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OVERVIEW 

• Motivation: Image segmentation and 
normalized cut 

• Insights on how combinatorial optimization 
relates to spectral clustering 

• Efficient polynomial time algorithm(s) 
• The power of using pairwise similarities 
• Lessons from experimental studies on 

effectiveness for image segmentation and 
for machine learning and data mining 
classification tasks. 



NOTATIONS AND PRELIMINARIES 
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AN INTUITIVE CLUSTERING CRITERION 
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Find a cluster that combines two objectives: 
One, is to have large similarity within the cluster, and 
to have small similarity between the cluster and its complement. 

The combination of the two objectives can be expressed as: 

We call this problem  
H-normalized-cut (H 
for Hochbaum), or 
HNC. 
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HNC2 

HNC1 

HNC3 



MOTIVATION FOR THE HNC1 PROBLEM 
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NP-hard?? Same problem?? 



HNC is poly time solvable: monotone IP3 
(Hochbaum2010) 

[H10,H13] 

This formulation is monotone 



HOW DO NC AND HNC1 COMPARE [H10] 

Shi and Malik 2000: 

HNC1: 
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Solving HNC1 with the Spectral method [Sharon 
et al. 07] and optimally [H10] 

• The {0,1} discrete values of x are relaxed. This 
continuous problem was shown to be solved 
approximately by an eigenvector. 
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How does the HNC1 solution relate 
to the spectral solution? 

We will answer a more general question: 
Consider q-normalized cut 
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TWO-TERMS FORMS OF THE 
PROBLEMS 
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Lemma 1 (cf. Hochbaum 2011): 
 
 
 
 
 
 
A special case of this was shown by Shi and Malik. 
 

TWO TERMS EXPRESSIONS AND THE RAYLEIGH 
RATIO 
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THE COMBINATORIAL VS. THE SPECTRAL CONTINUOUS 
RELAXATIONS 

Raleigh ratio Problem (RRP) 

Spectral continuous relaxation Combinatorial relaxation 
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THE SPECTRAL METHOD 

• Where λ is the smallest non-zero eigenvalue (Fiedler 
Eigenvalue).  We solve for the eigenvector z: 
 
 
 
 

• and set          which solves the continuous 
relaxation. 
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SOLVING THE COMBINATORIAL 
RELAXATION 
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THE COMBINATORIAL RELAXATION RAYLEIGH 
PROBLEM 

Lemma 2: 
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The problem is a ratio problem 
General technique for ratio Problems: The λ-question 
 
 
 
can be solved if one can solve the following λ-question: 
 
 
 
*This λ is unrelated to an eigenvector –just a parameter 
 

SOLVING THE COMBINATORIAL RAYLEIGH PROBLEM 
OPTIMALLY 
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The λ-question of whether the value of 
RRP is less than λ is equivalent to 
determining whether: 
 
 
Or from Lemma 1, this is equivalent to: 
 

SOLVING THE LAMBDA QUESTION  
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THE GRAPH GST FOR TESTING THE 
LAMBDA-QUESTION:  A CASE OF IP ON 
MONOTONE CONSTRAINTS  [HOC02]  
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The source set of a minimum cut in the 
graph Gst is an optimal solution to the 
linearized (RRP)  
Proof: 
 

THEOREM 
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SIMPLIFYING THE GRAPH (TO MAKE IT 
PARAMETERIC) 
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SCALING ARCS WEIGHTS  
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SCALING ARCS WEIGHTS  
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THE SIMPLIFIED EQUIVALENT GRAPH 
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The problem is a parametric cut problem: This 
is a graph setup when source adjacent arcs 
are monotone nondecreasing and sink 
adjacent are monotone nonincreasing (for 
b<1) with the parameter. 
A parametric cut problem can be solved in the 
complexity of a single minimum cut (plus 
finding the zero of n monotone functions) 
[GGT89], [H08]. 
Here we let the parameter be β 
 

SOLVING THE PROBLEM AS A 
PARAMETRIC MIN-CUT  
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The cut problem in the graph Gst, as a 
function of β is parametric (the capacities are 
linear in the parameter on one side and 
independent of it on the other). 
In a parametric graph the sequence of source 
sets of cuts for increasing source-adjacent 
capacities is nested. 
There are no more than n breakpoints for β.  
There are k≤n nested source sets of 
minimum cuts. 
 

IN GST 
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For 
 
 
 
Given the values of β at the breakpoints, we can generate, for 
each value of b, all the breakpoints.  
Consequently, by solving once the parametric problem for β 
we obtain simultaneously, all the breakpoint solutions for all b, 
in the complexity of a single minimum cut. 
For each b we find the last (largest value) breakpoint where 
the objective value <0. 
 

SOLVING FOR ALL VALUES OF B 
EFFICIENTLY 
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RECALL PROBLEM HNC1: IT IS A SPECIAL 
CASE 
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It is equal to the problem solved for b=0: 
 

which has the same solution as: 
 



IMAGE SEGMENTATION WITH HNC1 VS 
SPECTRAL 

Original Image Shi & Malik HNC1 

41035 −⋅=NC 410702.1 −⋅=NC

Eigenvector result HNC1 result Original image 



Another comparison 
Original Image Shi & Malik NC’ 

410127 −⋅=NC 410466.1 −⋅=NC

Eigenvector result NC’ result Original image 



Spectral objective Vs. Combinatorial 
algorithm's objective [H,Lu,Bertelli13] 

( )
( )ialCombinator

Spectral
Obj

Obj



SCALABILITY OF THE ALGORITHM 



HNC can be applied to binary classification problems 
• Unsupervised:  

 Method finds a cluster distinct from the rest of the nodes and similar to itself 

• Supervised (called SNC):  
 Training data is linked a-priori to either the source or the sink, based on the 

respective labels 

 
HNC was successfuly used in data mining contexts 
(e.g., denoising spectra of nuclear detectors 
[YFHNS2014], ranking drugs according to their 
effectiveness, [HHY2012] and it has been a leading 
algorithm in the Neurofinder benchmark for cell 
identification in calcium imaging movies [SHA2017].) 
 

