized
control problem for each 𝜆𝜆.

Optimal objective function value for given 𝜆𝜆.



Asymptotic Analysis of the Centralized 
Control Problem (2/4)
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For �̂�𝑐𝑆𝑆 𝛽𝛽 = 𝑐𝑐𝑆𝑆+𝑔𝑔𝑈𝑈 𝛽𝛽
𝛽𝛽

, solve the one-dimensional optimizations:

• �̂�𝛽∗ = argmin
𝛽𝛽∈[0,1]

�̂�𝑐𝑆𝑆(𝛽𝛽) ;

• �̂�𝜇∗ = argmin
𝜇𝜇∈ 𝜇𝜇,𝜇𝜇

̂𝑐𝑐𝑆𝑆(𝛽𝛽∗)
𝜇𝜇

+ 1 − 𝑝𝑝 𝜇𝜇 𝑔𝑔𝐹𝐹(1 − 𝑝𝑝 𝜇𝜇 )

• �𝑎𝑎∗ = argmin
𝑎𝑎∈[0,1]

1 − 𝑎𝑎 ̂𝑐𝑐𝑆𝑆 𝛽𝛽∗
𝜇𝜇∗

+ 1 − 𝑝𝑝 𝜇𝜇∗ 𝑔𝑔𝐹𝐹 1 − 𝑝𝑝 𝜇𝜇∗

+𝑎𝑎𝑔𝑔𝐴𝐴 𝑎𝑎
,

and set �𝑏𝑏∗ = 1− �𝑎𝑎∗
�𝛽𝛽∗�𝜇𝜇∗

.

Adjusted staffing cost.

The cost to serve a customer, adjusted to 
include both utilization and service failure.

Abandonment cost.

Service cost.



Asymptotic Analysis of the Centralized 
Control Problem (3/4)
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Theorem 1.  Under the assumption stated earlier, any policy 

if �̂�𝛽∗ < 1, �𝑎𝑎∗>0, 
otherwise,

�̂�𝜇∗,𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 = �𝑏𝑏∗𝜆𝜆 + 𝑜𝑜 𝜆𝜆 , �𝑇𝑇∗ with �𝑇𝑇∗ = �−
log �𝑏𝑏∗�𝜇𝜇∗�𝛽𝛽∗

𝜃𝜃
,

0,
is asymptotically optimal.  Furthermore,

lim
𝜆𝜆→∞

𝐵𝐵 𝜇𝜇∗𝜆𝜆,𝑁𝑁∗𝜆𝜆,𝑇𝑇∗𝜆𝜆 = �̂�𝛽∗ and �̂�𝛽∗ = min 1, 𝑒𝑒𝑒𝑒𝑒𝑒 −𝜃𝜃 �𝑇𝑇∗
�𝑏𝑏∗�𝜇𝜇∗

.

The solution to 1-D optimization on previous slide.



Asymptotic Analysis of the Centralized 
Control Problem (4/4)
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Ab. cost Util. cost Optimal regime Ab. % Server Util.

𝑔𝑔𝐴𝐴 0 > �̂�𝑐∗ 𝑘𝑘 ≤
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Critically Loaded 𝑎𝑎⋆ = 0 𝛽𝛽⋆ = 1

𝑔𝑔𝐴𝐴 0 ≤ �̂�𝑐∗ 𝑘𝑘 ≤
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Efficiency-Driven 𝑎𝑎⋆ > 0 𝛽𝛽⋆ = 1

𝑔𝑔𝐴𝐴 0 > �̂�𝑐∗ 𝑘𝑘 >
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Quality-Driven 𝑎𝑎⋆ = 0 𝛽𝛽⋆ < 1

𝑔𝑔𝐴𝐴 0 ≤ �̂�𝑐∗ 𝑘𝑘 >
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Intentional 
Idling

𝑎𝑎⋆ > 0 𝛽𝛽⋆ < 1

Define �̂�𝑐∗ = ̂𝑐𝑐𝑆𝑆(𝛽𝛽∗)
𝜇𝜇

+ 1 − 𝑝𝑝 𝜇𝜇 𝑔𝑔𝐹𝐹(1 − 𝑝𝑝 𝜇𝜇 ) to be the min. cost to serve a customer.

