Simple and explicit bounds for multi-server queues with universal $\frac{1}{1-\rho}$ scaling

David A. Goldberg

Cornell

LNMB

(日) (日) (日) (日) (日) (日) (日)

Punchline	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
Outline					

3 History

5 Proof

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Punchline ●○○○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
Outline					

2 Model

3 History

Main results

5 Proof

Punchline o●oo	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

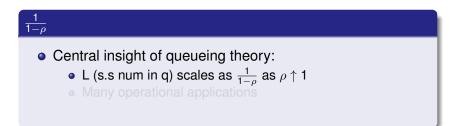
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$\frac{1}{1-\rho}$

• Central insight of queueing theory:

L (s.s num in q) scales as ¹/_{1-ρ} as ρ ↑ 1
 Many operational applications

Punchline ○●○○	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Punchline ○●○○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\frac{1}{1-\rho}$

Central insight of queueing theory:

- L (s.s num in q) scales as ¹/_{1-ρ} as ρ ↑ 1
 Many operational applications

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1- ho}$?					

Only rigorously justified for G/G/n in a few special cases!

- Single server
- Exponential or deterministic service times
- Special asymptotic regimes
- Far less known is known when it comes to ...
- The exception is Kingman's bound, but ...
- A major difficulty is that any such bound
- Multi-server Kingman's bound open for 50 years!

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					
$\frac{1}{1-2}$?					

• Only rigorously justified for G/G/n in a few special cases!

- Single server
- Exponential or deterministic service times
- Special asymptotic regimes
- Far less known is known when it comes to ...
- The exception is Kingman's bound, but . . .
- A major difficulty is that any such bound
- Multi-server Kingman's bound open for 50 years!

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to . .
- The exception is Kingman's bound, but . . .
- A major difficulty is that any such bound
- Multi-server Kingman's bound open for 50 years!

Punchline ○○●○	Model oo	History 0000000000000	Main results	Proof oo	Conclusion
$\frac{1}{1-\rho}$?					

- $\frac{1}{1-\rho}$?
 - Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
 - Far less known is known when it comes to ...

Simple, explicit, non-asymptotic bounds

- The exception is Kingman's bound, but ...
- A major difficulty is that any such bound

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
- A major difficulty is that any such bound
- Multi-server Kingman's bound open for 50 years!

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
- A major difficulty is that any such bound

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
 - Only for single server
- A major difficulty is that any such bound

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
 - Only for single server
- A major difficulty is that any such bound ...

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
 - Only for single server
- A major difficulty is that any such bound ...
 - Must scale as $\frac{1}{1-\rho}$ even if $n \to \infty$ as $\rho \uparrow 1$
- Multi-server Kingman's bound open for 50 years!

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
 - Only for single server
- A major difficulty is that any such bound ...
 - Must scale as $\frac{1}{1-\rho}$ even if $n \to \infty$ as $\rho \uparrow 1$

Punchline ○○●○	Model 00	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$?					

- Only rigorously justified for G/G/n in a few special cases!
 - Single server
 - Exponential or deterministic service times
 - Special asymptotic regimes
- Far less known is known when it comes to ...
 - Simple, explicit, non-asymptotic bounds
- The exception is Kingman's bound, but ...
 - Only for single server
- A major difficulty is that any such bound ...
 - Must scale as $\frac{1}{1-\rho}$ even if $n \to \infty$ as $\rho \uparrow 1$
- Multi-server Kingman's bound open for 50 years!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof oo	Conclusion
$\frac{1}{1-\rho}$					

Our main result resolves this open question

- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-c}$
- General G/G/n only requiring finite 2 + ϵ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat ¹/_{1-c}
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof oo	Conclusion
$\frac{1}{1-\rho}$					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as ¹/_{1-a}
- General G/G/n only requiring finite 2 + ϵ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat ¹/₁₋₆
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$!					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-a}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat ¹/₁₋
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$!					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat ¹/_{1-a}
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$!					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite 2 +
 e moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat $\frac{1}{1-}$
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat $\frac{1}{1-\rho}$
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-a} heuristic for multi-server queues
- Proof of concept , work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat $\frac{1}{1-\rho}$
- Implications for Halfin-Whitt regime
- Broadly justifies the ¹/_{1-ρ} heuristic for multi-server queues
 Proof of concept, work to do!

Punchline ○○○●	Model oo	History 0000000000000	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat $\frac{1}{1-a}$
- Implications for Halfin-Whitt regime
- Broadly justifies the $\frac{1}{1-\rho}$ heuristic for multi-server queues
- Proof of concept, work to do!

Punchline ○○○●	Model oo	History ococococococo	Main results	Proof 00	Conclusion
$\frac{1}{1-\rho}$					

- Our main result resolves this open question
- Simple and explicit bounds for E[L] scaling as $\frac{1}{1-\rho}$
- General G/G/n only requiring finite $2 + \epsilon$ moments
- Higher moments and tails
- Steady-state probability of delay
- In some cases we even beat $\frac{1}{1-\rho}$
- Implications for Halfin-Whitt regime
- Broadly justifies the $\frac{1}{1-a}$ heuristic for multi-server queues
- Proof of concept , work to do!

