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Abstract

Fair Division, a key concern in the design of many social institutions,
is for 70 years the subject of interdisciplinary research at the interface of
mathematics, economics and game theory.

Motivated by the proliferation of moneyless transactions on the inter-
net, the Computer Science community has recently taken a deep interest
in fairness principles and practical division rules. The resulting literature
brings a fresh concern for computational simplicity (scalable rules), and
realistic implementation.

In this survey of the most salient Fair Division results of the past
thirty years, we concentrate on division rules with the best potential for
practical implementation. The critical design parameter is the message
space that the agents must use to report their individual preferences. A
simple preference domain is key both to realistic implementation, and to
the existence of division rules with strong normative and incentive prop-
erties. We discuss successively the one-dimensional single-peaked domain,
Leontief utilities, ordinal ranking, dichotomous preferences, and additive
utilities. Some of the theoretical results in the latter domain are already
implemented in the user-friendly SPLIDDIT platform (spliddit.org).

Keywords: manna, goods, bads, envy free, fair share, competitive division,
egalitarian division, preference domains
Acknowledgments: Many constructive criticisms by the Editor Matthew

Jackson, and by Haris Aziz, Ariel Procaccia and Fedor Sandomirskyi, have
greatly improved the readability and accuracy of this survey.

1 The problem and the punchline

By Fair Division (FD), we mean the problem of allocating among a given set of
participants a bundle of items called the manna, that may contain only desirable
disposable goods, but sometimes non disposable undesirable bads, or even a
combination of goods and bads. To fix ideas think of family heirlooms shared
by the siblings, of the assets of a dissolving partnership (a marriage, a bankrupt
firm), or of jobs (family chores, teaching loads, contracts) that a given set of
substitutable workers is responsible for.
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The participants (beneficiaries if we divide goods, liable agents if we allocate
bads) have equal rights to the good manna (resp. responsibilities toward the
bad one). The division rules we discuss can typically be adjusted to account
for unequal rights, but we stick for simplicity to the paramount case of equal
rights/liabilities for all participants.
Fair Division is a special case of the "commons" problem where the manna

can be any kind of resources in common property, such as a technology, nat-
ural resources, human capital, etc.. The agents apply some effort to derive
benefits from the resources, and individual allocations of the desirable outputs
must depend "fairly" upon ther profile of individual inputs: the literature on
the exploitation of such a general commons (e. g., Moulin (1995)) is much
less developed than the FD literature, where the manna shows up without any
production effort.1

Another variant of FD assume that, in addition to the items in the manna,
cash is available in any amount and agents have quasi-linear utilities. The
effi cient division of the manna is then essentially unique, and the focus is on the
fair compensations of agents who do not get much manna. A new rule applying
the Shapley value to this model challenges the Competitive and Egalitarian rules
(Moulin (1992)).

About individual preferences, we make three critical assumptions. First,
agents are selfish: they only care about their own share of the manna, not at
all about how the rest is divided among others; their preferences exhibit no
altruism, or spite. Second, everyone bears full individual responsibility for his
or her tastes; no one "needs" a bigger share of a particular item (or of the entire
manna) because without it his welfare would be unjustly low; no one has a claim
on a particular share of the resources.2 Third, related to the second point, our
division rules only take into account the profile of ordinal preferences, i. e.
the way each agent orders all his/her potential allocations. We routinely use
utility functions to represent conveniently such preferences, but their intensity
is immaterial, it cannot be measured objectively hence must be ignored.3

The punchline What makes Fair Division an interesting and diffi cult problem
is that the participants’preferences over the resources vary, so that a simple
equal split of the resources is in general ineffi cient. In an effi cient division,
the shares must be unequal, so to call them "fair" requires a convincing - and
not necessarily simple - definition of fairness. There is no single compelling
definition but the extensive academic literature a) converged in the early 1980s
on a handful of key tests, each capturing a precise normative statement that
we can agree is relevant to fairness; and b) revealed the logical incompatibilities

1Note that the website SPLIDDIT discussed in Section 6 offers solutions for two such
commons problems: Split Fare, and Assign Credit.

2So we do not cover the celebrated and popular models of rationing and bankruptcy,
(O’Neill (1982), Aumann Maschler (1985), Thomson (1985)) where agents are distinguished
by their objective individual "claims" over the resources.

3 If reporting my utility as u1 or 2u1 did matter to my final share, I would have a transparent
strategic manipulation: see e. g., Exercise 2.8 in Moulin (1988).
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between these tests, effi ciency and incentive compatibility.
Our subject here is the broad renaissance of interest in Fair Division rules

that started about three decades ago, and expanded sharply twenty years ago
when computer scientists joined microeconomists. Leaving aside the agressively
general models of the early mechanism design literature replete with impossi-
bility results (Hurwicz (1978), Maskin (1977-published 1999)), the focus turns
to allocation problems with much more structure, where participants can easily
report their preferences because they vary in a domain of very low dimension,
and where there is a chance to identify simple division rules with rich norma-
tive properties, including sometimes aligning incentives with both effi ciency and
fairness, a feast that is normally impossible in rich preference domains (Section
4). The theory of Fair Division is now much closer to practical applications.

Contents Steinhaus’(1948) paper on dividing a cake fairly is to my knowl-
edge the oldest mathematical exercise of the mechanism design literature: it is
reviewed in Section 2, in particular because computer scientists recently solved
one of its long standing open questions.
From the late 1950s to the early 1990s economists discussed Fair Division in

the context of Arrow Debreu’s economies, and their conceptual insights followed
closely the development of theories of Distributive Justice in political philoso-
phy (Sen (1970), Rawls (1971), Dworkin (1981a,b), Roemer (1996), Fleurbaey
(1996)). They ended up promoting two families of rules, one welfarist (the
Egalitarian equivalent rules), the other resourcist (the Competitive rule): see
Section 3. This work is very general because it allows arbitrary preferences in
the vast Arrow Debreu domain; it is very short on applications.
Shortly after its birth in the early 1990s, the Internet fostered many peer to

peer interactions to divvy computing resources, files, data, reputation scores,
and many other commodities; to regulate such interactions, which mostly ex-
clude the exchange of money, we need division rules that are both transparent
and agreeable, in other words, fair. Thus concepts of fairness and their interac-
tion with effi ciency became relevant to the Computer Science (CS) community,
that brought to the debate tits own methodology and normative concerns. An
example of the latter is the evaluation of the computational complexity of di-
vision rules; an example of the latter is the systematic quest for numerical
evaluations of the tradeoffs between normative requirements proven to be in-
compatible.
General Arrow Debreu (AD) preferences were dismissed at once as impracti-

cal, because no real person can perceive, let alone formulate, the complex pattern
of indifference surfaces that the AD domain allows. Instead the focus is on FD
problems with enough structure that individual characteristics are described by
a simple message (a single number, a simple ranking). The rule should also be
scalable, i. e., easily computed even for a large number of participants or items
to divide.
In Section 4 we describe three problems where a "perfect" rule can be found:

it combines fairness, effi ciency and incentive compatibility in the strong sense of
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Strategyproofness. They are: the division of a single non disposable commodity
(subsection 4.1); and the division of multiple goods when preferences are linear
and dichotomous (subsection 4.2), or exhibit perfect complementarity (subsec-
tion 4.3). Interestingly in each case the ideal rule follows a simple egalitarian
principle.
The next four Sections collect the most important new results and open ques-

tions of the recent Fair Division literature. Each Section rests on a "practical"
restriction of the domain of individual preferences.
In Section 5 agents must be assigned to objects (one object at most per

person) and individual reports are a simple ordering of the objects from best
to worst. Fairness is achieved by randomization (or time-sharing). This model
informs many applications: the allocation of rooms on campus, of students
to high schools, and of organs for transplant. The theoretical results develop
around two practical solutions: the Random Priority, and Probabilistic Serial
rules.
In Section 6, preferences are linear, represented by additive utilities, thus

ruling out complementarities between the commodities in the manna. The Com-
petitive rule is compelling when the manna contains only goods, in particular
because it maximizes the Nash product of utilities. However if the manna is
made of bads (or a mixture of goods and bads) multiple competitive divisions
is a frequent occurence, and the Egalitarian approach offer plausible alternative
rules.
The contribution of the CS community is especially prominent in Section

7, where the task is to allocate indivisible objects, without randomization or
cash compensations, and utilities are simply additive over the objects (the cake
division model of Section 2 is a limit case). We look for a good approximation
of the Egalitarian and Competitive rules. This is easy for the former but not for
the latter rule. Even approximating the Envy Free property proves challenging.
The final Section 8 collects open questions, in addition to the ones we en-

countered along the way, thus suggesting future directions for research.

2 Cake cutting: an algorithmic story

Divide and Choose (D&C) appears in the Bible (Chapter 13 of the Book of
Genesis), and is likely the oldest Fair Division rule in recorded history. If the
Divider splits the pile of manna in two parts she consider equally valuable, the
outcome is fair to her because she gets as good a share as the Chooser’s; it is
fair as well to the Chooser because no matter what the Divider does, he can
pick a share that is at least as good to him as the Divider’s share. Each agent
can ensure that he/she prefers his/her share to the other agent’s share, and if
this does not happen, he/she brought it upon him/her-self.
The property above is the well known Envy Free test which plays a key role

throughout this review, and is closely related to the Competitive approach. On
the practical side, the utter simplicity of the messages by the two participants is
very appealing. Chooser needs only compare two shares, a query, while Divider
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needs only to report a cut : neither of them must report anything more about
own preferences.
The mathematician Hugo Steinhaus (1948) was the first to propose a cake-

cutting rule among any number of agents preserving this simplicity of messages
and implementing a weaker test of fairness than Envy Free. Let n agents divide
the cake C, a measurable set in an Euclidian space, and let ui be an atomless
non negative measure on C representing the preferences of agent i, i ∈ N : so
ui(zi) is his utility for consuming the share zi, where zi any (measurable) subset
of C. Importantly these utilities are additive: ui(zi ∪ z′i) = ui(zi) + ui(z

′
i), just

like in Sections 6 and 7 below.
We call Fair Share (FS) the test that Steinhaus’rule is designed to ensure.

The measurable partition (zi)i∈N of C guarantees FS iff

ui(zi) ≥
1

n
ui(C) for all i ∈ N

Envy Free (EF) requires instead

ui(zi) ≥ ui(zj) for all i, j ∈ N (1)

and by additivity of zi → ui(zi) we see that EF implies FS (but not vice versa).
Steinhaus’rule uses only cuts and queries by the agents themselves. Round

1. Agent 1 cuts a share z1 which he claims is worth exactly u1(z1) = 1
nu1(C);

this share is offered to agent 2: if 2 says u2(z1) > 1
nu2(C) she must claim a

smaller share z2 ⊂ z1 that she says is worth u2(z2) = 1
nu2(C), then this piece

is offered to agent 3; if 2 says u2(z1) ≤ 1
nu2(C) then z1, still claimed by 1, is

offered to agent 3; and so on until every agent has been offered (some reduction
of) the initial share, at which point the remaining share goes to the last agent
who claimed it (e. g. agent 1 gets z1 if nobody touched it). Round 2 repeats
Round 1 but with a smaller cake and one less agent. And so on.
If in this algorithm agent i always answers queries and select cuts truthfully

(following her actual preferences), she is guaranteed to end up with a share worth
1
nui(C) or more.4 This is a substantial incentive property (shared by D&C ),
which is however much weaker than Strategyproofness discussed in Sections 4
and 5: a well informed Divider can anticipate the Chooser’s reactions and use
this knowledge to achieve much more than his FS utility.5

Here is a long standing question in the mathematical theory of Fair Division:
can we design in the cake-cutting model an algorithm working by cuts and
queries and guaranteeing an Envy Free share to any truthful agent?
With three agents, the relatively simple algorithm invented by Selfridge and

Conway (quoted by Robertson & Webb (1998)) achieves exactly this. It works
as follows.

