Two Lectures on Fair Division

Hervé Moulin
University of Glasgow and HSE St Petersburg

Lunteren, January 14, 15, 2019
formal modeling of fair division starts 70 years ago

- mathematicians: the cake-division model; Steinhaus 1948
- game theorists: axiomatic bargaining: Nash 1950; cooperative games: Shapley 1953
- economists: No Envy and fair competitive trade; Foley 1967, Varian 1974

standard examples

family heirlooms: silverware, paintings
seats in overdemanded classes
family chores
work shifts, teaching loads
divorce, dissolution of a partnership
more recent examples: peer to peer Fair Division on the Internet
to share computing resources
to share memory space
online barter for goods and services

FD inspires an active field of research
at the interface of microeconomics and internet science

- around 1997: Algorithmic Game Theory is born
- about 2000: emergence of Algorithmic Mechanism Design and Computational Social Choice
- the ACM Electronic Commerce conferences (EC) start in 1999, followed by the Web and Internet Economics conferences (WINE) in 2004, and by the Computational Social Choice conferences (COMSOC) in 2010
- in 2014 EC becomes the 15th Economics and Computation conference
- and the ACM Society launches a new journal: Transactions on Economics and Computation

the fair division problem

- a closed economy: agents cannot find multiple copies of these items in the competitive market; the manna can include cash, but out of pocket payments are ruled out
- efficiency \Longrightarrow unequal shares, so defining fairness is not straighforward
- indivisible items \Longrightarrow unequal shares, so approximating fairness or efficiency is inevitable
also desired
- incentive compatibility
- the division rule must be scalable, its computational complexity must be low
what distinguishes the new research from the classic results of the 60 s and 70 s :
elicitation of preferences must remain simple for practical implementation
\Longrightarrow the mechanisms work for specific restricted domains of preferences, much smaller than the full-fledged Arrow Debreu domain with multiple divisible commodities
each domain suits a certain class of division problems
we review four models
\rightarrow one dimensional manna with convex preferences
\rightarrow divisible goods, perfect complements (Leontief preferences)
\rightarrow divisible or indivisible goods, perfect substitute (linear preferences)
\rightarrow divisible or indivisible bads (or mixed manna) with linear preferences

Model 1: One dimensional manna

ω : amount of a non disposable item, hours of baby-sitting, shares of a stock, teaching loads,..
agent i has single-peaked (i. e., convex) preferences over his share z_{i} with peak π_{i}
rule of interest: the uniform division rule Sprumont (1991)
start from equal split $\bar{z}_{i}=\frac{1}{n} \omega$ for all i
stay there if the peaks π_{i} are all on the same side of $\frac{1}{n} \omega$
if not $N^{\text {under }}=\left\{i \left\lvert\, \pi_{i}<\frac{1}{n} \omega\right.\right\}, N^{\text {over }}=\left\{i \left\lvert\, \pi_{j}>\frac{1}{n} \omega\right.\right\}, N^{f s}=\left\{i \left\lvert\, \pi_{k}=\frac{1}{n} \omega\right.\right\}$
agent in $N^{f s}$ get $\frac{1}{n} \omega$
if $\sum_{N} \pi_{i}>\omega$ each $i \in N^{\text {under }}$ gets $z_{i}=\pi_{i}$, each j in $N^{\text {over }}$ is uniformly rationed: equalizes the gains $\left(z_{j}-\frac{1}{n} \omega\right)$ under the efficiency constraint $z_{j} \leq \pi_{j}$
if $\sum_{N} \pi_{i}<\omega \ldots$
this rule is miraculous Sprumont (1991)

- unique, continuous in the parameters, easy to compute
- simple messages: report own peak
- efficient and Envy-Free (I prefer my share to yours)
- strategyproof: reporting wrong peak does not pay
- ditto if a group of agents try a coordinated misreport these properties are characteristic

Moulin (2017) generalizes this result to any problem where
individual allocations are single dimensional
preferences are single-peaked
the feasibility constraints are convex
examples: voting over an interval
trading between two suppliers and three demanders: $z_{1}+z_{2}=z_{3}+z_{4}+z_{5}$

Model 2: Perfect Complements goods

users sharing cloud computing need resources (CPUs, memory, bandwidth, etc.) in fixed proportions
entrepreneurs need labor, capital, and raw material, in fixed proportions
A the set of goods, $\omega \in \mathbb{R}_{+}^{A}$ the manna, agent i 's utility

$$
u_{i}\left(z_{i}\right)=\min _{a \in A}\left\{\frac{z_{i a}}{w_{i a}}\right\}
$$

rule of interest: the Egalitarian rule $E E(\omega)$ (Pazner and Schmeidler (1979))
find the largest parameter λ such that for some feasible allocation z

$$
u_{i}\left(z_{i}\right) \geq u_{i}(\lambda \omega) \text { for all } i
$$

\rightarrow implement z
equivalently: find an efficient allocation equalizing the relative utilities

$$
\frac{\text { utility of my share } u_{i}\left(z_{i}\right)}{\text { my utility of all the resources }}
$$