Punchline	Model ●○	History 0000000000000	Main results	Proof 00	Conclusion
Outline					

3 History

5 Proof

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

- $\bullet~$ Inter-arrival times i.i.d. $\sim A$
- Service times i.i.d. \sim S
- $\mu_A = \frac{1}{E[A]}$, $\mu_S = \frac{1}{E[S]}$
- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

- $\bullet\,$ Inter-arrival times i.i.d. $\sim\,$ A
- $\bullet~$ Service times i.i.d. \sim S
- $\mu_A = \frac{1}{E[A]}$, $\mu_S = \frac{1}{E[S]}$
- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

- $\bullet\,$ Inter-arrival times i.i.d. $\sim\,$ A
- Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

- $\bullet\,$ Inter-arrival times i.i.d. $\sim\,$ A
- Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

FCFS GI/GI/n Queue

- Inter-arrival times i.i.d. $\sim A$
- Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

・ロト・日本・日本・日本・日本

FCFS GI/GI/n Queue

- $\bullet\,$ Inter-arrival times i.i.d. $\sim\,$ A
- $\bullet~$ Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- *P_{wait}*: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

FCFS GI/GI/n Queue

- Inter-arrival times i.i.d. $\sim A$
- $\bullet~$ Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- P_{wait}: s.s. prob. all servers busy

Punchline	Model ○●	History 0000000000000	Main results	Proof 00	Conclusion

- Inter-arrival times i.i.d. $\sim A$
- Service times i.i.d. \sim S

•
$$\mu_A = \frac{1}{E[A]}$$
 , $\mu_S = \frac{1}{E[S]}$

- n servers
- Traffic intensity $\rho = \frac{\mu_A}{n\mu_S}$
- Jobs served FCFS
- L: s.s. number waiting in queue
- *P_{wait}*: s.s. prob. all servers busy

Punchline	Model 00	History •ooooooooooooooooo	Main results	Proof 00	Conclusion
Outline					

5 Proof

Punchline	Model oo	History o●oooooooooooo	Main results	Proof 00	Conclusion
Early 2	0th Cer	ntury			

(a) Erlang

(b) Pollaczek

(c) Khinchin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000			

Early 20th Century

- Model "invented" to study early telephone networks
- Pioneering work by engineers such as Erlang
- Soon found many other applications
- Erlang solves the M/M/n case
- P-K formula for E[L] in M/G/1 case

・ロト・西ト・山田・山田・山下

Punchline	Model	History ००●००००००००००	Main results	Proof 00	Conclusion

Early 20th Century

Model "invented" to study early telephone networks

・ コット (雪) (小田) (コット 日)

- Pioneering work by engineers such as Erlang
- Soon found many other applications
- Erlang solves the M/M/n case
- P-K formula for E[L] in M/G/1 case

Punchline	Model 00	History oo●ooooooooooo	Main results	Proof 00	Conclusion

Early 20th Century

Model "invented" to study early telephone networks

- Pioneering work by engineers such as Erlang
- Soon found many other applications
- Erlang solves the M/M/n case
- P-K formula for E[L] in M/G/1 case

Punchline	Model 00	History ००●००००००००००	Main results	Proof 00	Conclusion

Early 20th Century

Model "invented" to study early telephone networks

- Pioneering work by engineers such as Erlang
- Soon found many other applications
- Erlang solves the M/M/n case
- P-K formula for E[L] in M/G/1 case

Punchline	Model 00	History ००●००००००००००	Main results	Proof 00	Conclusion

Early 20th Century

Model "invented" to study early telephone networks

- Pioneering work by engineers such as Erlang
- Soon found many other applications
- Erlang solves the M/M/n case
- P-K formula for E[L] in M/G/1 case

Punchline 0000	Model 00	History ocoecococococo	Main results	Proof 00	Conclusion
Mid 20t	h Cent	ury			

(d) Spitzer

(e) Lindley

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	00000000000000	00000	00	000

(日) (日) (日) (日) (日) (日) (日)

Mid 20th Century

Mid 20th Century

Great progress on single-server queue

- Lindley's recursion
- Spitzer's identity

Little progress on multi-server queue

Punchline	Model 00	History ○○○○●○○○○○○○○	Main results	Proof 00	Conclusion

Mid 20th Century

- Great progress on single-server queue
 - Lindley's recursion
 - Spitzer's identity
- Little progress on multi-server queue
 - Pollaczek: Extremely complicated transforms

・ コット (雪) (小田) (コット 日)

Punchline	Model	History ০০০০●০০০০০০০০	Main results	Proof 00	Conclusion

Mid 20th Century

- Great progress on single-server queue
 - Lindley's recursion
 - Spitzer's identity

Little progress on multi-server queue

Kendall solves G/M/n case

Pollaczek: Extremely complicated transforms

・ コット (雪) (小田) (コット 日)