4Simply because if she does not get a share in the first round, the cake remaining in round
2 is worth at least n−1

n
ui(C) to her.

5The moving knife procedure, due to Banach and Knaster and reported in the follow up
paper Steinhaus (1949), implements similarly Fair Share but it is much less effi cient that the
above rule because the path of the knife is arbitrary.
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Agent 1 cuts C in three parts he views as of equal value. Agents 2 and 3
tell which part they prefer from the three (reporting indifferences is OK). If they
can both get (one of) their best share, they get it and agent 1 gets the remaining
piece. Then nobody is envious (agent 1 included, if he did not lie). Now assume
shares are {z1, z2, z3} and agents 2,3 both pick z1 and nothing else. Also label
z2, z3 so that u2(z2) ≥ u2(z3). Then we ask agent 2 to trim z1 to z′1 ⊂ z1 such
that u2(z′1) = u2(z2). Next agent 3 picks a share in {z′1, z2, z3}: if he picks z′1
then agent 2 picks z2; if 3 picks z2 or z3 then 2 must choose z′1. We have now
allocated z′1, z2 and z3 and nobody is envious in the division of this smaller cake.
We must still divide carefully the trimmed part z0 = z1−z′1. Call i the agent

in 2,3 who did get z′1, and j the other in 2,3. We ask agent j to divide z0 in
three parts of equal value, then agents i,1, and j pick one of those parts, in that
order. Note that 1 is not envious of i because i got a subset of z1 while 1 got
more than either z2 or z3, that he values more than z1. That neither i nor j
is envious is clear.
This algorithm delivers a non envious division of the cake in at most five cuts

and six queries. It stands to reason that the number of cuts and queries will
grow fast when we attempt to generalize it to an arbitrary number of agents:
in fact this growth is at least exponential as shown by Branzei (2015).
Brams & Taylor (1995,1996), a political scientist and a mathematician, con-

structed the first such generalization, in which the length of the algorithm is
finite but unbounded in the number of agents. Recently Aziz & Mc Kenzie
(2016), two computer scientists, found an algorithm with a finite (albeit enor-
mous) number of cuts and queries.
One serious problem of these algorithms, already apparent in Selfridge and

Conway, is that they generate "crumbs". The S&C algorithm cuts the cake in
six pieces and everyone gets two pieces. The number of such pieces grows very
fast with the number of agents and some individual pieces end up microscopic.
Thus these algorithms are useless to divide a piece of land, which motivates a
stream of research about cutting the cake in connected pieces, or pieces with
specific geometric properties (Berliant et al. (1992), Aumann & Dombb (2010),
Segal-Halevi et al. (2017)).
Another drawback of D&C, Selfridge Conway, and the two general algo-

rithms just mentioned, is that they pay no attention to effi ciency. The Divider
needs no information about the Chooser’s preferences to cut the cake, and af-
ter his cut the only two possible partitions are typically ineffi cient. Of course
eliciting an effi cient division of the cake would require interpersonal comparison
of preferences, which the "cut and query" format does not allow. Theorem 5 in
Kurokawa et al. (2013) shows that no such finite algorithm exists.
The mathematical theory of Cake cutting offers many more deep and more

abstract results, early instances of which are in Dubins & Spanier (1961). A
consequence of the non atomicity of the utility measures and Lyapounov’s the-
orem is the existence of a "perfect" division of the cake, where everyone finds
all pieces of equal value. In a different vein, Su (1999) proves the existence of
a non envious division of a linear cake with only a mild continuity assumption
on preferences. A good survey is Procaccia (2013).
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3 Two theories of Distributive Justice

We review the key findings of the microeconomic theory of Fair Division until
the end of the 1980s.

3.1 Envy Free and the Competitive rule

In an Arrow Debreu (AD) economy, the manna is a bundle of desirable and
divisible commodities ω in RK+ , where K is the set of commodities. Agent i’s
share zi is non negative and the division is feasible:

∑
N zi = ω. Agent i’s

preferences are convex, continuous, and monotonic (MasColell et al. (1995))
and represented by a utility function ui.

Fair Share means

ui(zi) ≥ ui(
1

n
ω) for all i ∈ N

and is always feasible.6 . The original Envy Free test (1), due to the economist
D. Foley (1967), was quickly adopted by mathematicians (Section 2), political
philosophers and other social scientists for its normative simplicity. To econo-
mists, the key observation is that it is easy (under the assumptions above on
preferences and divisibility of the goods) to combine Effi ciency and Envy Free:
simply select a competitive equilibrium in the exchange economy where each
agent is endowed with the initial allocation 1

nω (Varian (1974)). For brevity we
call such allocations Competitive (C).7

The three concepts, Fair Share, Envy Free, and Competitive allocations,
interpret fairness as the allocation of virtual rights to each participants. Fair
Share protects my welfare by giving me the right to claim the default "equal
split allocation". If, after the manna is distributed, I can claim anyone else’s
share in lieu of the share I received, Envy Free allocations are the only ones on
which we can agree. In a Competitive division, I own the bundle 1

nω and can
trade it freely at the competitive price. Finally a Competitive division is Core
Stable: no coalition of agents could pool its endowment and, standing alone,
distribute better shares to each member of the coalition.
We keep in mind that these rights are only virtual, because a division rule is a

simple black box that delivers a final allocation and bypasses direct interactions
between agents, strategic or otherwise. The role of properties like FS, EF, C
or the Core, is to convince the agents to accept the outcome of the rule, thus
avoiding the potentially large transaction costs of direct negotiations.
A Competitive allocation always exists in the general AD domain. However

its computation is diffi cult and, more importantly, we may have multiple Com-
petitive allocations with very different welfare consequences (some examples are

6 If utilities are concave and ui(0) = 0, this requirement is stronger than ui(zi) ≥ 1
n
ui(ω).

If utilities are only quasi-concave, the latter inequalities may not be feasible.
7That is, an allocation z such that

∑
i zi = ω, and for some non zero price p ∈ RK+ , agent

i can afford to exchange 1
n
ω for zi, and weakly prefers zi to any allocation yi she can also

afford.
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in Section 6). It is impossible to identify a reasonable selection, for instance one
that varies continuously when the endowment ω or individual preferences vary.
Our goal is to define single valued division rules, at least welfarewise: the Com-
petitive rule is a compelling answer in any subdomain of the AD domain where
it is unique and continuous in the parameters of the problem; in other domains,
it is still a useful approach to fairness, but may need an additional selection step
to be guided by additional normative principles.

3.2 Egalitarian Equivalence

The Competitive approach is a theory of Justice based on equal opportunity
ex ante (the common budget set of all individual allocations) and virtual free
trade (Dworkin (1981b)). Influenced by Rawls’Theory of Justice, Pazner and
Schmeidler (1978) propose an alternative theory in which we equalize ex post
some virtual measure of individual welfare. The trick is to choose a neutral
calibration of "welfare" that does not discriminate against particular agents.
A feasible division z = (zi)i∈N of the manna is Egalitarian Equivalent (EE)

if there exists an individual allocation z0 such that each agent i is indifferent
between zi and z0.
Many EE and effi cient allocations exist. To extract a single valued profile of

welfares, we choose a calibration line in the consumption space, and restrict the
benchmark allocations z0 to that line. The most popular choice (as explained
below) is the line borne by the manna ω. It defines a division rule that we write
EE(ω), selecting a feasible effi cient division z such that

for some λ > 0: ui(zi) = ui(λω) for all i ∈ N (2)

Existence of such allocation only requires preferences to be continuous and
(strictly) monotonic. Uniqueness in welfare is then guaranteed.8

Alternative choices of the benchmark vector lead to the rules EE(ek) (where
ek is the coordinate vector of good k, interpreted as "numeraire") or EE(θ) for
an arbitrary positive bundle θ. In equation (2) above, simply replace ω by ek

or θ.
So the Egalitarian rules, unlike the Competitive one, adjust well to non

convex preferences, but rely critically on their monotonicity. Contrast this with
the Competitive rule, well defined for non monotonic preferences, as we illustrate
in Section 6, and even more general preferences.9

Beyond the differences in their existence properties, the two approaches cap-
ture radically different interpretation of FD: equal ownership of the manna, ver-
sus equal right to consume the manna. The following simple example illustrate
this contrast.

8With monotonic but not strictly monotonic preferences, we can still define agent i’s virtual
welfare at zi as the smallest λi such that ui(zi) = ui(λiω), and maximizie the leximin ordering
over all feasible virtual welfare profiles. . Then EE(ω) is single-valued if the set of such profiles
is convex.

9The most general existence results require only an improvement correspondence with an
open graph: see Mas-Colell (1992) and McLennan (2018).

8



The manna contains $210 and one indivisible object with cash value 90 >
75 > 15 to the three agents 1,2,3 respectively. Utilities are linear in money.
Effi ciency requires that agent 1 gets the object, but how should the money be
divided, so as to give a fair compensation to 2 and 3?
The Competitive rule picks a price p for the object between 90 and 75 (the

price of cash is 1);10 2 and 3 each receive, in cash,one third of 210+ p, the
competitive value of the manna, so between $95 and $100, and agent 1 keeps
between $20 and $10 of the cash.Even though agent 3 derives little utility from
the object, he is entitled to a "rent" of at least $25. On the other hand the
Egalitarian solution EE(ω) gives cash to 2 and 3 in proportion to $285 and
$225, their total valuations of the manna, and agent 1 gets the same proportion
of $300: so 2 gets $105.5, 3 gets $83.3 and 1 keeps $20.7.

3.3 Solidarity properties

A Fair Division rule makes a recommendation for every possible choice of the
manna, of the set of beneficiaries, and of their preferences. From the next
Section onward the set of preferences that a given rule can accomodate, its
preference domain, is its main defining characteristic. The domains we consider
are much smaller than the infinite dimensional Arrow Debreu domain.
The fairness tests discussed so far apply to a fixed FD problem (a single

manna and profile of preferences), they do not compare the recommendation of
the rule across different problems. But suppose that two problems are “clearly
comparable”, by which we mean that a single parameter of the problem changes,
and this move has clear welfare consequences. Then the corresponding recom-
mendations of the rule better be comparable as well, lest an objection arises
against the division in problem 2 based on the precedent of the division in prob-
lem 1. Moreover, properties like the two we now introduce provide insights
into the logic behind how a rule works, instead of placing restrictions on the
outcome for a particular set of parameters like the Envy Free test.
One instance of clear comparability is when the beneficiaries of the manna

do not change but there is more (good) manna to share in one problem than
in the other. This is good news for the agents as a group, so if an agent ends
up with a worse share of the better manna, she has a legitimate objection: we
all have equal rights to the manna therefore the happy shock on the resources
should be good news for everyone. Moulin & Thomson (1988) introduce the
corresponding fairness test in the case of a good manna.