HNC IN DATA MINING 
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TESTING THE EFFECTIVENESS OF HNC AS A 
DATA MINING PROCEDURE 
[BAUMANN, H, YANG,17] 
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Two variants of HNC were tested: 
1.The node weights are di  SNC (supervised HNC) 
2.The node weights are the average label of k 

nearest neighbors SNCK  



DATA SETS FROM UCI AND LIBSVM REPOSITORY 
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LOWER AND UPPER BOUNDS OF TUNING 
PARAM. VALUES 
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PARTITIONING OF DATA SETS 
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LOWER AND UPPER BOUNDS OF TUNING 
PARAM. VALUES 
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F1-SCORE, PRECISION, RECALL, ACCURACY 



NORMALIZED F1-SCORE (TESTED FOR 
SAME TUNING TIME) 
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SNC achieves best and most robust performance across data sets 



RANK OF TECHNIQUES BASED ON F1-
SCORE 
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STANDARD DEVIATION OF F1-SCORE 
ACROSS SPLITS 
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EVALUATION TIME [SEC] 
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TUNING TIME [SEC] 
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TAKE AWAYS 

All pairwise comparisons’ classification 
algorithms perform better than other methods 
Challenge: 
SNC and other data mining and clustering 
algorithms that perform well (e.g., KNN and 
SVM with kernels methods) require as input a 
similarity matrix 
The number of pairwise similarities grows 
quadratically in the size of the data sets 
 



Known Literature: 
Existing sparsification approaches require 
complete matrix as input  

-> not applicable for massively large datasets 
 
Proposed methodolgy: 
Sidesteps the computationally expensive task of 
constructing the complete similarity matrix 
Generating only the relevant entries in the 
similarity matrix without performing pairwise 
comparisons 
 

SPARSE COMPUTATION FOR LARGE-
SCALE DATA MINING WITH PAIRWISE 

COMPARISONS 
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Input: Data set as an n x d matrix A containing n objects with d 
attributes: 
Output: Sparse n x n similarity matrix 
Procedure: 
1. Embed d-dimensional space in a p-dimensional space for p<<d with 

the use of approximate Principal Component Analysis (PCA) – based 
on ConstantTimeSVD of Drineas, Kannan, and Mahoney (2006).  
Pick r rows/objects of the matrix/dataset 

2. Subdivide the range of values in each dimension into k intervals of 
equal length (can use a different number of intervals in each 
dimension 

3. Assign each object to a single block based on its p entries. O(1) 
work per object 

4. Compute distances between objects that are assigned to the same 
block in original d-dimensional space 

5. Identify neighboring blocks and compute similarities between objects 
in those blocks. 

SPARSE COMPUTATION WITH 
APPROXIMATE PCA 
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Example of block data structure in the 
space of the p = 3 leading principal 
components. Here the grid resolution k = 5 
and the length of the intervals is the same 
for all dimensions  

BLOCK DATA STRUCTURE FOR 
SPARSIFICATION 

Dorit Hochbaum  UC Berkeley 67 



Data set with 583 objects and 10 attributes 
Blue dots represent 416 liver patients and 
green dots represent 167 non-liver patients 
Two clusters refer to male and female 
patients 

 
 

EFFECTIVENESS OF APPROXIMATE-PCA 
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Exact PCA Approximate-PCA with r=5 



Source: Machine Learning Repository of the 
University of California at Irvine 
Selection criteria:  

• Thousands of objects 
• Data from different domains 
• Balanced and unbalanced data sets 

 
 

EMPIRICAL ANALYSIS: LARGE SCALE 
DATASETS 
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EXPERIMENTAL DESIGN 

Dorit Hochbaum  UC Berkeley 71 

Tuning: 
• Grid search 
• Exponential similarity 
• Tuning parameters: 

• Epsilon = {1,...,30} 
• Lambda = {10-5,...,10-1} 
• Normalization of input data 

• Sub-sampling validation 
• Complete similarity matrix 

 

Testing: 
• Number of rows for appr.-PCA 

• CO2: r = 100 
• Remaining sets: r = 30 

• Value for grid resolution k 
• CAR, LE1, LE2: k = {2,...,20} 
• ADU, BAN, CO1: k = {3,...,30} 
• CO2: k = {100,...,500} 

• k=2 corresponds to complete 
similarity matrix 

• k>2 generates sparse similarity 
matrix 

 
Implementation: Matlab and C 
Machine: Workstation with two Intel E5-2687W (3.1 GHz) and 128 GB RAM 
 

 
 



COMPUTATIONAL RESULTS FOR ALL 
DATA SETS EXCEPT CO2 
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RESULTS FOR DATA SET CO2: 
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• Accuracy achieved with the very sparse similarity matrices very similar to 
accuracies obtained based on complete similarity matrix 

• Accuracy changes little with increasing grid resolution 
• Running time decreases substantially (roughly proportional to density) 
• CO2: Accuracy of 89.72% possible with density of 0.008%. Complete 

similarity matrix would contain over 54 billion entries 
 

 



SUMMARY 
• A clustering/classification optimization model 

and a combinatorial optimization algorithm 
that uses pairwise comparisons 

• Effective for general classification tasks as 
well as for specific application contexts 

• Efficient in theory and in practice 
• The approach of sparse computation enable 

the use of the method for massively large 
data sets. 
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QUESTIONS 
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