Assume 𝑔𝑔𝑈𝑈 𝛽𝛽 = 𝑘𝑘𝛽𝛽𝑟𝑟, for 𝑟𝑟 > 1 and 𝛽𝛽 ∈ [0,1].

Remark 1:  Compare to BMR (2004), which considered a M/M/N model.
An analysis for a full spectrum of cost functions had not been done for M/M/N+M. 



Asymptotic Analysis of the Centralized 
Control Problem (4/4)

Lunteren 2019 18/28

Ab. cost Util. cost Optimal regime Ab. % Server Util.

𝑔𝑔𝐴𝐴 0 > �̂�𝑐∗ 𝑘𝑘 ≤
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Critically Loaded 𝑎𝑎⋆ = 0 𝛽𝛽⋆ = 1

𝑔𝑔𝐴𝐴 0 ≤ �̂�𝑐∗ 𝑘𝑘 ≤
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Efficiency-Driven 𝑎𝑎⋆ > 0 𝛽𝛽⋆ = 1

𝑔𝑔𝐴𝐴 0 > �̂�𝑐∗ 𝑘𝑘 >
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Quality-Driven 𝑎𝑎⋆ = 0 𝛽𝛽⋆ < 1

𝑔𝑔𝐴𝐴 0 ≤ �̂�𝑐∗ 𝑘𝑘 >
𝑐𝑐𝑆𝑆

𝑟𝑟 − 1
Intentional 
Idling

𝑎𝑎⋆ > 0 𝛽𝛽⋆ < 1

Define �̂�𝑐∗ = ̂𝑐𝑐𝑆𝑆(𝛽𝛽∗)
𝜇𝜇

+ 1 − 𝑝𝑝 𝜇𝜇 𝑔𝑔𝐹𝐹(1 − 𝑝𝑝 𝜇𝜇 ) to be the min. cost to serve a customer.

Assume 𝑔𝑔𝑈𝑈 𝛽𝛽 = 𝑘𝑘𝛽𝛽𝑟𝑟, for 𝑟𝑟 > 1 and 𝛽𝛽 ∈ [0,1].

Remark 2:  Conditions for critically loaded are consistent with Proposition 5 in 
Bassamboo and Randhawa, Proposition 1 in Ren and Zhou (2008), and 
Proposition 1 in Whitt (2006). 



Talk Outline

• The Problem Formulation
• The Centralized Control Problem
• The Decentralized Control Problem
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The Server Utility
µ1

strategic 
servers

• Each server 𝑖𝑖 selfishly chooses 𝜇𝜇𝑖𝑖 ∈ [𝜇𝜇, 𝜇𝜇] to maximize payment.

• An equilibrium is a service rate vector �⃗�𝜇 that satisfies

• We assume a decreasing function 𝑝𝑝 𝜇𝜇 that 
represents the probability of successful service.

𝜆𝜆

𝜃𝜃

20/28Lunteren 2019

routing
= IOB(T)

µ2

µΝ

risk neutral expected

𝑈𝑈𝑖𝑖 �⃗�𝜇 = max
𝑣𝑣∈[𝜇𝜇,𝜇𝜇]

𝑈𝑈𝑖𝑖(𝜇𝜇1, … , 𝜇𝜇𝑖𝑖−1, 𝑣𝑣, 𝜇𝜇𝑖𝑖+1, … , 𝜇𝜇𝑁𝑁) ,

and individual rationality (IR); that is, 𝑈𝑈𝑖𝑖 �⃗�𝜇 ≥ 𝑐𝑐𝑆𝑆,

for all 𝑖𝑖 ∈ 1, … ,𝑁𝑁 ,

for all 𝑖𝑖 ∈ 1, … ,𝑁𝑁 .