Resource Monotonicity (RM): ω ≤ ω′ =⇒ ui(zi) ≤ ui(z′i) for all i ∈ N

where the rule picks z or z′ when the manna is ω or ω′. Of course if we divide
a bad manna, the second inequality should simply be reversed.
The second monotonicity test compares the outcomes of two problems that

only differ in the presence of one particular agent. As there are fewer of us to

10 It is not unique because the object is indivisible.
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share the same cake (good manna), this should be good news for each of us:

Population Monotonicity (PM): N ′ = N�{i∗} =⇒ ui(zi) ≤ ui(z′i) for all i ∈ N ′

where the rule picks z or z′ when agent i∗ is present or not. (we reverse the
inequality if the manna is bad). The axiom is due to Thomson (1983).
These two properties capture quite nicely the idea of solidarity between our

agents: the adjustment to exogenous shocks in the data of the problem should
not create winners and losers.
Although RM and PM are quite strong requirements there are many effi cient

division rules meeting both, in particular the Egalitarian rule EE(θ) just defined,
for any benchmark vector θ. And there are many more, for instance the money
metric rules MM(p) that we now define.
Fix the strictly positive price vector p, and find the largest virtual budget b

such that for some feasible allocation z = (zi)i∈N , we have

ui(zi) = max
y:p·yi≤b

ui(yi) for all i ∈ N

Then MM(p) outputs allocation z (single valued at least welfarewise).
To check that EE(θ) and meet RM, observe that if z = (zi)i∈N is feasible

at ω and ui(zi) = ui(λθ) (resp. ui(zi) = maxp·yi≤b ui(yi)) for all i, then at ω
′

the same benchmark level λ (resp. the same budget b) is feasible as well, so the
largest feasible λ′ (or the largest feasible b′) increases. The proof of PM is just
as easy.
But all rules EE(θ) and MM(p) fail Fair Share!
Consider a two-agent, two-good problem with the manna ω = (1, 3), the

benchmark bundle θ = (3, 1) and the utilities

u1(x1, y1) = x1 + 3y1 ; u2(x2, y2) = 3x2 + y2

Effi ciency requires x1 · y2 = 0 and EE( θ) chooses a division such that

3y1
u1(3, 1)

=
3x2 + y2
u2(3, 1)

=⇒ z1 = (0, 1), z2 = (3, 2)

so that u1(z1) = u1(
3
10ω) < u1(

1
2ω).

Next choose p = (1, 3) and check that the maximal virtual budget is b = 9
5 ,

and that the corresponding money metric allocation gives z1 = (0, 35 ) to agent
1, violating FS.
On the other hand the rule EE(ω) meets PM and FS but violates RM. The

deeper reason is a systematic impossibility result: if the domain of preferences
contains Leontief preferences (goods are perfect complements: see below and
Subsection 4.3), no effi cient and Resource Monotonic rule can guarantee Fair
Share. (Moulin and Thomson (1988)).
The proof uses again a simple two-agent, two-good problem with ω = (3, 3)

and Leontief utilities

u1(x1, y1) = min{1

2
x1, y1} ; u2(x2, y2) = min{x2,

1

2
y2}
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Suppose a rule meets FS and RM and selects the division z. Consider the
problem with a larger manna ω′ = (6, 3) where it picks z′. By FS and feasibility
we have

u1(z
′
1) ≥ u1(3,

3

2
) =⇒ z′1 ≥ (3,

3

2
) =⇒ z′2 ≤ (3,

3

2
) =⇒ u2(z

′
2) ≤

3

4

Now RM implies u2(z2) ≤ 3
4 . A symmetrical argument yields u1(z1) ≤ 3

4 so
the division z is ineffi cient because z̃1 = (2, 1), z̃2 = (1, 2) is feasible and Pareto
superior to z.

In the linear preference domain of Section 6 and in the domain of Cobb
Doublas utilities, the Competitive rule (for goods) meets FS, RM and PM.
Interestingly in the subdomain of Leontief preferences, although FS and RM are
incompatible as we just showed, the incentive compatibilities of the Egalitarian
rules EE(ω) and EE(θ) are very attractive: see subsection 4.3.

4 Practical division rules: three compelling ex-
amples

The two theories above aim at great generality, but we already mentioned that
real participants in a Fair Division exercise cannot form preferences as complex
as the AD domain allows, let alone report them.
We describe here three problems with a preference domain simple enough

for their practical implementation: respectively a positive number, a subset of a
common finite set, and a line in the positive orthant. In each case we find one or
more division rule combining Effi ciency, Fairness and Incentive Compatibility,
a rare treat in the mechanism design literature.
In the first two models the canonical rule is Competitive and has an egalitar-

ian interpretation, though not in the sense of the Egalitarian Equivalent family
EE(θ), EE(ω) discussed in Section 3. In the third model the rules of interest
are precisely the Egalitarian Equivalent ones of Section 3, and they are not
Competitive.

4.1 One non disposable item

The manna ω is a positive number, the amount of a non disposable item: 20
hours of baby sitting between family members, 200 shares of a stock between
investors, 20 students between teachers, 200 identical cars between car dealers,
etc..
Agents’preferences over their share are convex over [0, ω], with a single max-

imum, which gives the familiar single-peaked shape. Agent i’s most preferred
share is πi, 0 ≤ πi ≤ ω; her preferences go up from the share 0 to πi, then down
from πi to ω. So πi = ω means that i wants as much of the item as possible,
and πi = 0 as little as possible: the item can be a genuine good for some, and
a genuine bad for others.
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If in a feasible allocation z = (zi)i∈N of ω between the agents in N , we can
find i, j such that zi < πi ad zj > πj , then a (small) transfer from j to i is
Pareto improving. Hence the effi cient allocations are described very simply. We
say that the manna is overdemanded if

∑
i πi > ω, in which case z is effi cient if

and only if zi ≤ πi for all i. If the manna is underdemanded,
∑
i πi < ω, the

effi cient allocations are characterized by zi ≥ πi for all i. And if
∑
i πi = ω the

unique effi cient allocation gives his/her peak to everyone.
The canonical uniform division rule proposed by Sprumont (1991) starts

from the equal split (fair share) allocation zi = 1
nω for all i,: it stays there if the

peaks πi are all on the same side of the fair share. If this is not the case, write
Nunder and Nover for the non empty sets of underdemanding agents, πi < 1

nω,
and of overdemanding agents,πj > 1

nω, respectively. Finally N
fs is the set of

agents k whose peak is “just right”: πk = 1
nω.

The uniform rule gives zk = 1
nω to each k ∈ N

fs, as required by Fair Share.
It is feasible and Pareto improving to decrease zi for underdemanding agents,
and increase zj for the overdemanding ones. If the manna is overdemanded,
effi ciency and feasibility imply that each i ∈ Nunder gets her peak, zi = πi,
while agents j in Nover get zj ∈ [ 1nω, πj ]: the latter agents cannot all get their
peak. The uniform rule equalizes the gains (zj − 1

nω) for those agents, as much
as allowed by the constraint zj ≤ πj : so zj = min{λ, πj}, where λ is determined
by feasibility.11

Symmetrically, if the manna is underdemanded, agents in Nover ∪ Nfs get
their peak while those in Nunder get zi = max{µ, πj}, where µ is determined
by feasibility.
The uniform rule is Competitive: we set a price of 1 and a budget of λ in

the case of overdemand, and a price of −1 with a budget −µ (I can buy µ units
or more) if there is underdemand. In particular, the allocation is Envy Free.
The uniform rule has two attractive features. First, the message of each

agent is a single number, the peak of one’s preferences: he does not need to
report, or even conceptualise, how allocations compare across the peak of his
preferences. The second property is stated in the Theorem below.
A division rule elicits messages from the agents (related to their preferences)

and outputs an allocation for each agent. The rule is Strategyproof (SP) if,
once the messages of other agents are fixed, reporting my “truthful”message
(here the peak of my preferences) never results in a worse outcome for me than
any misreport. It is GroupStrategyproof (GSP) if no subgroup of agents can
coordinate their misreport so that they all end up no worse than from telling
the truth, and at least one of them is strictly better off.
The rule is Anonymous if it does not discriminate among agents on the

basis of their names: formally, if two agents exchange their messages, ceteris
paribus, their allocations are exchanged as well and other agents’allocations do
not change. All the rules showcased in this Section and later are Anonymous.

Theorem (Sprumont (1991), Ching (1994)): The uniform rule is Anony-
mous and GroupStrategyproof. No other Effi cient and Anonymous rule is Group-

11 It solves the equation
∑
i∈Nunder∪Nfs πi +

∑
j∈Nover min{λ, πj} = ω.
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Strategyproof.
Strategyproofness is clear from the description of the rule above. Assume

underdemand: only an underdemanding agent may not get her peak allocation;
pretending to be overdemanding she gets an allocation no smaller than 1

nω,
therefore worse than the truthful allocation zi. If she still reports as underde-
manding, the only way to change zi is by reporting π′i in ]zi,

1
nω[, then z′i is also

in ]zi,
1
nω[ and she is worse off.

There are many other Effi cient and Anonymous rules. If M is the set of
agents on the long side (Nover — resp Nunder — if the manna is over — resp
under —demanded) their shares could be proportional to |πi− 1

nω|, or we could
equalize as much as possible |πi−zi| and so on. But all such rules are vulnerable
to strategic misreports.
Note finally that neither RM not PM apply to this model as preferences are

not monotonic.
The literature provides alternative characterizations of the uniform rule and

explores the large family of Effi cient and GSP, but non Anonymous rules: Bar-
bera et al. (1997), Moulin (1999)). See also a combinatorial variant of the
model to Fair Division on a bipartite graph (Bochet et al. (2012, 2013)), and a
generalisation encompassing both Voting and Fair Division (Moulin (2017)).

4.2 Dichotomous additive utilities

As mentioned before the Theorem above, the uniform rule only requires agents to
identify their top share of the manna, not the potentially complex comparisons
across the peak allowed in the single peaked domain. In our second model the
manna is a set of semi-homogenous goods, in the sense that each agent likes
only a subset of these, but does not distinguish between the goods that she
likes. This subset fully describes her preference relation.
Examples include patients of different blood types sharing blood also of

different types; workers sharing time on several machines delivering identi-
cal service but requiring specific handling skills, partners dividing clients who
speak different languages, as do the partners, assignment of classrooms to char-
ter schools (Kurokawa et al. (2015)), and organs for transplants (Roth et al.
(2004)).
Let A be the set of goods. The profile of preferences is represented by a

matrix u = [uia]N×A ∈ {0, 1}N×A, where uia = 1 (resp. 0) means that agent i
“likes”(dislikes) good a. Recall the cardinal intensity of utility has no meaning
in this or other models of the paper: but the common calibration at uia = 1
proves very useful for describing the canonical rule.
There is a positive amount of each good so the manna is ω ∈ RA++. A feasible

division of ω is, as usual, z = (zi)i∈N such that
∑
N zi = ω and zi ≥ 0.

Notation: for any S ⊆ N,X ⊆ A, ζS =
∑
i∈S ζi, ξX =

∑
a∈X ξa and

χSX =
∑
i∈S,a∈X χia.

It is convenient to represent agent i’s preferences by his “like set”Li = {a ∈
A|uia = 1}. Without loss we assume that each Li is non empty and each good
is liked by at least one agent. Then agent i’s utility at z is Ui = ui · zi = ziLi .
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If the utility profile U is feasible at ω, it satisfies the inequalities

US ≤ ωL(S) for all S (3)

where L(S) = ∪i∈SLi. By Hall’s theorem these inequalities together character-
ize feasible profiles U .
Effi ciency of the division z requires zia = 0 if a /∈ Li: goods are eaten only

by agents who like them. This implies UN = ωA. Conversely, U is effi cient if
and only if it is feasible ((3)) and UN = ωA.