easy to compute: find the critical overdemanded commodity (typically only one) and use it to measure utilities
example: $\omega=\left(\omega_{a}, \omega_{b}\right)=(6,4)$
Ann: $u_{1}\left(a_{1}, b_{1}\right)=\min \left\{\frac{a_{1}}{3}, \frac{b_{1}}{5}\right\}$; Bob: $u_{2}\left(a_{2}, b_{2}\right)=\min \left\{\frac{a_{2}}{2}, b_{2}\right\}$; Charles: $u_{3}\left(a_{3}, b_{3}\right.$
good A is critical:

$$
\begin{aligned}
& \frac{\frac{a_{1}}{3}}{\min \left\{\frac{6}{3}, 4\right\}}=\frac{\frac{a_{2}}{2}}{\min \left\{\frac{6}{2}, 4\right\}}=\frac{a_{3}}{\min \left\{6, \frac{4}{2}\right\}}=\frac{3}{7} \\
\Longrightarrow & \text { Ann: }\left(\frac{18}{7}, \frac{6}{7}\right) \text {; Bob: }\left(\frac{18}{7}, \frac{9}{7}\right) \text {; Charles: }\left(\frac{6}{7}, \frac{12}{7}\right)
\end{aligned}
$$

with some good B to spare
this rule is miraculous (Ghodsi et al. 2011)

- welfarist, unique, continuous in the parameters, easy to compute
- efficient and Envy-Free
- strategyproof
- groupstrategyproof
note:unused goods must be discarded !
properties are not characteristic (Xue and Li 2013)

Model 3: Perfect substitutes goods

agents report additive utilities by dividing 1000 points over the goods: siblings \rightarrow family heirlooms, enthusisatic teachers \rightarrow classes, ..
A the set of goods, $\omega \in \mathbb{R}_{+}^{A}$ the manna, agent i 's utility

$$
u_{i}\left(z_{i}\right)=\sum_{a \subset A} w_{i a} \cdot z_{i a}
$$

the Egalitarian rule is still meaningful but challenged by the Competitive rule:
find a price $p \in \mathbb{R}_{+}^{A}$ and a feasible allocation $\left(z_{i}\right)_{i \in N}$ such that z_{i} maximizes i 's utility under budget constraint

$$
p \cdot z_{i} \leq 1
$$

example: $\omega=\left(\omega_{a}, \omega_{b}\right)=(40,80)$

Ann: $u_{1}\left(a_{1}, b_{1}\right)=a_{1}+3 b_{1}$; Bob: $u_{2}\left(a_{2}, b_{2}\right)=a_{2}+2 b_{2}$
Charles: $u_{3}\left(a_{3}, b_{3}\right)=a_{3}+b_{3}$
$\operatorname{good} B$ is popular, good A is not

Competitive allocation

utilities		a (40)	$b(80)$	allocation	price	1	1	udget 40
	Ann	1	3		Ann	0	40	
	Bob	1	2		Bob	0	40	
	Charles	1	1		Charles	40	0	

Egalitarian allocation

utilities		a (40)	$b(80)$			a	b
	Ann	1	3	(rounded) allocation	Ann	0	36
	Bob	1	2		Bob	0	38
	Charles	1	1		Charles	40	6

\longrightarrow Ann envies Bob
\longrightarrow easy misreport for Ann or Bob: increase the relative worth of the good you do not get (nobody can misreport at the Competitive allocation, for this particular example)
the Competitive rule is miraculous (Eisenberg Gale 1960; Chipman and Moore 1976, Bogomolnaia et al. 2017)
the competitive utility profile maximizes the Nash product of utilities \Longrightarrow

- welfarist, unique utilities and price, continuous in the parameters, (relatively) easy to compute
- efficient and Envy-Free
- everyone benefits when the pile of goods increases (not true for $\mathrm{EE}(\omega)$
- if a good becomes more attractive to me, I receive (weakly) more of this good (not true for $\mathrm{EE}(\omega)$)
not strategyproof but no minimally fair efficient rule can be

Model 3 bis: Perfect substitutes indivisible goods

furniture, artsy objects, workers ..

No Envy no longer compatible with efficiency
a much weaker test of fairness, dating back to Steinhaus (1948)
A the set of all goods, X^{i} agent i 's share
Fair Share: $u_{i}\left(X^{i}\right) \geq \frac{1}{n} u_{i}(A)$ for all i

Question: how to adapt it when goods are indivisible?
first proposal
Fair ShareX: for all i for all $a \in A \backslash X^{i}$ we have $u_{i}\left(X^{i} \cup\{a\}\right) \geq \frac{1}{n} u_{i}(A)$
bad news: it cannot be always guaranteed

$$
\begin{array}{cccccc}
\# \text { of objects } & 1 & 1 & 1 & 1 & 8 \\
u_{1}=u_{2}=u_{3} & 2 & 2 & 2 & 2 & \frac{1}{4}
\end{array}
$$

a better proposal by Budish (2011): make each agent play an adversarial Divide and Choose game
write $\mathcal{P}=\left(Y^{i}\right)_{i \in N}$ for a $|N|$-partition of A :

$$
\text { MaxMin Share: } u_{i}\left(X^{i}\right) \geq \max _{\mathcal{P}} \min _{j \in N} u_{i}\left(Y^{j}\right)
$$

Surprising fact (Procaccia and Wang, 2014):

There are (very rare!) problems with three or more agents where we cannot give his maxmin share to each agent.