Employment alternative



Recall:  Equivalent Centralized Control Problem
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The manager decides the service rate 𝜇𝜇, the staffing level 𝑁𝑁, and 
the admission delay 𝑇𝑇 (which implies server utilization 𝛽𝛽) to:

𝑐𝑐𝑠𝑠𝑁𝑁 + 𝐶𝐶 𝜇𝜇,𝑁𝑁,𝑇𝑇 .Minimize

Performance-based costs.𝑁𝑁 ∈ 0,1, …

𝜇𝜇 ∈ 𝜇𝜇, 𝜇𝜇

𝑇𝑇 ∈ [0,∞]

payment function

𝑃𝑃 ∈ 𝒫𝒫

�⃗�𝜇𝐸𝐸

𝒫𝒫 is the class of payment functions based on the observable or known elements:

*

The De

�
𝑖𝑖=1

𝑁𝑁
𝐸𝐸[𝑃𝑃𝑖𝑖]

• 𝜆𝜆,𝑔𝑔𝑈𝑈 ,𝑔𝑔𝐴𝐴,𝑔𝑔𝐹𝐹 , 𝑝𝑝
• The realized number of abandonments;
• The realized number of completed and failed services in a finite time interval.

𝐸𝐸 𝑃𝑃𝑖𝑖 ≥ 𝑐𝑐𝑆𝑆

Also need to ensure an equilibrium �⃗�𝜇𝐸𝐸 exists 
and account for potential non-uniqueness.



The Decentralized Control Problem
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The manager decides the payment function 𝑃𝑃,the staffing level 𝑁𝑁, 
and the admission delay 𝑇𝑇 (which implies server utilization 𝛽𝛽) to:

sup
𝜇𝜇𝐸𝐸∈𝒮𝒮 𝑃𝑃,𝑁𝑁,𝑇𝑇

�
𝑖𝑖=1

𝑁𝑁
𝐸𝐸[𝑃𝑃𝑖𝑖] + 𝐶𝐶 �⃗�𝜇𝐸𝐸 ,𝑁𝑁,𝑇𝑇Minimize

Subject to:
• 𝑁𝑁 ∈ 0,1, …
• 𝑇𝑇 ∈ [0,∞]
• 𝒮𝒮 𝑃𝑃,𝑁𝑁,𝑇𝑇 ≠ ∅
• min

𝜇𝜇𝐸𝐸∈𝒮𝒮 𝑃𝑃,𝑁𝑁,𝑇𝑇
𝐸𝐸[𝑃𝑃𝑖𝑖] ≥ 𝑐𝑐𝑆𝑆 for each 𝑖𝑖 ∈ {1, … ,𝑁𝑁}.

Note that the solution to the centralized control problem is a lower bound
on the decentralized control problem, because any equilibrium service rate
is feasible for the centralized control problem.

𝑈𝑈𝑖𝑖The set of equilibrium 
service rates.



Limiting First Best Payment
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Let 𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 = �𝑏𝑏∗𝜆𝜆 + 𝑜𝑜 𝜆𝜆 . We would like to find a sequence of contracts
𝑃𝑃𝜆𝜆 ∈ 𝒫𝒫 for all 𝜆𝜆 such that

𝑃𝑃𝜆𝜆,𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 , �𝑇𝑇∗ : 𝜆𝜆 ≥ 0
satisfy the decentralized control problem constraints for all 𝜆𝜆 ,
and any sequence of symmetric equilibrium service rates satisfies:

lim
𝜆𝜆→∞

𝜇𝜇𝐸𝐸𝜆𝜆 − �̂�𝜇⋆ = 0 and lim
𝜆𝜆→∞

𝐸𝐸 𝑃𝑃𝑖𝑖𝜆𝜆 − 𝑐𝑐𝑆𝑆 = 0, 𝑖𝑖 ∈ 1,2, … ,𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 .

Then, the solutions to the centralized and decentralized control 
problem become identical as 𝜆𝜆 becomes large; that is,

lim
𝜆𝜆→∞

sup
𝜇𝜇𝐸𝐸∈𝒮𝒮 𝑃𝑃,𝑁𝑁,𝑇𝑇

∑𝑖𝑖=1
𝑁𝑁𝑎𝑎𝑎𝑎
𝜆𝜆

𝐸𝐸 𝑃𝑃𝑖𝑖
𝜆𝜆 +𝐶𝐶 𝜇𝜇𝐸𝐸

𝜆𝜆 ,𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 , �𝑇𝑇∗
𝑐𝑐𝑆𝑆𝑁𝑁∗𝜆𝜆+𝐶𝐶 𝜇𝜇∗𝜆𝜆,𝑁𝑁∗𝜆𝜆,𝑇𝑇∗𝜆𝜆