Therefore the effi cient frontier of our problem is described as the core of the
cooperative game (N, v) where v(S) = ωL(S) for all S. This game is clearly
concave12 therefore its core contains a canonical Lorenz dominant profile U∗

(Dutta & Ray (1989)) equalizing the utilities Ui as much as permitted by the
feasibility constraints (3). So U∗ maximizes the smallest individual utility, and
for all s, 1 ≤ s ≤ n− 1, U∗ it also maximizes the smallest sum US when S is of
size s:13

min
S:|S|=s

U∗S = max
U feasible

min
S:|S|=s

US

There is a simple algorithm to compute U∗ and the corresponding division
of the goods, that also reveals why U∗ is the Competitive allocation. Find first
the largest set of agents S1 in N such that

S1 ∈ arg min
S⊆N

ωL(S)

|S| (4)

If S and T both solves the program above, so does S∪T , therefore the “largest”
solution is well defined. If S1 = N , property (4) means that the equal split
profile U∗i = 1

nωAis feasible, and it is of course the most egalitarian division. If,
on the contrary S1  N , then

ωL(S1)
|S1| < 1

nωA. Agents in S
1 share all they can

eat (the goods in L(S1)), and it is feasible (by Hall’s Theorem) to divide those
goods so that each end up with the same utility

U∗i = U∗1 =
ωL(S1)

|S1| for each i ∈ S1

Next we find S2, the largest set such that

S2 ⊆ N�S1 and S2 ∈ arg min
S⊆N�S1

ωL(S)�L(S1)

|S|

and those agents can (by Hall’s Theorem) share the goods in L(S2)�L(S1) to
achieve the common utility

U∗i = U∗2 =
ωL(S2)�L(S1)

|S2| >
ωL(S1)

|S1| for all i ∈ S2

12For any S ⊂ T ⊂ N and any i we have v(T ∪ i)− v(T ) ≤ v(S ∪ i)− v(S).
13 It also maximizes the sum

∑
N f(Ui) for any concave function f .
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The last inequality is critical. If the opposite inequality was true, it would imply
ωL(S2)�L(S1)+ωL(S1)

|S2|+|S1| ≤ ωL(S1)
|S1| and contradict the definition of S1.

Repeating this argument we build a partition S1, · · · , SK of N and give to
Sk all the goods in Xk = L(Sk)�L(∪k−1`=1S

`) (and nothing else), which they
(can) divide to achieve equal utility U∗k =

ω
Xk

|Sk| . The sequence U
∗k increases

strictly.
Give now a budget of 1 to each agent and set the price pk = 1

U∗k
for the

goods in Xk. An agent in Sk does not like any of the goods in ∪K`=k+1X`, and
those in Xk are the cheapest in ∪k`=1X`: therefore this agent buys exactly U∗k

units in Xk, so the canonical division is indeed the Competitive one.
In the following five-agent, four-good example

a b c d
u1 1 0 1 1
u2 1 0 0 0
u3 0 1 1 0
u4 1 0 1 0
u5 0 0 1 1
ω 1 2 3 6

(5)

the partition of N is S1 = {2}, S2 = {3.4}, S3 = {1, 5} and that of A is X1 =
{a}, X2 = {b, c}, X3 = {d}, with the utility profile U∗ = (3, 1, 2.5, 2.5, 3).
The Shapley value of the game (N, v) above is another natural selection in

the set of effi cient utility profiles, with quite different welfare consequences. In
the example it delivers the profile U∼ = (4.08, 0.33, 2.75, 1.09, 3.75). But the
Shapley division rule is not Strategyproof and can generate Envy.

Theorem: The Competitive rule just described is GroupStrategyproof, picks
an Envy Free allocation, and guarantees Fair Share. It is also Resource and
Population Monotonic.

Envy Free is true as always for the Competitive division. RM and PM follow
from the same property of the Competitive division in the more general model
of Section 6. GSP is proven much like in the assignment variant of the model
described below.

The assignment problem Bogomolnaia & Moulin (2004) discuss a familiar
variant of the model above with |A| = |N |, ω = eA and the feasibility constraint
ziA = 1 for all i. Think of the objects as one day jobs and of agents as substi-
tutable workers who can complete one job per day (whether they like the job or
not). An allocation z = [zia]N×A, written as a N × A matrix, is feasible if and
only if it is bi-stochastic. The entry zia represent the amount of time worker i
is assigned to job a, or the probability that i is assigned to a.
Preferences are as before, and the analysis is essentially the same. The utility

profile U is feasible and effi cient if and only if

US ≤ min{|S|, |L(S)|} for all S ⊂ N and UN = |A|
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The new cooperative game (N,w), w(S) = min{|S|, |L(S)|} is still concave, and
the Lorenz dominant profile U∗ in its core defines a GSP division rule with a
similar competitive interpretation (hence ruling out Envy).
In the next Section we come back to the assignment model with much more

complex preferences. The miraculous compatibility of Effi ciency, GSP and fair-
ness is then lost.

4.3 Complementary goods: Leontief preferences

In the previous problem two goods that an agent “likes”are perfect substitute.
We turn to the polar opposite case where the goods are perfect complements:
each agent “needs”all goods to generate utility from the manna. For instance
entrepreneurs share a manna made of capital goods, raw materials and labor,
each needs all three to open shop but not necessarily in the same proportions. In
cloud computing, each user needs a personal combination of memory, computing
resources and bandwidth to perform his task (Ghodsi et al. (2011)). And so
on.
Formally, A is still the set of goods, and agent i’s preferences are represented

by the following utility function, where (κia)a∈A are non negative parameters:

ui(zi) = min
a∈A
{ zia
κia
}

Note that κia = 0 simply means that i does not need good a.
Thus agent i reports the vector (κia)a∈A, up to a multiplicative constant.

This is more complex than reporting a single number in Subsection 4.1, but still
manageable if the number of goods is not large.
The rules of interest in this problem are the Egalitarian ones, EE(θ) and

EE(ω). Computing them is relatively simple.
A problem is described by N,A, the matrix of parameters [κia]N×A ∈ RN×A+ ,

and the manna ω ∈ RA++. We fix θ ∈ RA++ and compute EE(θ). It is convenient
to normalize the preference parameters so that for each agent

1 = ui(κi) = ui(θ)⇐⇒ max
a

κia
θa

= 1 (6)

We are looking for the largest parameter λ such that for some feasible allocation
z and all i:

ui(zi) ≥ ui(λθ) = λ⇐⇒ zi ≥ λκi
Feasibility requires λ

∑
j κjb ≤ ωb for all b, therefore the largest λ correspond

to a bottleneck good a∗ (typically unique):

λ∗ =
ωa∗

κNa∗
where

ωa∗

κNa∗
= min

b

ωb
κNb

=⇒ z∗i =
ωa∗

κNa∗
κi ; Ui = ui(z

∗
i ) =

ωa∗

κNa∗
for all i (7)

Note that the allocation z∗ is feasible but does not exhaust the non-botlleneck
goods: the excess supply of these goods cannot help improve the utility of
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anyone, so we may simply dispose of them. This last feature is important for
the following incentive statement.

Theorem (Ghodsi et al. (2011)): Each division rule EE(θ) and EE(ω)
with disposal of redundant goods is GroupStrategyproof, and picks an Envy Free
allocation.

Recall from Subsection 3.3 that each EE(θ) meets RM and PM but fails FS,
while EE(ω) meets FS and PM but fails RM.

Checking Envy Free is easy. By equations (7), agent i envying j requires
zi � zj ⇐⇒ κib � κjb for all b, contradicting the normalisation (6).
Strategyproofness requires more work. Assume without loss ω = eA (the unit

vector), and consider agent 1 reporting κ′1 in lieu of κ1. Set κ
′
i = κi for other

agents, and let z, z′ be the corresponding allocations. Recall a∗ is the "truthful"
bottleneck good, and let b∗ be a bottleneck good at κ′. The misreport κ′1 by
the single agent 1 is successful iff z′1b > z1b for all b, which we assume. By (7)
and ω = e this means

κ′1b
κ′Nb∗

>
κ1b
κNa∗

for all b (8)

The normalisation of κ1 and κ′1 imply κ
′
1b ≤ κ1b for some b (possibly a∗ itself).

This and (8) gives

κ1b
κ′Nb∗

≥ κ′1b
κ′Nb∗

>
κ1b
κNa∗

=⇒ κ′Nb∗ < κNa∗

Now κ′Na∗ ≤ κ′Nb∗ by definition of b, so we get κ
′
1a∗ < κ1a∗ . This, and (8)

applied to a∗, gives

κ′1a∗

κ′Nb∗
>

κ1a∗

κNa∗
>

κ′1a∗

κ′Na∗
=⇒ κ′Nb∗ < κ′Na∗

contradicting the definition of b∗.
The proof of the GSP property is similar.

Note that if the rule must allocate redundant supply of non bottleneck goods
to some agents, Strategyproofness is no longer compatible with Effi ciency and
Envy Freeness (Nicolo (2004)).
Li & Xue (2013) discuss many other Effi cient and GSP rules, in particular

we can replace the benchmark line along θ by an arbitrary increasing path in
RA++.
Finally we compute the Competitive division: it is easy in this model because

a general result by Eisenberg and Gale (discussed in Section 6) implies that this
allocation maximizes the Nash product of utilities. Agent i’s allocation takes
the form zi = λiκi (plus some redundant goods) with corresponding utility λi.
We must solve the program

max
∑
i

lnλi such that ∀a :
∑
i

κiaλi ≤ ωa
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The tight constraint(s)
∑
i κiãλi = ωã identifies the bottleneck good(s) ã for

this allocation, then the First Order Conditions imply that κiãλi is independent
of i. Thus the CEEI splits the bottleneck good(s) equally:

ziã =
1

n
ωã ; zib =

1

n

κib
κiã

ωã ; Ui =
1

n

1

κiã
ωã = λi

It is easy to check, in a two-agent two-good example, that this division rule is
not Strategyproof.

5 Random assignment

Lotteries are the time honored device achieving ex ante fairness when ex post
fairness is impossible, in particular when the manna is made of indivisible items.
They are routinely used to allocate seats in school, in universities, administrative
jobs in ancient China, rooms on campus, overdemanded tickets for shows and
games, etc.. In fact, dividing the manna in lots that are approximately equal
(in the eyes of the division manager) and assigning them with equal probability
to each beneficiary, is a simple and well known Fair Division rule. But it ignores
the agents’preferences, hence can be grossly ineffi cient and does not guarantee
Fair Share.
In this Section we discuss the assignment problem, in which each agent is

to receive, ex post, exactly one “object”: students are assigned to one school,
get one campus room, workers get one job and so on. If agents can receive any
number of objects, we are in the model of the next Section.
An important alternative interpretation of the assignment model is time

sharing. We have n machines (projects) and n workers; agent i is assigned for a
share zia of the month to machine (project) a : this problem involves no lottery
but is formally equivalent to random assignment. To fix ideas we retain the
probabilistic terminology.
The meaning of ex ante effi ciency and fairness of an allocation, or a rule, is

dictated by the domain of preferences over random allocations. One approach,
briefly discussed in the last Section 8, assumes von Neuman Morgenstern util-
ities: each agent reports a cardinal utility function, and compares lotteries by
their expected utilities. In many contexts this is too demanding: in the school
choice example, parents can not be expected to compare a handful of potential
schools in such sophisticated fashion, especially if they have only a vague idea
of the probabilities that their student will be accepted in the different schools
they apply to. But it is a relatively simple exercise to rank those schools from
best to worst.
Here we discuss this latter version of the fair assignment problem. We have

n agents in N and n objects in A (it does not matter if they are goods or bads)
and everyone is to receive, ex post, one object.14 An ex post assignment ς is
a one-to-one mapping of A into N . An ex ante assignment z is a bi-stochastic
14The model and results are easily extended to arbitrary numbers of objects and agents, as