But we can always guarantee at least $\frac{2}{3}$ of his maxmin share to everyone.
\rightarrow the first statement does not raise an important practical issue
the No Envy test is the next property toward the competitive approach
it can be weakened as follows:
No Envy1: for all i, j there is $a \in X^{j}$ s.t. $u_{i}\left(X^{i}\right) \geq u_{i}\left(X^{j}-a\right)$

I do not envy your share if I can reduce it by one object
\rightarrow No Envy1 is easy to achieve: give objects in round robin fashion with a fixed priority order (the NFL draft mechanism)
\rightarrow but this mechanism is not efficient
the Nash product strikes again!

Caragianis et al. (2016) show:

A partition \mathcal{P} maximizing the product of the utilities is efficient and meets No Envy1
the maximization above is NP-hard in the number of agents and objects
but can compute an efficient and No Envy1 partition in time polynomial in the number of agents and objects
strenghtening No Envy1
No EnvyX: for all i, j for all $a \in X^{j}$ we have $u_{i}\left(X^{i}\right) \geq u_{i}\left(X^{j}-a\right)$

Open question: does a No EnvyX partition always exist ? even a possibly inefficient one?

Model 4: Perfect substitutes bads (or mixed manna)

we divide undesirable tasks: family chores \rightarrow cleaning, baby sitting; discouraged teachers \rightarrow classes,..
disutilities
Ann: $u_{1}\left(a_{1}, b_{1}\right)=a_{1}+3 b_{1}$; Bob: $u_{2}\left(a_{2}, b_{2}\right)=a_{2}+2 b_{2}$
Charles: $u_{3}\left(a_{3}, b_{3}\right)=a_{3}+b_{3}$
to divide $\left(\omega_{a}, \omega_{b}\right)=(80,40)$
$\operatorname{Bad} A$ is popular, bad B is not
same definitions of the Egalitarian and Competitive rules

Egalitarian rule

disutilities		a (80)	$b(40)$	(rounded) allocation		a	b
	Ann	1	3		Ann	53	0
	Bob	1	2		Bob	27	8
	Charles	1	1		Charles	0	32

where again Ann envies Bob and agents have easy misreporting strategies
there are now two Competitive divisions !!

disutilities		a (80)	$b(40)$		
	Ann	1	3		
	Bob	1	2		
	Charles	1	1		
allocation 1		price	1	1	budget 40
		Ann	40	0	
		Bob	40	0	
		Charles	0	40	

$$
\begin{array}{cccc}
& \text { price } & 1 & 2 \\
\\
\text { (rounded) allocation } 2 & \text { Ann } & 53 & 0 \\
& \text { Bob } & 27 & 13 \\
\text { Charles } & 0 & 27
\end{array} \text { budget } 53
$$

when we divide bads the multiplicity issue is not an anomaly, and can be very severe
\Longrightarrow we do not know a normatively compelling single-valued competitive division of chores
in fact every single-valued efficient and envy-free division rule will be discontinuous in the utility parameters (Bogomolnaia et al.2017)
so the Egalitarian rule (unique, continuous, Fairt Share) is a plausible choice to divide bads

Model 4 bis: Perfect substitutes indivisible bads (and mixed manna)
divorce, dissolution of a partnership produce assets and liabilities; so do family estates
the approximation
Fair ShareX: for all i and all $a \in X^{i}$ we have $u_{i}\left(X^{i} \backslash\{a\}\right) \geq \frac{1}{n} u_{i}(Y)$
is now always feasible, and achieved by a relatively simple, but inefficient mechanism

Open question: is Fair ShareX compatible with efficiency?

No Envy1: for all i, j there is $a \in X^{j}$ s.t. $u_{i}\left(X^{i} \backslash\{a\}\right) \leq u_{i}\left(X^{j}\right)$

I do not envy your share if I can reduce my share by one chore
\rightarrow No Envy-1 is easy to achieve: give objects in round robin fashion with a fixed priority order (the NFL draft mechanism)
\rightarrow but this mechanism is not efficient

Open question: is No Envy1 compatible with efficiency?
fair division mechanisms eschew the need to define precise property rights, or to use direct bargaining or markets; they are centralized allocation rules with very small transaction costs
the power of theoretical rules is in their normative properties, but they are vindicated only if real participants in real problems adopt them
their (soft) implementation on free websites like SPLIDDIT, Adjusted Winner is currently limited to a handful of "iconic" division problems such as the ones described above, but also sharing the rent between flatmates, sharing a taxi ride, or distributing credit in a joint project

Thank You