Punchline	Model oo	History ○○○○●○○○○○○○○	Main results	Proof 00	Conclusion

Mid 20th Century

Great progress on single-server queue

- Lindley's recursion
- Spitzer's identity

Little progress on multi-server queue

- Kendall solves G/M/n case
- Pollaczek: Extremely complicated transforms

・ロト ・聞ト ・ヨト ・ヨト 三日

Punchline	Model oo	History ○○○○●○○○○○○○○	Main results	Proof 00	Conclusion

Mid 20th Century

- Great progress on single-server queue
 - Lindley's recursion
 - Spitzer's identity

Little progress on multi-server queue

- Kendall solves G/M/n case
- Pollaczek: Extremely complicated transforms

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Punchline	Model	History 0000●000000000	Main results	Proof	Conclusion

Mid 20th Century

- Great progress on single-server queue
 - Lindley's recursion
 - Spitzer's identity
- Little progress on multi-server queue
 - Kendall solves G/M/n case
 - Pollaczek: Extremely complicated transforms

・ コット (雪) (小田) (コット 日)

Punchline	Model 00	History ○○○○○●○○○○○○○○	Main results	Proof 00	Conclusion
The 60's					

(g) Sir John Kingman

(ロ)、(型)、(E)、(E)、 E、のQの

Punchline	Model 00	History oooooo●ooooooo	Main results	Proof 00	Conclusion
The 60'	S				

Kingman's Bound for general G/G/1 queue

- $E[L] \leq \frac{1}{2} \left(Var[A\mu_A] + \rho^2 Var[S\mu_S] \right) \times \frac{1}{1-\rho}$
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Simple, explicit, general, scalable
- Useful in theory and practice
- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free
- Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

Punchline	Model oo	History ooooco●ooooooo	Main results	Proof 00	Conclusion
The 60	's				

Kingman's Bound for general G/G/1 queue

- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Simple, explicit, general, scalable
- Useful in theory and practice
- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free
- Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Punchline	Model oo	History ooooco●ooooooo	Main results	Proof 00	Conclusion
The 60	's				

Kingman's Bound for general G/G/1 queue

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$$
 is scale-free

• Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Punchline	Model 00	History ○○○○○●○○○○○○○	Main results	Proof 00	Conclusion
The 60 ³	's				

Kingman's Bound for general G/G/1 queue

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$$

• Simple, explicit, general, scalable

Useful in theory and practice

- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free
- Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

Punchline	Model 00	History ○○○○○●○○○○○○○	Main results	Proof 00	Conclusion
The 60	's				

Kingman's Bound for general G/G/1 queue

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$$

- Simple, explicit, general, scalable
- Useful in theory and practice
- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free
- Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

Punchline 0000	Model 00	History ○○○○○●○○○○○○○	Main results	Proof 00	Conclusion
The 60 ³	s				

Kingman's Bound for general G/G/1 queue

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$$

- Simple, explicit, general, scalable
- Useful in theory and practice
- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free

• Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

・ロト・日本・日本・日本・日本

Punchline	Model oo	History ○○○○○●○○○○○○○	Main results	Proof 00	Conclusion
The 60's	2				

Kingman's Bound for general G/G/1 queue

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + \rho^2 Var[S\mu_S]) \times \frac{1}{1-\rho}$$

•
$$E[L] \leq \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times \frac{1}{1-\rho}$$

- Simple, explicit, general, scalable
- Useful in theory and practice
- $\frac{1}{2}(Var[A\mu_A] + Var[S\mu_S])$ is scale-free
- Scales as $\frac{1}{1-\rho}$ as $\rho \uparrow 1$ in a broad sense

・ロト・日本・日本・日本・日本

Punchline	Model 00	History ooooooo●oooooo	Main results	Proof 00	Conclusion

The 60's (cont.)

Kingman's heavy-traffic analysis for G/G/1 queue

- Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

- Certain technical conditions required
- Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model oo	History ○○○○○○●○○○○○○	Main results	Proof 00	Conclusion

The 60's (cont.)

Kingman's heavy-traffic analysis for G/G/1 queue

- $\bullet\,$ Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2}(Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$

- Certain technical conditions required
- Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model 00	History ○○○○○○●○○○○○○	Main results	Proof 00	Conclusion

The 60's (cont.)

• Kingman's heavy-traffic analysis for G/G/1 queue

- $\bullet\,$ Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$

・ロト・日本・日本・日本・日本

- Certain technical conditions required
- Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model oo	History ○○○○○○●○○○○○○	Main results	Proof 00	Conclusion
The 60's	(cont.)				

• Kingman's heavy-traffic analysis for G/G/1 queue

- $\bullet\,$ Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ

•
$$\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$$

・ロト・日本・日本・日本・日本

Certain technical conditions required

• Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model 00	History ⊙⊙⊙⊙⊙⊙●⊙⊙⊙⊙⊙⊙	Main results	Proof 00	Conclusion

The 60's (cont.)