long as we maintain the assumption that each agent receives at most one object.
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matrix [zia] ∈ [0, 1]N×A in which zia is the probability that agent i gets object a.
By the classic Birkhoff-von Neuman theorem (BvN), every ex ante assignment
z obtains as some probability distribution over ex post assignments ς.
Agent i only reports an ordinal ranking �iof the objects, and, with the ex-

ception of example (9) below, we assume that this ordering is strict (in sharp
contrast to Subsection 4.2). Note that the analysis can be extended at some
technical cost to allow for indifferences in individual preferences. The “one ob-
ject per person”constraint is what makes the report of such preferences simple:
if agents could get any number of objects they would need to compare nearly
2n subsets of A.
Of course an ordinal ranking �i of A is not enough to decide how agent i

compares all probability distributions zi on A. It does however induces a partial
ordering of ∆(A), the set of all such distributions.15 Write U(�i, a) for the
upper contour of �i at a. We define the statement “allocation zistochastically
dominates (SD) allocation z′i”:

zi �sdi z′i : ziU(�i,a) ≥ z′iU(�i,a) for all a ∈ A

zi �sdi z′i : zi �sdi z′i and ziU(�i,a) > z′iU(�i,a) for some a

With this partial ordering in hand, we adapt in the obvious way our concepts
of effi ciency, fairness and incentives. The assignment z meets Fair Share if
zi �sdi 1

ne
A (the unit vector) for all i; Envy Free if zi �sdi zj for all i, j, and

Effi ciency16 if {zi �sdi z′i for all i} =⇒ z = z′. The rule is Strategyproof if
zi �sdi z′i where zi obtains from the truthful report and z′i, ceteris paribus, from
any other report.

When agents have different status (due to their performance at some com-
petitive exam, seniority, or any other exogenous parameter), they can be ordered
accordingly, and served by the corresponding Priority rule: the first in line picks
her top ranked object, then the next in line takes the best remaining object, and
so on. This deterministic rule is clearly Strategyproof, even GroupStrategyproof
(because we rule out indifferences between objects). It is also Effi cient but not
Fair.
To restore fairness while preserving some degree of effi ciency, the Random

Priority (RP)17 rule draws randomly an ordering σ of N with uniform proba-
bility 1

n! on each ordering, and averages the corresponding deterministic assign-
ments ςσ.
The RP rule inherits the Strategyproofness property of the Priority rules.

However it is challenged on Effi ciency and Fairness grounds by the Probabilistic
Serial rule, defined by the familiar eating algorithm that we illustrate first in

15 If preferences are dichotomous as in subsection 4.2, SD is a complete ordering of ∆(A).
16The usual name is Ordinal Effi ciency, which is stronger than Ex Post Effi ciency: z is a

convex combination of effi cient deterministic assignments.
The latter property has no meaning in the time-sharing context.
17Aka Random Serial Dictatorship, an unfortunate terminology because no one is a dictator

(let alone a serial killer) in the RP rule.
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the following four-agent example:

� 1 : a � b � c � d
� 2 : a � b � d � c
� 3 : b � a � c � d
� 4 : c � d � a � b

Agents eat their favorite object at constant speed of 1. At time 12 agents 1 and 2
have eaten 1

2 of a each, while agent 3 has
1
2 of b and 4 has

1
2 of c; object a being

exhausted, agents 1 and 2 start eating object b (of which 1
2 is left), together

with 3, while 4 keeps eating c. At time 1
2 + 1

6 object b is exhausted and both 1
and 2 get 16 each, the rest going to 3; we are left with

1
3 of c not yet eaten, and

a full object d: agents 1,3 and 4 now eat the rest of c while agent 2 starts eating
d. At time 1

2 + 1
6 + 1

9 object c is finished, agents 1 and 3 get
1
9 each, and 4 gets

the rest. In the remaining 2
9 units of time, they all eat d and agent 2 gets the

biggest share 1
9 + 2

9 . The resulting assignment is

PS:

a b c d
z1 1/2 1/6 1/9 2/9
z2 1/2 1/6 0 1/3
z3 0 2/3 1/9 2/9
z4 0 0 7/9 2/9

The general definition of the PS assignment matrix (Bogomolnaia & Moulin
(2001)) is similar: agents eat for one unit of time, at the same speed, from their
best object among those not yet exhausted.18

In order to implement this assignment (whether by lotteries or time-sharing)
we need to find a BvN decomposition, which is a tedious process but only of
polynomial complexity.
By contrast, to find the RP matrix in our example, we need to average

the 24 deterministic assignments corresponding to each ordering of the agents:
e. g., ordering 2314 yields 1← c,2← a,3← b,4← d. This is, again, tedious,
but unfortunately of exponential complexity in the size of our problem. In the
example we find

RP:

a b c d
z1 1/2 1/6 1/12 1/4
z2 1/2 1/6 0 1/3
z3 0 2/3 1/12 1/4
z4 0 0 5/6 1/6

Note that it is enough to roll a dice to implement RP in an expected sense.
This works for the random interpretation of this rule, but for the time-sharing
interpretation we need to compute the matrix above.

18When individual preferences allow for indifferences, the definition of PS is a little more
involved: see Katta Sethuraman (2006) and Bogomolnaia (2015). The Priority rules and RP
are easily adjusted for indifferences with the help of the leximin ordering, as illustrated in the
example following the next Theorem.
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In the example, both agents 1 and 3 prefer PS over RP (in the Stochastic
Dominance sense), agent 4 prefer RP over PS, and agent 2 is indifferent. There
are cases (see below) where the PS assignment is Pareto superior to the RP
one, but the reverse cannot happen: this follows from statement ii) in our next
result, comparing our two mechanisms and uncovering a severe impossibility
result.

Theorem (Bogomolnaia & Moulin (2001)) Assume n ≥ 4.
i) RP is Strategyproof and meets Fair Share; but it is not Effi cient and fails
Envy Free;
ii) PS is Effi cient and Envy Free (hence meets Fair Share); but it is not Strat-
egyproof;
iii) No Effi cient and Anonymous rule can be Strategyproof as well.

Strategyproofness is a strong point in favor of RP against PS;. The only
incentives advantage of PS is the fact that the PS assignment is core stable
in the cooperative game where agents are endowed with a fair share of every
object. That RP is not core stable is implied by the fact that it is ineffi cient.
When we only have three agents and three objects, the RP matrix is in fact

Effi cient.19 When n ≥ 4, the RP rule is not GroupStrategyproof, a consequence
of the ineffi ciency of some RP assignments.
The simplest example of an ineffi cient RP assignment is a 4x4 scheduling

problem where all four agents weakly prefer an early slot to a later one; agent
1 is indifferent between the last three slots, and agent 2 between the last two;
agents 3 and 4 strictly prefer an earlier slot:

�1: a � {b, c, d}
�2: a � b � {c, d}
�3: a � b � c � d
�4: a � b � c � d

(9)

To compute RP we make sure it only chooses effi cient deterministic assign-
ments: for instance if the priority is 3124, agent 3 grabs a first, then by assigning
d to agent 1 we can give b to 2 and c to 4, without prejudice to 1. This and
similar computations deliver the RP matrix:

RP:

a b c d
z1 1/4 0 1/8 11/24
z2 1/4 1/3 1/8 11/24
z3 1/4 1/3 3/8 1/24
z4 1/4 1/3 3/8 1/24

where the shares of 1 and 2 in c and d can be changed as long as z1cd and z2cd
remain constant.
19And the RP rule is characterized by Effi ciency, Anonymity, and SP: Bogomolnaia &

Moulin (2001).
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In the PS eating algorithm a is eaten first by all agents, then b by agents
2,3,4, then agents 3,4 need only 1− 1

4 −
1
3 = 5

12 units of c to fill their share:

PS:

a b c d
z1 1/4 0 1/12 1/2
z2 1/4 1/3 1/12 1/2
z3 1/4 1/3 5/12 0
z4 1/4 1/3 5/12 0

(10)

We see that agents 1,2 are indifferent between the two assignments RP and
PS, but 3 and 4 strictly prefer (in the SD sense) their PS to their RP allocation.
The ineffi ciency in RP comes from the two orderings 1234 and 1243, giving to
4 and 3 a fraction of slot d, which could be passed on to 1 and 2 in exchange
for a bigger share of c to 4 or 3.
Next we check that RP is not Envy Free in the following 3x3 example

� 1 : a � b � c
� 2 : a � c � b
� 3 : b � a � c

RP:

a b c
z1 1/2 1/6 1/3
z2 1/2 0 1/2
z3 0 5/6 1/6

; PS:

a b c
z1 1/2 1/4 1/4
z2 1/2 0 1/2
z3 0 3/4 1/4

Under RP agents 2 and 3 are not envious: z2 �sd2 z1, z3, and z3 �sd3 z1, z2. Agent
1 does not envy 2, z1 �sd1 z2, however z1 �sd1 z3 because the total probability of
{a, b} is larger in z3 than in z1. So for some refined preferences over lotteries,
e. g., a vNM utility u1(a) = 1, u1(b) = 0.9, u1(c) = 0, she envies agent 3.
No one is envious in the PS assignment above, however to agent 3 the mis-

report �∗3: a � b � c is potentially profitable (again, in some refinement of his
stochastic dominance relation): it results in the new allocation z∗3 = 1

3a+ 1
2b+

1
6c,

where the share of the top two objects {b, a} is higher. Thus PS is not Strate-
gyproof.20

Characterization results Our two rules have received a lot of theoretical
attention, and are not seriously challenged by other mechanisms such as the
Boston mechanism poised to maximize the number of agents getting, ex post,
their first choice of school. Several results confirm their prominence in the
random assignment problem.
The earliest characterization result is a striking alternative definition of the

RP rule. Start with an arbitrary deterministic assignment of the objects to
the agents: in this exchange economy, there is a single competitive and core

20 In a scheduling model generalizing example (10) the PS rule is actually Strategyproof,
and easy to characterize (Bogomolnaia & Moulin (2002)).
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stable allocation obtained by the celebrated Top Trading Cycle algorithm.21 If
the initial endowment is random with uniform probability, and we average the
corresponding TTC assignments, the result is precisely the Random Priority
assignment (Abdulkadiroglu & Sonmez (1998)).
The only other characterization of RP bears on the dynamic version of this

rule: an agent is drawn at random, picks his object, then a second agent is
drawn, and so on. In this dynamic game the sincere report of preferences is
“obviously” strategyproof (in the sense given this term by Li (2017)), which
together with Ex Post Effi ciency and Anonymity singles out the RP rule (Pycia
& Troyan (2018)).
The PS assignment has an alternative Egalitarian definition, valid even when

indifferences are allowed (Bogomolnaia (2015)). We describe the latter when
preferences are strict. For each assignment z, agent i, and index k, 1 ≤ k ≤ n−1,
compute the total weight τki in zi of the k best alternatives for i; ordering these
numbers increasingly gives a vector τ(z) of dimension n(n − 1). The vector
τ(zPS) maximizes the leximin ordering over all feasible vectors τ(z).
Finally the PS rule is characterized by Effi ciency, Envy Free, and a powerful

invariance property: when I scramble my preferences over my last k objects, this
does not affect my share of my top n− k objects (Bogomolnaia & Heo (2015);
Hashimoto et al (2014)).
Finally we note that in a large society where each type of preferences is rep-

resented by a positive fraction of the agents, the two assignments RP and PS
converge asymptotically (Che & Kojima (2010)), and this common limit unsur-
prisingly combines all the effi ciency, fairness and incentives properties discussed
above.