= 1,

under earlier stated Assumption. Optimal centralized control problem 
objective function value for given 𝜆𝜆.
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When the service rate vector is �⃗�𝜇𝜆𝜆, staffing level is 𝑁𝑁𝜆𝜆,
and routing parameter is 𝑇𝑇𝜆𝜆, under piecerate payment, 
the expected payment per time unit to server 𝑖𝑖 is: 

𝑈𝑈𝑖𝑖𝜆𝜆 = 𝐸𝐸 𝑃𝑃𝑖𝑖𝜆𝜆 =
𝑃𝑃𝑆𝑆𝜆𝜆 − 𝑃𝑃𝐹𝐹𝜆𝜆(1 − 𝑝𝑝 𝜇𝜇𝑖𝑖 ) 𝜇𝜇𝑖𝑖 × 𝐵𝐵𝑖𝑖 �⃗�𝜇𝜆𝜆,𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 , i ∈ 1, … ,𝑁𝑁𝜆𝜆 .

Focus on tagged server 1.  We would like to solve for a fixed point of

𝑈𝑈𝜆𝜆 𝜇𝜇1, 𝜇𝜇 = 𝑃𝑃𝑆𝑆𝜆𝜆 − 𝑃𝑃𝐹𝐹𝜆𝜆(1 − 𝑝𝑝 𝜇𝜇1 ) 𝜇𝜇1 × 𝐵𝐵 (𝜇𝜇1, 𝜇𝜇),𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 .

𝑅𝑅𝜆𝜆 𝜇𝜇 = arg max
𝜇𝜇1∈ 𝜇𝜇,𝜇𝜇

𝑈𝑈𝜆𝜆(𝜇𝜇1, 𝜇𝜇) ,

where
Expected payment to server 1 when 
all other servers work at rate 𝜇𝜇.

Such a fixed point is a symmetric equilibrium service rate when IR holds.



An Approximate Equilibrium Service Rate (1/2)
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𝑅𝑅𝜆𝜆 𝜇𝜇 = arg max
𝜇𝜇1∈ 𝜇𝜇,𝜇𝜇

𝑈𝑈𝜆𝜆(𝜇𝜇1, 𝜇𝜇) ,

𝑈𝑈𝜆𝜆 𝜇𝜇1, 𝜇𝜇 = 𝑃𝑃𝑆𝑆𝜆𝜆 − 𝑃𝑃𝑆𝑆𝜆𝜆(1 − 𝑝𝑝 𝜇𝜇1 ) 𝜇𝜇1 × 𝐵𝐵 (𝜇𝜇1, 𝜇𝜇),𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 .

Proposition.  Fix 𝑏𝑏 ≥ 0.  Under IOB(𝑇𝑇) routing and staffing
𝑁𝑁𝜆𝜆 = 𝑏𝑏𝜆𝜆 + 𝑜𝑜(𝜆𝜆), for any 𝜇𝜇1, 𝜇𝜇 ∈ 𝜇𝜇, 𝜇𝜇 ,

lim
𝜆𝜆→∞

𝐵𝐵 (𝜇𝜇1, 𝜇𝜇),𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 = �𝐵𝐵 𝜇𝜇1, 𝜇𝜇 ,
where

�𝐵𝐵 𝜇𝜇1, 𝜇𝜇 =
𝜇𝜇 exp −𝜃𝜃𝑇𝑇

𝜇𝜇 exp −𝜃𝜃𝑇𝑇 + 𝜇𝜇1 𝑏𝑏𝜇𝜇 − exp −𝜃𝜃𝑇𝑇 + .

�𝐵𝐵 𝜇𝜇1, 𝜇𝜇 ,



An Approximate Equilibrium Service Rate (2/2)
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𝑅𝑅𝜆𝜆 𝜇𝜇 = arg max
𝜇𝜇1∈ 𝜇𝜇,𝜇𝜇

𝑈𝑈𝜆𝜆(𝜇𝜇1, 𝜇𝜇) ,

𝑈𝑈𝜆𝜆 𝜇𝜇1, 𝜇𝜇 = 𝑃𝑃𝑆𝑆𝜆𝜆 − 𝑃𝑃𝑆𝑆𝜆𝜆(1 − 𝑝𝑝 𝜇𝜇1 ) 𝜇𝜇1 × 𝐵𝐵 (𝜇𝜇1, 𝜇𝜇),𝑁𝑁𝜆𝜆,𝑇𝑇𝜆𝜆 .
�𝐵𝐵 𝜇𝜇1, 𝜇𝜇 ,