Kingman's heavy-traffic analysis for G/G/1 queue

- Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$

- Certain technical conditions required
- Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model 00	History ○○○○○○●○○○○○○	Main results	Proof 00	Conclusion

The 60's (cont.)

Kingman's heavy-traffic analysis for G/G/1 queue

- Consider a sequence of queues indexed by intensity ρ
- Let L_{ρ} be the s.s. r.v. for system with intensity ρ
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$

- Certain technical conditions required
- Shows Kingman's bound is tight as $\rho \uparrow 1$

Punchline	Model 00	History ○○○○○○○●○○○○○	Main results	Proof 00	Conclusion
The 60'	's (cont	·)			

Kingman poses some open problems

- Multi-server analogue of Kingman's bound?
- Multi-server analogue of heavy-traffic analysis?

(日) (日) (日) (日) (日) (日) (日)

Punchline	Model 00	History ○○○○○○○●○○○○○	Main results	Proof 00	Conclusion
The 60	's (cont	.)			

Kingman poses some open problems

- Multi-server analogue of Kingman's bound?
- Multi-server analogue of heavy-traffic analysis?

(日) (日) (日) (日) (日) (日) (日)

Punchline	Model oo	History ○○○○○○○●○○○○○	Main results	Proof 00	Conclusion
The 60'	s (cont	.)			

- Kingman poses some open problems
 - Multi-server analogue of Kingman's bound?
 - Multi-server analogue of heavy-traffic analysis?

Punchline	Model 00	History ○○○○○○○○●○○○○	Main results	Proof 00	Conclusion
The 70	's				

(h) Borovkov

(i) Whitt

(j) Iglehart

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Punchline	Model 00	History ooooooooooooooo	Main results	Proof 00	Conclusion
The 70'	S				

Kollerstrom solves the multi-server heavy-traffic analysis

• FIXED n, $\rho \uparrow 1$

- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as ρ ↑ 1
- Same $\frac{1}{1-a}$ scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou

Attempts to use for a multi-server Kingman's bound

Punchline	Model oo	History ○○○○○○○○○●○○○	Main results	Proof 00	Conclusion
The 70 ³	S				

Kollerstrom solves the multi-server heavy-traffic analysis

• FIXED n, $\rho \uparrow 1$

- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as $ho \uparrow 1$
- Same ¹/_{1-a} scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound

Punchline	Model 00	History ○○○○○○○○○●○○○	Main results	Proof 00	Conclusion
The 70's					

Kollerstrom solves the multi-server heavy-traffic analysis

- FIXED n, $\rho \uparrow 1$
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as $ho \uparrow 1$
- Same $\frac{1}{1-a}$ scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou

Attempts to use for a multi-server Kingman's bound

Punchline	Model 00	History ooooooooooooooo	Main results	Proof 00	Conclusion
The 70's					

Kollerstrom solves the multi-server heavy-traffic analysis

- FIXED n, *ρ* ↑ 1
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as $\rho \uparrow 1$
- Same ¹/_{1-a} scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound

Punchline 0000	Model 00	History ○○○○○○○○○●○○○	Main results	Proof 00	Conclusion
The 70					

ine /us

Kollerstrom solves the multi-server heavy-traffic analysis

- FIXED n, $\rho \uparrow 1$
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as $\rho \uparrow 1$
- Same $\frac{1}{1-\rho}$ scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound

All require FIXED n, p † 1
 No hope of general explicit bound

Punchline	Model 00	History ooooooooooooooo	Main results	Proof 00	Conclusion
The 70's	S				

Kollerstrom solves the multi-server heavy-traffic analysis

- FIXED n, $\rho \uparrow 1$
- $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
- System behaves like a single sped-up server as $\rho \uparrow 1$
- Same $\frac{1}{1-a}$ scaling as single-server case
- Related results by Whitt, Borovkov, Iglehart, Loulou

Attempts to use for a multi-server Kingman's bound

Punchline	Model oo	History oooooooooooooooo	Main results	Proof 00	Conclusion
The 70	's				

- Kollerstrom solves the multi-server heavy-traffic analysis
 - FIXED n, $\rho \uparrow 1$
 - $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
 - System behaves like a single sped-up server as $\rho \uparrow 1$
 - Same $\frac{1}{1-a}$ scaling as single-server case
 - Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound
 - Complicated corrections to the heavy-traffic approximation
 - All require FIXED n, $\rho \uparrow 1$
 - No hope of general explicit bound

Punchline	Model	History ०००००००००●०००	Main results	Proof 00	Conclusion

- Kollerstrom solves the multi-server heavy-traffic analysis
 - FIXED n, $\rho \uparrow 1$
 - $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
 - System behaves like a single sped-up server as ρ ↑ 1
 - Same $\frac{1}{1-a}$ scaling as single-server case
 - Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound
 - Complicated corrections to the heavy-traffic approximation
 - Kollerstrom, Nagaev, Kennedy
 - All require FIXED n, $\rho \uparrow 1$
 - No hope of general explicit bound