6 Additive utilities

In Subsection 4.3 the goods in the manna are perfect complements for the agents,
and we found that the Egalitarian rule(s) is more appealing than the Competi-
tive one. Here we make the polar opposite assumption that the goods are perfect
substitutes (equivalently, preferences are represented by additive utilities), and
we find that the Competitive rule normatively dominates the Egalitarian ones.
Such preferences are realistic when we divide the manna into truly “unre-

lated” goods such as family heirlooms including a computer, a bicycle and a
family portrait; of course the pair of matching chandeliers must be counted as
one item. Such a partition of the manna in unrelated assets is plausible in a
divorce, or the dissolution of a professional partnership.
Goods (or bads) are divisible in this Section, either physically (a pile of

cash, a large number of bottles), or by means of lotteries or time-sharing. The
later two types of division are not always easy to implement, therefore it will
be desirable to use them pasimoniously: a division involving fewer splt goods is
simpler to describe and to understand.

21Exchange objects along all the cycles of the graph where each agent points to the owner
of his favorite object, possibly herself; repeat among the agents who were not part of a cycle.
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To elicit additive utilities over the items in the manna requires more sophis-
tication from the participants than in the assignment problem of Section 5. The
practicality of such reports is illustrated by Pratt & Zeckhauser (1990) for the
division of family silver, and more recently by the success of two user-friendly
platforms where users report additive utilities by dividing 100 points over the
items in the manna. SPLIDDIT was designed by Goldman & Procaccia (2014)
and ADJUSTED WINNER by Brams and Taylor.22 Thousands of visits and
usage of these sites confirm that the practicality of this approach.
We start by the "standard" model where the manna contains only goods.

It generalizes the model of subsection 4.2 by allowing arbitrary non negative
marginal utilities. A problem specifies as usual the set N of agents, the set A of
objects, the manna ω ∈ RA+ and the marginal utility matrix u = [uia] ∈ RN×A+ .
A feasible allocation z = [zia] is as usual a matrix in RN×A+ , such that zNa = ωa
for all a; their set is written Φ. Allocation z results in the utilities Ui = ui · zi.
Multiplying the row ui by a positive scalar does not change i’s preferences, so
our axioms and division rules will be accordingly invariant.
The Competitive rule has a striking connection to the Nash bargaining the-

ory (Nash (1950)).

Theorem (Eisenberg & Gale (1959)): The two following statements are
equivalent:
i) The feasible allocation z is competitive;
ii) The utility profile U = (ui · zi)i∈N maximizes the Nash product Πi∈NUi over
all feasible profiles.
The Competitive allocations all have the same welfare, and the same price.

The Egalitarian allocations EE(θ) and EE(ω) are by design welfarist, they
equalize utilities calibrated along a benchmark bundle of goods. The welfarist
interpretation of the Competitive allocation is much less obvious, and in fact
applies to a much broader domain than linear preferences.
The Eisenberg Gale theorem is about the agregation of competitive demands

in the so called Fischer economies (Cole et al. (2016)), where agents are en-
dowed with shares of fiat money that can only be used to buy the goods in
the manna (no one initially owns any of the goods). If λ = (λi)i∈N is the
distribution of shares summing up to one and p the price, then in the corre-
sponding Competitive allocation(s) agent i’s budget is λi(p · ω). The Theorem
says that such allocation(s) maximizes ΠiU

λi
i over all feasible utility profiles.23

Proven first for linear preferences, this result was generalized (Chipman (1974))
to all economies with homothetic preferences, represented by a 1-homogenous
non negative utility (canonical up to a constant factor). This includes all the
standard families of utility functions: additive, Constant Elasticity of Substitu-
tion, CobbDouglas, Leontief, and arbitrary convex combinations of these. On
such domain the Competitive rule is blisfully singlevalued, unlike in the general

22Respectively www.spliddit.org/ and www.nyu.edu/projects/adjustedwinner/.
23Note that the Competitive allocation in the economy with endowments ω = (ωi)i∈N does

not in general maximize the Nash product of utilities, but in our Fair Division model equal
split of the manna or of fiat money is the same thing.
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Arrow Debreu domain.
Moreover, in the additive domain the Competitive rule, in addition to Envy

Free (and FS), meets our two monotonicity properties.24

Theorem: In the additive domain, the Competitive utility profile is contin-
uous in the utility matrix u and the manna ω. It is also Resource Monotonic
and Population Monotonic.
A proof of RM and PM is in (Bogomolnaia et al. (2017)) and in Segal Halevy

& Sziklai (2018) for the more general Cake cutting model.
By contrast the Egalitarian rules EE(θ) and EE(ω) behave in the additive

domain exactly like in the general AD domain. They are unique welfare-wise,
continuous in the parameters and meet PM; but EE(θ) meets RM and violates
FS, while EE(ω) meets FS but fails RM.
In the familiar domain of Cobb Douglas (CD) utilities it is easy to check that

the Competitive rule also meets RM and PM. Moreover, unlike in the additive
domain, the unique Competitive allocation is given by closed form expressions.25

But the Cobb Douglas utilities force each agent to consume a positive amount
of every good, lest they end up with no benefit at all: in other words, each
good must be split n ways. Like the Leontief utilities of subsection 4.3 the CD
utilities capture a strong complementarity between all objects that make little
sense in many practical FD problems involving heterogenous items.
A key advantage of the additive domain is that every effi cient utility profile

is achieved by an allocation where at most n − 1 goods are split. In fact the
Competitive division often involves fewer split goods, as in the following three
examples, where we compare the C and EE(ω) allocations.
First we have two agents, three goods, and ω = (1, 1, 1):

a b c
u1 6 3 1
u2 1 2 1

=⇒ zC =
a b c

z1 1 0 0
z2 0 1 1

; zEE(ω) =
a b c

z1 1 0.19 0
z2 0 0.81 1

(11)

so the Competitive allocation does not split any good. With only two agents
this is a “frequent”occurence, while the EE(ω) and EE(θ) allocations typically
require to divide one good (but no more, as just mentioned).
The next example underlines the sharp normative differences between our

two rules. We have four agents and three goods, and ω = (1, 1, 1). The first
three agents are single-minded, agents i likes only good ai, while agent 4 on the
contrary is flexible, he likes all goods equally:

a1 a2 a3
u1 1 0 0
u2 0 1 0
u3 0 0 1
u4 1 1 1

(12)

24Recall from subsection 3.3 that RM and FS are incompatible in any domani containing
Leontief utilities.
25Set Ui(zi) =

∑
a∈A δia ln(zia) where δi ∈ ∆(A), then the Competitive allocation is zia =

δia∑
j δja

ωa, from which the statement is immediate, as well as continuity in the parameters.
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The competitive price is 43 for each good; each agent 1, 2, or 3 buys
3
4 units of

“his”good while agent 4 gets 14 of each good. Contrast this with the Egalitarian
division that splits each good ai equally between agent i and agent 4, so that
everyone ends up with a share worth one half of the entire manna:

zC =

1 2 3
zc1 3/4 0 0
zc2 0 3/4 0
zc3 0 0 3/4
zc4 1/4 1/4 1/4

zEE(ω) =

1 2 3
ze1 1/2 0 0
ze2 0 1/2 0
ze3 0 0 1/2
ze4 1/2 1/2 1/2

The Egalitarian rule focuses on the (relative) benefits of consuming each
good ai, and in this example shares them equally between the two relevant
agents, i and 4. The Competitive rule is much more generous to the single-
minded agents: agent 1 for instance "owns" a quarter of each good, so she is
entitled to 1

4 of the surplus generated by goods a2 and a3.
Notice an unpalatable feature of the Competitive allocation zC : the flexible

agent 4 gets exactly his Fair Share utility u4 · 14ω = 3
4 , and is on the verge of

envying the other three (u4 · z4 = u4 · zi for i = 1, 2, 3), while the others strictly
improve upon their fair share 1

4ω, and are strictly non envious. The C rule does
not reward uses the flexibility of agent 4’s preferences to his disadvantage.This
situation always happens in the C rule for any agent who eats a positive share
of each good. By contrast everybody always prefers her EE(ω) allocation to her
Fair Share, unless nobody can get more than her FS utility.
On the other hand we can argue that the Egalitarian allocation gives too

much to agent 4, because he gets (much) more than his fair share of every
good. By contrast in any Competitive allocation, everyone gets at most a 1

n -th
share of at least one good:26

min
a∈A

zia ≤
1

n
for all i (13)

Our last example shows why the rule EE(ω) violates RM, and also illus-
trates its normative difference with the C rule. The example requires three
or more agents.27 . We compare two problems with B = {a1, a2, a3} and A =
{a1, a2, a3, d} respectively, and one unit of each good:

uB =

a1 a2 a3
u1 3 1 1
u2 1 3 1
u3 1 1 3

; uA =

a1 a2 a3 d
u1 3 1 1 0
u2 1 3 1 4
u3 1 1 3 4

The B-problem is symmetric. Any effi cient and symmetric rule, in particular
C and EE(ω), allocates goods diagonally: agent i gets all of ai and so on;
normalized utilities are 3

5 .

26 If zia > 1
n
for all a the competitive price must be parallel to ui but the equal budget

equation p · zi = p · ( 1
n
eA) gives ui · zi = ui · ( 1n e

A), contradiction.
27The EE(ω) rule meets RM for n = 2.

26



In the A-problem a natural idea is to keep the same allocation of a1, a2, a3
and divide d equally between agents 2 and 3, because agent 1 does not care for d.
This is exactly what the Competitive rule recommends (prices are (1, 35 ,

3
5 ,

4
5 )).

But the normalized utilities at this allocation are ( 35 ,
5
9 ,

5
9 ), so the Egalitarian

rule must compensate agents 2, 3 for the loss in normalized utilities caused by
the gain of some new good! Equality is restored at the allocation

zEE(ω) =

a b c d
55/59 0 0 0
2/59 1 0 1/2
2/59 0 1 1/2

where agent 1’s welfare has decreased.
Finally we note that computing the C allocation, or equivalently maximizing

the Nash product of utilities, is solvable in polynomial time. A weakly polyno-
mial algorithm was proposed by Devanur et al. (2008), and recently improved
to a strongly polynomial one by Orlin (2018). Thus, from a complexity point of
view, it is not harder than computing the Egalitarian allocation (Kurokawa et
al. (2015)) though of course the algorithms are less simple.