Lemma.  Given 𝑏𝑏 ≥ 0, 𝜇𝜇 ∈ 𝜇𝜇,𝜇𝜇 , and 𝑇𝑇 > 0, define

𝑃𝑃𝑅𝑅 𝑏𝑏, 𝜇𝜇,𝑇𝑇 =
1

1 − 𝑝𝑝 𝜇𝜇 − 𝜇𝜇𝑝𝑝𝜇(𝜇𝜇) max 𝑏𝑏𝜇𝜇 exp 𝜃𝜃𝑇𝑇 , 1}
.

If 𝑃𝑃𝑆𝑆 > 0 and 𝑃𝑃𝐹𝐹 ≥ 0 satisfy 𝑃𝑃𝐹𝐹
𝑃𝑃𝑆𝑆

= 𝑃𝑃𝑅𝑅, then 𝜇𝜇 is the unique fixed point.

Theorem 2.  The piecerate payment that sets 𝑃𝑃𝐹𝐹
𝜆𝜆

𝑃𝑃𝑆𝑆
𝜆𝜆 to equal 𝑃𝑃𝑅𝑅 𝑏𝑏∗, 𝜇𝜇∗,𝑇𝑇∗ , 

and 𝑃𝑃𝑆𝑆𝜆𝜆 to ensure IR 𝑈𝑈𝑖𝑖𝜆𝜆 ≥ 𝑐𝑐𝑆𝑆, 𝑖𝑖 ∈ 1, … ,𝑁𝑁𝑎𝑎𝑎𝑎𝜆𝜆 , is limiting first best.
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Example 1.  Suppose each service failure costs 𝑐𝑐𝐹𝐹 (𝑔𝑔𝐹𝐹 𝑥𝑥 = 𝑐𝑐𝐹𝐹).
• Case 1:  𝛽𝛽∗ = 1.  Then

• Case 2: 𝛽𝛽∗ < 1. Then 

Define 𝑃𝑃𝑆𝑆∗ = lim
𝜆𝜆→∞

𝑃𝑃𝑆𝑆𝜆𝜆 and 𝑃𝑃𝐹𝐹∗ = lim
𝜆𝜆→∞

𝑃𝑃𝐹𝐹𝜆𝜆. 

𝑃𝑃𝑆𝑆∗ = 𝑐𝑐𝑆𝑆
𝑐𝑐𝑆𝑆+𝑔𝑔𝑈𝑈(1)

�̂�𝑐∗ and 𝑃𝑃𝐹𝐹∗ = 𝑐𝑐𝑆𝑆
𝑐𝑐𝑆𝑆+𝑔𝑔𝑈𝑈(1)

𝑐𝑐𝐹𝐹;

The min cost to serve a customer.

i.e., if there is no utilization cost, pay �̂�𝑐∗ per service completion; 
else, lower payment and keep ratio unchanged.  

In words, the manager transfers her costs to the servers 
in a way that induces the servers to work at rate �̂�𝜇∗.

𝑃𝑃𝑆𝑆∗ = ∎ > 𝑐𝑐𝑆𝑆
𝑐𝑐𝑆𝑆+𝑔𝑔𝑈𝑈(1)

�̂�𝑐∗ and 𝑃𝑃𝐹𝐹∗ = ∎ > 𝑐𝑐𝑆𝑆
𝑐𝑐𝑆𝑆+𝑔𝑔𝑈𝑈(1)

𝑐𝑐𝐹𝐹 .



Concluding Remarks
We need to rethink optimal system design to account for how 
servers respond to incentives (i.e., when servers are strategic)!

M/M/N+M µ

µ

µ

IOB(T)

The manager should jointly optimize over the staffing, 
routing, and service speed, and then provide 
incentives to achieve her desired service speed.

28/28Lunteren 2019

*Paper forthcoming in Operations Research, available from my web page:
http://faculty.chicagobooth.edu/Amy.Ward/publications.html

Future research:  Other routing policies?  For example, Gopalakrishnan (2019).

http://faculty.chicagobooth.edu/Amy.Ward/publications.html
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