Punchline	Model 00	History ०००००००००●०००	Main results	Proof 00	Conclusion

- Kollerstrom solves the multi-server heavy-traffic analysis
 - FIXED n, $\rho \uparrow 1$
 - $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
 - System behaves like a single sped-up server as ρ ↑ 1
 - Same $\frac{1}{1-a}$ scaling as single-server case
 - Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound
 - Complicated corrections to the heavy-traffic approximation
 - Kollerstrom, Nagaev, Kennedy
 - All require FIXED n, $\rho \uparrow \uparrow$
 - No hope of general explicit bound

Punchline	Model 00	History ०००००००००●०००	Main results	Proof 00	Conclusion

- Kollerstrom solves the multi-server heavy-traffic analysis
 - FIXED n, $\rho \uparrow 1$
 - $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
 - System behaves like a single sped-up server as $\rho \uparrow 1$
 - Same $\frac{1}{1-a}$ scaling as single-server case
 - Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound
 - Complicated corrections to the heavy-traffic approximation
 - Kollerstrom, Nagaev, Kennedy
 - All require FIXED n, $\rho \uparrow 1$
 - No hope of general explicit bound

Punchline	Model 00	History ०००००००००●०००	Main results	Proof 00	Conclusion

- Kollerstrom solves the multi-server heavy-traffic analysis
 - FIXED n, *ρ* ↑ 1
 - $\{(1-\rho)L_{\rho}, \rho \uparrow 1\} \Rightarrow \frac{1}{2} (Var[A\mu_A] + Var[S\mu_S]) \times Expo(1)$
 - System behaves like a single sped-up server as ρ ↑ 1
 - Same $\frac{1}{1-a}$ scaling as single-server case
 - Related results by Whitt, Borovkov, Iglehart, Loulou
- Attempts to use for a multi-server Kingman's bound
 - Complicated corrections to the heavy-traffic approximation
 - Kollerstrom, Nagaev, Kennedy
 - All require FIXED n, ρ ↑ 1
 - No hope of general explicit bound

Punchline	Model 00	History ○○○○○○○○○●○○	Main results	Proof 00	Conclusion
The 70's	s (cont	.)			

Kingman derives a simple bound for G/G/n queues

By analyzing the cyclic routing bound

- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
- The *n* in front of *Var*[*S*µ_{*S*}] renders it ineffective!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Punchline	Model 00	History ○○○○○○○○○○●○○	Main results	Proof 00	Conclusion
The 70	's (cont	.)			

• Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- *E*[*L*] ≤ ½ (*Var*[*Aµ_A*] + *n* × *Var*[*Sµ_S*]) × ¼/(1-ρ)
 Later made rigorous by Wolff, Brumelle, Mori
 The *n* in front of *Var*[*Sµ_S*] renders it ineffective

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Punchline	Model 00	History ooooooooooooooooo	Main results	Proof 00	Conclusion
TI T 01					

The 70's (cont.)

Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
 The *n* in front of Var[Suc] renders it ineffective!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Punchline	Model oo	History oooooooooooooooo	Main results	Proof 00	Conclusion
The 70's	(cont.)				

Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
- The n in front of Var[SµS] renders it ineffective!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Especially when $n \to \infty, \rho \uparrow 1$ together

Punchline	Model	History ooooooooooooooo	Main results	Proof 00	Conclusion

The 70's (cont.)

Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
- The *n* in front of *Var*[*S*µ_{*S*}] renders it ineffective!

- Especially when $n \to \infty, \rho \uparrow 1$ together
- Can we get rid of it?

Punchline	Model	History ooooooooooooooo	Main results	Proof 00	Conclusion

The 70's (cont.)

Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
- The *n* in front of *Var*[*S*µ_{*S*}] renders it ineffective!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Especially when $n \to \infty, \rho \uparrow 1$ together

Punchline	Model 00	History ○○○○○○○○○●○○	Main results	Proof 00	Conclusion

The 70's (cont.)

Kingman derives a simple bound for G/G/n queues

- By analyzing the cyclic routing bound
- $E[L] \leq \frac{1}{2} (Var[A\mu_A] + n \times Var[S\mu_S]) \times \frac{1}{1-\rho}$
- Later made rigorous by Wolff, Brumelle, Mori
- The n in front of Var[SµS] renders it ineffective!

- Especially when $n \to \infty, \rho \uparrow 1$ together
- Can we get rid of it?