Incentives We know that in the additive domain, no Effi cient and Anonymous
rule can be Strategyproof. Zhou (1991) shows that with only two agents, Effy
and SP together imply that one of them is a dictator; see also Schummer (1997).
This impossibility disappears in the dichotomous subdomain (subsection 4.2).
Interestingly Cole & Gkatzkelis (2015) propose a simple but wasteful ap-

proximation of the Competitive rule achieving Strategyproofness at the cost of
Effi ciency. The rule computes the C allocation z∗ = (z∗j ) but gives to agent i
only a fraction of z∗: this fraction is the ratio of the Nash product of utilities of
other agents in z∗ to their optimal Nash product when i is absent (and consumes
no manna). So agent i’s allocation is

zi =
Πj 6=iuj · z∗j

maxzN�i=ω Πj 6=iuj · zj
z∗i (14)

The discount rate on the C share is the relative externality of agent i’s presence
on the collective welfare of the other agents, measured as the Nash product of
utilities.
If agent i reports another utility ũi and z̃ = (z̃j) maximizes the correponding

Nash product, his actual utility Ũi (after throwing away part of z̃i) is

Ũi =
Πj 6=iuj · z̃j

maxzN�i=ω Πj 6=iuj · zj
ui · z̃i ≤

Πj 6=iuj · z∗j
maxzN�i=ω Πj 6=iuj · zj

ui · z∗i = Ui

so the misreport is not profitable. This proves SP. Just like the Eisenberg Gale
Theorem, this argument holds for any profile of 1-homogenous utilities.
This division rule imitates, in multiplicative form, what the celebrated Vickrey-

Clarke-Groves (VCG) mechanisms do in additive form. VCG mechanisms are
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also Strategyproof and wasteful, in the sense that the monetary transfers ensur-
ing SP are not balanced, they either burn some money, or require an exogenous
subsidy. But if VCG mechanisms can often be fine tuned to achieve near budget
balance (as in Guo Conitzer (2007) and Moulin (2009)), the Cole & Gkatzkelis
rule must drop a very substantial chunk of manna. For instance in Example
(11), equation (14) says that agent 1 keeps only 75% of her Competitive share,
and agent 2 only 60%. In Example (12) every agent keeps only 42% of his share.
It turns out that the smallest possible share an agent can keep is 1e ' 37% (Cole
& Gkatzkelis (2015)).

Bad manna: limits of the Competitive approach The fair division of
bads such as chores among family members, jobs in the work place, tasks between
co-authors, and so on, is a different context than that of goods, but not a
conceptually different problem. Agents are trying to spread the manna, now a
burden, fairly and effi ciently, and the normative properties discussed before are
easily adapted.
A problem is as usual a list N,A, ω ∈ RA+, u = [uia] ∈ RN×A+ , where uia is

now i’s marginal disutility for bad a. Effi ciency means that we cannot lower
everyone’s disutility weakly and someone’s strictly.
The rules EE(ω) and EE(θ) select an effi cient allocation z satisfying property

(2) (respectively for ω and for θ), which is always possible if the uia-s are all
positive (see Footnote 8 for the case when some uia are zero). These rules are
single-valued (welfarewise), continuous in the parameters u and ω, and, once
the definitions of FS, RM and PM are reversed in the obvious way, behave as if
the manna is made of goods.
A non zero price p ∈ RA+ defines a Competitive allocation z if z is feasible and

for each agent i, zi minimizes ui ·yi in the budget set B(p) = {y ∈ RA+|p ·y ≥ 1}:
each agent must buy a bundle of bads costing at least 1. Effi ciency and Envy
Free follow. However Bogomolnaia et al. (2018) show that the Competitive
rule is no longer single-valued welfarewise, and no single-valued selection of
the Competitive correspondence is continuous in u or ω. Except in the simple
case of two-agent or two-good problems, it is not known how many different C
allocations may typically coexist.
The simplest example of this surprisingly bad news involves dichotomous

utilities (as in Subsection 4.2), i. e., each entry uia of u is 0 or 1. Write B(u)
for the set of bads a s. t. some agent i does not mind the chore a: uia = 0. The
allocation z is effi cient if and only if every bad in B(u) is eaten by such agent.
Bads in A�B(u) are disliked by everybody and it does not matter to effi ciency
how they are divided.
One C allocation gives a zero price to every a ∈ B(u) and pa = n

|A�B(u)|
for every other bad. Thus agents who take care painlessly of the bads in B(u)
are not rewarded for this. For another C allocation, take any a∗ ∈ B(u) and
suppose the set M of agents s. t. uia∗ = 0 is not N ; set a price of |M | for a∗,
so that each i in M eats 1

|M | of a
∗ and nothing else; other bads in B(u) have

price zero and the rest cost pa = n−|M |
|A�B(u)| : this gives a free lunch to agents in
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M , and only those; there are also C allocations where a subset of bads in B(u)
have a positive price; in any of those, some agents get a free lunch, and the rest
share equally B(u).
In Example (11), where the matrix u represents now disutilities, we find

three C allocations

zC1 =
a b c

z1 1/6 1 1
z2 5/6 0 0

zC2 =
a b c

z1 0 1 1
z2 1 0 0

zC3 =
a b c

z1 0 7/12 1
z2 1 5/12 0

with as usual budget of 1 and respective prices

pC1 = (
6

5
,

3

5
,

1

5
) ; pC2 = (1,

3

4
,

1

4
) ; pC3 = (

6

11
,

12

11
,

4

11
)

In the following "dual" of Example (12), we have no less than seven C
allocations:28

a1 a2 a3
u1 1 3 3
u2 3 1 3
u3 3 3 1
u4 1 1 1

There is still a close connection between the Competitive allocations and
the corresponding Nash product of utilities, which rests on the notion of critical
point. A point w in a convex set Γ is a critical point of the (smooth) function f
if the tangent hyperplane to the level curve of f supports Γ at w. Bogomolnaia
et al. (2017) show that the feasible allocation z is competitive if and only the
disutility profile U = (ui · zi)i∈N is a critical point of the Nash product Πi∈NUi
over all effi cient feasible profiles.
One technical explanation of the sharp difference in the behavior of the C

rule when the manna is either good or bad compares the budget sets B(p;−ω)
in both cases

B+(p;ω) = {yi ∈ RA+|p · yi ≤
1

n
p · ω} ; B−(p;ω) = {yi ∈ RA+|p · yi ≥

1

n
p · ω}

Note that B−(p;ω) is bounded while B+(p;ω) is not, so a C division of bads
is effectively a Constrained Competitive allocation in the sense discussed in
Section 8: Eisenberg Gale theorem does not apply and multiple CC allocations
are routinely expected.
The fact that the Competitive approach forces us to use a discontinuous

division rule is a serious normative concern, that does not go away when we
replicate the problem. Even if we deal with a fixed disutility matrix, the selec-
tion of a particular C allocation raises additional normative concerns (as in the
dichotomous example above).

28The competitive prices are p = ( 4
3
, 4
3
, 4
3

), ( 3
2
, 3
2
, 1), (2, 1, 1), and their permutations.
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Mixed manna: failure of the Egalitarian approach The manna may
consist of some goods and some bads, it may contains assets as well as liabilities.
We speak then of a mixed manna and a problem is a list N,A, ω ∈ RN+ , u =
[uia] ∈ RN×A, where uia is i’s marginal utility for item a if uia > 0, or disutility
if uia < 0.
Consider for instance the two-agent three-item problem

a b c
u1 3 1 −3
u2 1 2 −5

with one unit of each good a, b and of the bad c. Here the canonical rule EE(ω)
makes no sense because u1 ·ω = 1, u2 ·ω = −2, and the unique effi cient allocation
meeting u1·z

u1·ω = u2·z
u2·ω yields the utilities U = (−1, 1.6) violating Fair Share (and

with opposite signs than Ui · ω).
In order to restore an Egalitarian approach we can treat our Fair Division

problem like a bargaining model with the profile of Fair Share utilities as the
disagreement outcome, and then apply the Kalai-Smorodinsky solution (Kalai
& Smorodinsky (1975)). In doing so we lose the connection of the final al-
location with the physical characteristics of the manna, and even Population
Monotonicity is lost.
By contrast, the Competitive approach is well defined in the usual fashion:

the non zero price vector p ∈ RA may have positive, negative, or null compo-
nents; ditto for the common budget β, and agent i gets her best share zi such
that p · zi ≤ β.
A three elements partition of all problems P = (N,A, ω, u) determines the

behavior of the Competitive rule. We call P positive if there is at least one
strictly positive feasible utility profile U ; null if U = 0 is an effi cient profile; and
negative if there is no non negative feasible profile (none in RN+ ). For instance
the problem above is positive as z1 = (1, 0, 23 ), z2 = (0, 1, 13 ) gives U1, U2 > 0).
It becomes null if the manna is ω′ = (1, 1, 75 ), and is negative if we have even
more of the bad c to share.
Theorem (Bogomolnaia et al. (2017))

In a positive (resp. null) problem, the Competitive profile U = (ui ·zi) is unique
and maximizes the Nash product Πi∈NUi over all positive feasible profiles (resp.
is U = 0).
In a negative problem the Competitive profiles U = (ui ·zi) are the critical points
of the Nash product Πi∈NUi over all effi cient (strictly) negative feasible profiles.
Like the original Eisenberg Gale Theorem for a good manna, this result

generalizes to all homothetic preferences.
The multiplicity and continuity issues notwithstanding, we conclude that

the Competitive approach, unlike the Egalitarian one, is readily adapted to the
mixed manna case, and performs very well for positive problems.
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7 Indivisible goods, and bads

We maintain in this Section the assumption that agents can form additive util-
ities over the objects in the manna. When these objects are not physically di-
visible (painting, bicycle, student, client, license, etc..) randomization achieves
a fair compromise only in the ex ante sense, but ex post fairness is not guar-
anteed. In court, and in many other contexts, rolling a dice is not an option:
objections and counter-objections bear on the actual allocation of the manna.
Thus we need a normative framework to propose deterministic fair divisions of
indivisible objects.
The CS community takes to heart the general project of extending the formal

analysis of FD to the technically diffi cult case of indivisible objects. Most but
not all of this fast growing literature posits additive utilities, as in the previous
Section, and for brevity we will maintain this assumption here.
The standard fairness properties discussed so far are typically unfeasible.

Think of an effi cient (or simply non wasteful) division of several rocks and one
diamond: Fair Share is clearly not feasible, and neither is Envy Free. To decide
whether or not, in a given problem, an effi cient division exists that meets one of
these tests is an NP-complete task (Bouveret and Lang (2008)) but approxima-
tion algorithms of polynomial-time complexity are often available: see Markakis
(2017). The conceptual challenge is to define convincing approximations of these
tests, and ensure that they are always feasible and compatible with Effi ciency,
i. e., prove an existence result; then we must design tractable (computationally
simple) algorithms to implement an actual division meeting those tests. This
research is very young, and replete with exciting open questions.
Formally a problem is a list (N,A, u ∈ RN×A+ ) where A is the set of objects:

here ω = A and a feasible allocations z = (zi)i∈N is simply a partition of A.
Notation: for y ⊆ A we write uiy =

∑
a∈y uia as in subsection 4.2, and y+a, y−a

instead of y ∪ {a}, y�{a}, etc..
Most papers discuss the case of goods, as we do first; the little we know in

the case of bads is reviewed next.
Start with Fair Share.29 A natural relaxation is Fair Share up to the Least

Valued Good:
FSX: ∀i ∈ N, ∀a /∈ zi : ui(zi+a) ≥

1

n
uiA

But this property is not always feasible, even when agents have identical
utilities. Here is an example with three agents, three “large”goods a, a, b and
ten “small”goods c. Each a brings utility 3

2 , b brings utility 4, and each c brings
3
10 : so uiA = 10 and the FS level is 3 13 . Check that if agent 1 gets only c-s, and
agent 2 gets b, then FSX fails if agent 3 gets no c, because 3 + 3

10 <
1
3uiA; but

then FSX fails for 1 who gets at most nine c-s. If 1 gets b while 2 and 3 get one
a each, then one of 2,3 gets at most five c-s and a total utility of 3 so FSX fails
again.

29The CS literature mostly speaks of Proportionality instead of Fair Share; so does the
cake-cutting literature.
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A weaker approximation of FS, Fair Share up to one Good, is always feasible,
and compatible with Effi ciency:

FS1: ∀i ∈ N, ∃a /∈ zi : ui(zi+a) ≥
1

n
uiA

The claim follows from the Theorem below.
Budish (2011) proposes an appealing alternative interpretation of Fair Share,

inspired by the Divide & Choose procedure. Let P be the set of n-partitions
P = ∪nk=1Bk of A. We compute agent i’s MaxMinShare (MMS) by selecting
a partition where the utility of his least desirable share is as high as possible.
Formally:

MMS: ∀i ∈ N : uizi ≥ max
P∈P

min
k
uiBk

If goods are divisible, this is exactly FS. With indivisible goods and only two
agents, an effi cient partition where each agent gets at least his MMS utility
always exists.30

The existence of a partition of the goods meeting MMS for any n was in-
tensely discussed for several years, until Procaccia & Wang (2014) came up
with a sophisticated counterexample. They showed, however, that it is always
feasible to guarantee 2

3 of his MMS utility to each agent. Then Kurokawa et al.
(2016) argue that, in practice, utilities reported by non adversarial agents will
be compatible with MMS.
We turn to the search for tractable division rules adapting the Egalitarian

and Competitive approaches to the indivisible world. Indivisibilities imply that
a single-valued rule cannot be Anonymous, so it must be supplemented by a tie
breaking convention, that we do not need to specify.
The compelling Egalitarian answer simply maximizes the leximin ordering

over the feasible profiles of normalized utilities 1
uiA

ui. The corresponding LEX
allocations are effi cient and equalize (normalized) utilities across agents “up to
one object”:

EGAL1: ∀i, j ∈ N, ∃a ∈ zj : uizi ≥ uj(zj−a)
They are also easy to compute (Plaut & Roughgarden (2018)).
The Competitive approach starts with an approximation of the Envy Free

test31 , that we can define in a strong or a weak form, like Fair Share above. The
first condition is known as Envy free up to the Least Valued Good (Caragiannis
et al. (2016)):

EFX: ∀i, j ∈ N, ∀a ∈ zj : if uia > 0 then uizi ≥ ui(zj−a) ⇐⇒ ui(zi+a) ≥ uizj

With only two agents, n = 2, a LEX allocation meets EFX (Plaut & Rough-
garden (2018)). But for n ≥ 3, despite much brainstorming and numerical
experiments, we still do not know whether or not a division of the goods meeting
EFX exists for all configurations of additive utilities.

30Pick an optimal partition for agent 1 and let agent 2 pick her best share.
31For some but not all cardinalities of A and N , plain Envy Free allocations are likely to

exist: Manurangsi and Suksompong (2018).
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The second, weaker approximation of EF is Envy free up to one Good :

EF1: ∀i, j ∈ N, ∃a ∈ zj : uizi ≥ ui(zj−a) ⇐⇒ ui(zi+a) ≥ uizj

Note that EF1 implies FS1.
The following mechanism, known as the “NFL draft mechanism”, picks an

EF1 division of the goods. Fix a priority ordering of the agents and let them
take turns, in that order, to pick their best object in the remaining pile (with
n agents and m objects we need dmn e rounds).

32 Say agent i has lower priority
than j: after we take away from zj the object j picked in the first round, agent
i does not envy j’s reduced share.

But the draft algorithm may not pick an effi cient division of the goods, as
in the following example where agent 1 chooses first:

a b c d
u1 3 2 2 2
u2 3 1 1 1

There is a surprising relation between the Nash bargaining solution and Envy
Free up to one Good, reminiscent of the stronger connection uncovered by the
Eisenberg Gale theorem when the goods are divisible.

Theorem (Caragiannis et al. (2016)): Any division of the objects maxi-
mizing the Nash product of utilities is Effi cient and meets EF1 (hence FS1 as
well).

Here is the main argument. Let z be such a division. Effi ciency is clear.
Now suppose that agent i envies agent j even after removing any object from
zj . Let a minimize the ratio

ujb
uib

in zj : this definition and the envy assumption
imply

{uja
uia
≤
ujzj
uizj

and ui(zi+a) < uizj} =⇒ uja
uia

ui(zi+a) < ujzj (15)

Let z′ be the partition obtained by transferring a from j to i; we compute

r =
ΠNukz′k
ΠNukzk

=
ujz′j
ujzj

uiz′i
uizi

= (1− uja
ujzj

)(1 +
uia
uizi

)

r > 1⇔ uja
ujzj

ui(zi+a)

uizi
<

uia
uizi

which is the last inequality in (15), and we reach the desired contradiction.

One problem with the Nash Max Product (NMP) rule is its severe compu-
tational complexity (Lee (2017)). If we must deal with large problems, whether
in terms of the number of agents or of objects, we may not be able to find a di-
vision exactly maximizing the Nash product: see Cole et al. (2016), Lee (2017).
Fortunately polynomial-time approximations of NMP, in the number of agents
and of objects, are available: Cole and Gkatzelis (2015), Barman et al. (2018).

32The Priority rule at the beginning of Section 5 is he special case where n = m.
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In particular the implementation of NMP discussed in Caragianis et al. (2016)
is implemented in SPLIDDIT where it scales to thousands of objects and about
one hundred agents.
There are alternative combinatorial ways to construct an effi cient partition

meeting EF1. Barman et al (2018) provide such an approach, and in addition
construct a partition that would remain effi cient even if the goods were divisible.
The last frontier is the definition of a convincing approximation of the Com-

petitive rule. Babaioff et al. (2017) propose an allocation competitive with
respect to a common price, and allow small variations in the individual bud-
gets, which does not guarantee Envy Free. Barman et al (2018) just mentioned
reach a similarly competitive allocation that guarantees EF1 and simultaneously
approximates the Maximum Nash Product.

Indivisible bads As when the items are divisible, we expect differences with
the case of goods. Indeed this is already true for Fair Share. The analog of FSX
is Fair Share up to the Least Harmful Bad :

FSX: ∀i ∈ N, ∀a ∈ zi : ui(zi−a) ≤
1

n
uiA

It is always possible to find a division of the bads meeting FSX. Here is a simple
algorithm ensuring this.
Start with a problem (N,A, u) with normalized utilities (uiA = 1). Define

θ(a) = mini∈N uia and order the bads in decreasing order of θ(a) from θ(a1)
till θ(am). For each ak we also pick an agent ik such that θ(ak) = uikak . Now
we distribute a1 to i1, a2 to i2,· · · , until the first k such that the total share of
some agent i∗ is strictly above 1

n . We freeze then the share zi∗ : by construction
FSX holds for i∗; moreover in the restriction of our problem to N�i∗, A�zi∗
we have ui(A�zi∗ ) <

n−1
n , therefore an FSX partition there will meet FSX for

all i ∈ N�i∗ in the initial problem.
Another open question: can we always divide the bads effi ciently and meet

FSX?
If we weaken FSX to Fair Share up to one Bad:

FS1: ∀i ∈ N, ∃a ∈ zi : ui(zi−a) ≤
1

n
uiA

then it is always possible to divide the bads effi ciently and meet FS1. A simple
rounding procedure starting from the Competitive or the Egalitarian allocation
of the associated problem with divisible bads will do this.

The definition of MMS is identical, up to the obvious changes of sign, and
the impossibility result is unchanged. Aziz et al. (2017) show that different
algorithms are necessary to approximate MMS in the case of bads.
The strong approximation of EF, Envy free up to the Least Harmful Bad :

EFX: ∀i ∈ N, ∀a ∈ zi,∀j ∈ N : ui(zi−a) ≤ uizj ⇐⇒ uizi ≤ ui(zj+a)
raises the same challenging open question as with goods: can we always find a
division of the bads meeting EFX?
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The weaker form of EF, Envy free up to one Bad :

EF1: ∀i ∈ N, ∃a ∈ zi,∀j ∈ N : ui(zi−a) ≤ uizj ⇐⇒ uizi ≤ ui(zj+a)
is still implemented by the draft algorithm. But the Nash product of disutilities
is useless to find an effi cient division of the bads meeting EF1. It is still an open
question whether an effi cient division meeting EF1 exists at all.
Finally if the manna is mixed, contains goods and bads, the very definitions

of Fair Share, Envy Free, and even of the Egalitarian rule, are still work in
progress, as discussed in Aziz et al. (2018).

8 More open problems and future directions

Constrained Competitive division of goods In the definition of a com-
petitive allocation of divisible goods with price p and manna ω, agent i’s com-
petitive demand zi maximizes i’s utility over all allocations yi affordable at price
p with budget 1

np · ω, whether or not yi is feasible at ω: for some good a we
may have yia > ωa. Of course zi itself is feasible. The Eisenberg Gale Theorem
and the uniqueness of the profile of Competitive welfares do not hold anymore
if the budget set excludes allocations unfeasible at ω.
An allocation (z, p) is Constrained Competitive (CC) if it is feasible, and for

all i, zi it maximizes i’s utility over all feasible and affordable allocations yi:

∀yi ∈ RA+{yi ≤ ω and p · yi ≤
1

n
p · ω} =⇒ ui(zi) ≥ ui(yi)

This budget set is smaller than the Competitive budget set, therefore we have
(many) more CC than C allocations. For instance with two agents and additive
utilities, all effi cient allocations meeting Fair Share are CC, and vice versa.
Typically CC allocations contain a full dimensional subset of the set of effi cient
and Envy Free allocations.
The Constrained Competitive concept makes particularly good sense when

we distribute indivisible goods. Say the family heirlooms comprise one grad-
father clock, a bicycle and a I-phone: my standard budget set may allow me
to buy two grandfather clocks, which does not make mush sense as a counter-
factual argument. Indeed the literature discussed in Section 7 always uses the
Constrained version of the Competitive rule, without being explicit about it.
If the plausible conjecture below is true, the CC correspondence provides a

solution to the diffi culty encountered in example (12), Section 6. There in the C
allocation one agent is stuck at his Fair Share utility level, while everyone else
is strictly better off.33

Conjecture: (Arrow Debreu preferences, divisible goods) if the profile of Fair
Share utilities is not effi cient, there is always at least one CC allocation where
everyone gets strictly more than her Fair Share.
This is only a clue toward the widely open problem of identifying a norma-

tively appealing selection of the CC correspondence.
33Recall with additive utilities this is always true for an agent consuming a positive amount

of each good.
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Fair division of bads with additive utilities With divisible bads, additive
utilities and n agents, the number of Competitive allocations welfare-wise dis-
tinct can be as high as 2n− 1. We see this by adapting the example in footnote
27: see Bogomolnaia et al. (2018). It is not known if this is the actual upper
bound, but this observation is enough to make clear that the definition of a
meaningful sub-correspondence of C is another challenging and important open
problem.
We can broaden this search to include selections from the CC correspon-

dence, or even from the Effi cient and Envy Free correspondence. But Bogomol-
naia et al. (2017) show even the latter correspondence admits no single valued
selection continuous in the parameters of the problem (marginal utilities and
manna). So we must be looking for a selection that is single valued almost
everywhere, and stands out on some normative grounds. One approach is pro-
posed in Bogomolnaia et al. (2018) for the simple case of two agents and/or
two bads.

Random assignment with vNM preferences In the random assignment
problem of Section 5, participants may be able to compare any two lotteries
in terms of their expected von Neuman Morgenstern utilities. This model was
introduced by (Hylland & Zeckhauser (1979)), who showed that a Constrained
Competitive division exists: here the budget set consists of all the probability
distributions over the objects affordable in the usual way. Note that it does
not matter if we think of the objects as goods, bads, or mixed, because vNM
preferences are translation invariant, everyone must receive one random object.
Very recently several authors noticed that multiple Competitive allocations

is a robust possibility in this problem as well (McLennan (2018), Yanovskaia
(private communication, 2017)), therefore this approach also require a selection
step to become operational, just like in the case of a bad manna above. Except
in the case of three objects, we do not know how many different Competitive
assignments may robustly coexist.
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