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

Halfin-Whitt regime

• Halfin-Whitt scaling regime:

- Used to study quality-efficiency trade-off in service systems
- Many servers, regular service times, sped-up arrivals
- $ho \sim 1 Bn^{-\frac{1}{2}}$
- P_{wait} has a non-trivial limiting value as $n o \infty$
- Introduced in 1981 by Halfin and Whitt
- Intensely studied in 90's and 2000's
- Proven that L scales (roughly) as $rac{1}{1-a} \sim n^{rac{1}{2}}$
- Complicated non-explicit measure-valued weak limits
- Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
- No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $ho \sim$ 1 Bn^{-1}
 - P_{wait} has a non-trivial limiting value as $n o \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $rac{1}{1-a} \sim n^{rac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramana
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $ho \sim$ 1 $Bn^{-rac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n o \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $rac{1}{1-a} \sim n^{rac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, .
 No general, scalable, simple and explicit bound

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n o \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $rac{1}{1-a} \sim n^{rac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan,
 No general scalable simple and explicit bound

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $rac{1}{1-a} \sim n^{rac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $rac{1}{1-a} \sim n^rac{1}{2}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramanal
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-a} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - Heavy-traffic corrections and bounds
 Dai, Brav., Gurvich, Leeuw., Zwart, Ramanar
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-\rho} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-a} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-\rho} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		000000000000000000000000000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-a} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		0000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-\rho} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
		00000000000000000			

- Halfin-Whitt scaling regime:
 - Used to study quality-efficiency trade-off in service systems
 - Many servers, regular service times, sped-up arrivals
 - $\rho \sim 1 Bn^{-\frac{1}{2}}$
 - P_{wait} has a non-trivial limiting value as $n \to \infty$
 - Introduced in 1981 by Halfin and Whitt
 - Intensely studied in 90's and 2000's
 - Proven that L scales (roughly) as $\frac{1}{1-\rho} \sim n^{\frac{1}{2}}$
 - Complicated non-explicit measure-valued weak limits
 - HW,GM,PR,Reed,GG,DDG,AR,...
 - Heavy-traffic corrections and bounds
 - Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, ...
 - No general, scalable, simple and explicit bounds

Punchline	Model	History ○○○○○○○○○○○○	Main results	Proof	Conclusion

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-a}$ bounds
 - No multi-server Kingman's bound
- Daley has lamented / conjectured on this in 70's,80's,90's
 Such a bound may not even exist

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000	00000	00	000

Until the present

In spite of a century of work on multi-server queues

- No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$

Daley has lamented / conjectured on this in 70's,80's,90's

Such a bound may not even exist

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000	00000	00	000

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-a}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-1}$

Daley has lamented / conjectured on this in 70's,80's,90's
Such a bound may not even exist

・ロト ・聞ト ・ヨト ・ヨト 三日

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000	00000	00	000

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$

Daley has lamented / conjectured on this in 70's,80's,90's
Such a bound may not even exist

・ロト ・聞ト ・ヨト ・ヨト 三日

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000	00000	00	000

Until the present

In spite of a century of work on multi-server queues

- No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$

Daley has lamented / conjectured on this in 70's,80's,90's

Such a bound may not even exist

Punchline	Model oo	History ○○○○○○○○○○○○	Main results	Proof 00	Conclusion

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$
- Daley has lamented / conjectured on this in 70's,80's,90's

- Such a bound may not even exist
 - Negative results of Gupta et al.
 - Complexity of HW limits

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000	00000	00	000

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$
- Daley has lamented / conjectured on this in 70's,80's,90's

- Such a bound may not even exist
 - Negative results of Gupta et al.
 - Complexity of HW limits

Punchline	Model oo	History ○○○○○○○○○○○○	Main results	Proof 00	Conclusion

Until the present

- In spite of a century of work on multi-server queues
 - No universal explicit $\frac{1}{1-\rho}$ bounds
 - No multi-server Kingman's bound
 - Normalized moments $\times \frac{1}{1-\rho}$
- Daley has lamented / conjectured on this in 70's,80's,90's

- Such a bound may not even exist
 - Negative results of Gupta et al.
 - Complexity of HW limits

Punchline	Model oo	History 0000000000000	Main results ●○○○○	Proof 00	Conclusion
Outline					

3 History

5 Proof

Punchline	Model 00	History 0000000000000	Main results o●ooo	Proof 00	Conclusion

Multi-server Kingman's Bound

Corollary

For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$,

E[L] is at most

$$10^{500} \left(E[(S\mu_S)^3] E[(A\mu_A)^3] \right)^3 \times \frac{1}{1-\rho}$$

Punchline	Model 00	History 0000000000000	Main results ○●○○○	Proof 00	Conclusion

Multi-server Kingman's Bound

Corollary

For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$,

E[L] is at most

$$10^{500} \left(\boldsymbol{E} \left[(\boldsymbol{S} \mu_{\boldsymbol{S}})^3 \right] \boldsymbol{E} \left[(\boldsymbol{A} \mu_{\boldsymbol{A}})^3 \right] \right)^3 \times \frac{1}{1 - \rho}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のみの

Punchline	Model	History	Main results	Proof	Conclusion
			00000		

Theorem For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$, P_{wait} is at most $10^{500} \left(E[(S\mu_S)^3] E[(A\mu_A)^3] \right)^3 \left(n(1-\rho)^2 \right)^{-\frac{3}{2}}$.

(日) (日) (日) (日) (日) (日) (日)

- "Kicks in" exactly in HW regime
 - $(n(1-\rho)^2)^{-2} = B^{-3}$

Punchline	Model	History	Main results	Proof	Conclusion
			00000		

Theorem

For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$,

P_{wait} is at most

$$10^{500} \Big(E[(S\mu_S)^3] E[(A\mu_A)^3] \Big)^3 \Big(n(1-
ho)^2 \Big)^{-\frac{5}{2}}$$

"Kicks in" exactly in HW regime
 (n(1 − ρ)²)⁻³ = B⁻³

Punchline	Model	History	Main results	Proof	Conclusion
			00000		

Theorem

For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$,

P_{wait} is at most

$$10^{500} \Big(E[(S\mu_S)^3] E[(A\mu_A)^3] \Big)^3 \Big(n(1-\rho)^2 \Big)^{-\frac{1}{2}}$$

(日) (日) (日) (日) (日) (日) (日)

"Kicks in" exactly in HW regime

Punchline	Model	History	Main results	Proof	Conclusion
			00000		

Theorem

For any G/G/n queue s.t. $E[A^3], E[S^3] < \infty$,

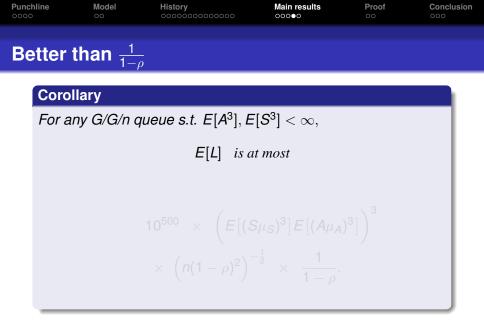
P_{wait} is at most

$$10^{500} \Big(E[(S\mu_S)^3] E[(A\mu_A)^3] \Big)^3 \Big(n(1-\rho)^2 \Big)^{-\frac{1}{2}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

"Kicks in" exactly in HW regime

•
$$(n(1-\rho)^2)^{-\frac{3}{2}} = B^{-3}$$



(日) (日) (日) (日) (日) (日) (日)

• Vast generalization of M/M/n . .

Punchline	Model oo	History oooooooooooooo	Main results ○○○●○	Proof 00	Conclusion
Better	than $\frac{1}{1-}$	$\overline{ ho}$			
Coro	llary				
For a	any G/G/n d	queue s.t. E[A³], E	$[S^3] < \infty,$		
		E[L] is a	t most		
		$10^{500} \times (E[(S \times (n(1-\rho)^2)^{-1})])$	$[S\mu_S)^3]E[(A\mu_A)^{-\frac{1}{2}}]$	$)^{3}]\Big)^{3}$	
		$\times (n(1-\rho))$	$\times \frac{1-\rho}{1-\rho}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vast generalization of M/M/n . .
 E[L] = Pwat × (Ep)

Punchline	Model oo	History 00000000000000	Main results ○○○●○	Proof 00	Conclusion
Bett	er than $\frac{1}{1-}$	- <u>_</u>			
С	orollary				
F	or any G/G/n	queue s.t. E[A ³], E	$[S^3] < \infty,$		
		E[L] is a	at most		
		$10^{500} \times (E[(3$,	
		$\times \left(n(1-\rho)^2\right)^2$	$-\frac{1}{2}$ \times $\frac{1}{1-\rho}$.		

Vast generalization of M/M/n ...
 E[L] = P_{wait} × ^P/_{1−ρ}

Punchlin 0000	e Model	History ०००००००००००००	Main results ○○○●○	Proof 00	Conclusion	
Bet	ter than $\frac{1}{1}$	<u>Ι</u>				
	Corollary					
ŀ	For any G/G/n	queue s.t. E[A ³], E	$\mathbf{S}^{3}]<\infty,$			
	E[L] is at most					
		$10^{500} \times (E[($	$S\mu_S)^3]E[(A\mu_A)^3]E[(A\mu_B)^3]B]$	$\left[\right)^{3}\right]^{3}$		
		$\times \left(n(1-\rho)^2\right)$	$-$ × $\overline{1-\rho}$.			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Vast generalization of M/M/n ...

•
$$E[L] = P_{wait} \times \frac{\rho}{1-\rho}$$

Punchline	Model 00	History	Main results ○○○○●	Proof 00	Conclusion
Other I	results i	in paper			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• More moments \rightarrow better bounds

- Need at least $2 + \epsilon$
- Explicit tail bounds
- Implications for H-W regime

Punchline	Model 00	History	Main results ○○○○●	Proof 00	Conclusion
Other I	results i	in paper			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\bullet \ \ \text{More moments} \to \text{better bounds}$

- Need at least $\mathbf{2} + \epsilon$
- Explicit tail bounds
- Implications for H-W regime

Punchline	Model oo	History occocococococo	Main results ○○○○●	Proof 00	Conclusion
Other r	esults i	in paper			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• More moments \rightarrow better bounds

- Need at least $\mathbf{2} + \epsilon$
- Explicit tail bounds

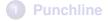
Implications for H-W regime

Punchline	Model oo	History	Main results ○○○○●	Proof 00	Conclusion
Other r	aeulte i	in naner			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\bullet \ \ \text{More moments} \to \text{better bounds}$
 - Need at least $\mathbf{2} + \epsilon$
- Explicit tail bounds
- Implications for H-W regime

Punchline	Model 00	History 0000000000000	Main results	Proof ●○	Conclusion
Outline					



3 History

Punchline	Model	History	Main results	Proof	Conclusion
				00	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^n N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
				00	

- GG.13 bounds L by 1-D random walk • $\sup_{t>0} (A(t) - \sum_{i=1}^{n} N_i(t))$
- G.16 similarly bounds P_{wain}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds

Punchline	Model	History	Main results	Proof	Conclusion
				$\circ \bullet$	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds . . .

Punchline	Model	History	Main results	Proof	Conclusion
				$\circ \bullet$	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds . .

Punchline	Model	History	Main results	Proof	Conclusion
				$\circ \bullet$	

Proof Overview

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically

Many novel explicit bounds . . .

Punchline	Model	History	Main results	Proof	Conclusion
				00	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds ...
 - Pooled renewal processes
 - Negative drift r.w. with stat. inc.
 - Maximal inequalities

Punchline	Model	History	Main results	Proof	Conclusion
				0•	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds ...
 - Pooled renewal processes
 - Negative drift r.w. with stat. inc.
 - Maximal inequalities

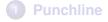
Punchline	Model	History	Main results	Proof	Conclusion
				0•	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds ...
 - Pooled renewal processes
 - Negative drift r.w. with stat. inc.
 - Maximal inequalities

Punchline	Model	History	Main results	Proof	Conclusion
				0•	

- GG.13 bounds L by 1-D random walk
 - $\sup_{t\geq 0} \left(A(t) \sum_{i=1}^{n} N_i(t) \right)$
- G.16 similarly bounds P_{wait}
- Previously analyzed asymptotically in HW regime
- We analyze universally and non-asymptotically
- Many novel explicit bounds ...
 - Pooled renewal processes
 - Negative drift r.w. with stat. inc.
 - Maximal inequalities

Punchline	Model 00	History 0000000000000	Main results	Proof 00	Conclusion ●○○
Outline					



3 History

5 Proof

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000		00	○●○
Summa	arv				

・ロト・日本・日本・日本・日本

- First multi-server analogue of Kingman's bound
- Explicit bounds with universal ¹/₁₋₀ scaling
- Higher moments and P_{wait}
- Applications to HW regime
- Broad theoretical foundation for $\frac{1}{1-\rho}$

Punchline	Model	History	Main results	Proof	Conclusion
0000	00	0000000000000		00	○●○
Summa	arv				

(日) (日) (日) (日) (日) (日) (日)

- First multi-server analogue of Kingman's bound
- Explicit bounds with universal $\frac{1}{1-\rho}$ scaling
- Higher moments and P_{wait}
- Applications to HW regime
- Broad theoretical foundation for $\frac{1}{1-\rho}$

Punchline	Model oo	History 0000000000000	Main results	Proof 00	Conclusion ○●○
Summa	ary				

・ロト・日本・日本・日本・日本

- First multi-server analogue of Kingman's bound
- Explicit bounds with universal $\frac{1}{1-\rho}$ scaling
- Higher moments and P_{wait}
- Applications to HW regime
- Broad theoretical foundation for $\frac{1}{1-\rho}$

Punchline	Model oo	History 0000000000000	Main results	Proof 00	Conclusion ○●○
Summa	ary				

・ロト・日本・日本・日本・日本

- First multi-server analogue of Kingman's bound
- Explicit bounds with universal $\frac{1}{1-\rho}$ scaling
- Higher moments and P_{wait}
- Applications to HW regime
- Broad theoretical foundation for
 ¹/_{1-a}

Punchline	Model oo	History 0000000000000	Main results	Proof 00	Conclusion ○●○
Summa	ary				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- First multi-server analogue of Kingman's bound
- Explicit bounds with universal $\frac{1}{1-\rho}$ scaling
- Higher moments and P_{wait}
- Applications to HW regime
- Broad theoretical foundation for $\frac{1}{1-\rho}$

Punchline	Model	History	Main results	Proof	Conclusion
					000

Future research

Get that constant down!

- Tighter analysis
- Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model 00	History 0000000000000	Main results	Proof 00	Conclusion ○○●

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?

Punchline	Model	History	Main results	Proof	Conclusion
					000

- Get that constant down!
 - Tighter analysis
 - Fundamentally different analysis
- Bridge to known asymptotic results e.g. in HW
- Bridge to moment results of Scheller-Wolf
- Heavy tails
- Other queueing models
- How to trade off simplicity and accuracy in bounds?
- What do we want from our analyses?