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@ Only rigorously justified for G/G/n in a few special cases!
o Single server
o Exponential or deterministic service times
@ Special asymptotic regimes
@ Far less known is known when it comes to . . .
e Simple, explicit, non-asymptotic bounds
@ The exception is Kingman’s bound, but ...
@ Only for single server
@ A major difficulty is that any such bound ...
o Mustscale as 11 evenifn— coasp 11

@ Multi-server Kingman'’s bound open for 50 years!
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@ Our main result resolves this open question

@ Simple and explicit bounds for E[L] scaling as 1%{)
@ General G/G/n only requiring finite 2 + ¢ moments
Higher moments and tails

@ Steady-state probability of delay

@ In some cases we even beat ﬂfp

@ Implications for Halfin- Whitt regime
°
°

Broadly justifies the 1 heurlstlc for multi-server queues
Proof of concept , work to do!
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FCFS GI/Gl/n Queue

@ Inter-arrival times i.i.d. ~ A

@ Service timesi.id. ~ S

_ 1 A1
® pa= EA > Hs = E[S]
@ n servers
o Traffic intensity p = /4

@ Jobs served FCFS
@ L: s.s. number waiting in queue
@ P,.i: s.s. prob. all servers busy
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Early 20th Century

@ Model “invented” to study early telephone networks
@ Pioneering work by engineers such as Erlang

@ Soon found many other applications

@ Erlang solves the M/M/n case

@ P-K formula for E[L] in M/G/1 case
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Mid 20th Century

@ Great progress on single-server queue
e Lindley’s recursion
@ Spitzer’s identity

@ Little progress on multi-server queue

o Kendall solves G/M/n case
o Pollaczek: Extremely complicated transforms
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@ Kingman’s Bound for general G/G/1 queue
o E[L] < 3(Var[Aua] + p?Var[Sus]) x 1%{)
E[L] < 3(Var[Apa] + Var[Sus]) x 11:
Simple, explicit, general, scalable
Useful in theory and practice
3(Var[Aua) + Var[Sps]) is scale-free
Scales as ﬂfp as p 1 1in a broad sense

®© 6 6 06 ¢
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The 60’s (cont.)

@ Kingman’s heavy-traffic analysis for G/G/1 queue

o Consider a sequence of queues indexed by intensity p
Let L, be the s.s. r.v. for system with intensity p
{(1 = p)Lp,p 1 1} = 3 (Var[Aual + Var[Sus]) x Expo(1)
Certain technical conditions required
Shows Kingman'’s bound is tight as p 1 1

(]




History
000000008000 00

The 60’s (cont.)

The 60’s (cont.)

@ Kingman poses some open problems




History
000000008000 00

The 60’s (cont.)

The 60’s (cont.)

@ Kingman poses some open problems
o Multi-server analogue of Kingman’s bound?




History
000000008000 00

The 60’s (cont.)

The 60’s (cont.)

@ Kingman poses some open problems

o Multi-server analogue of Kingman’s bound?
o Multi-server analogue of heavy-traffic analysis?
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@ Kollerstrom solves the multi-server heavy-traffic analysis
o FIXEDn, pt 1
o {(1=p)Ly,pt 1} = 3 (Var[Aua] + Var[Sps]) x Expo(1)
e System behaves like a single sped-up server as p 1 1
e Same ﬂfp scaling as single-server case
o Related results by Whitt, Borovkov, Iglehart, Loulou

@ Attempts to use for a multi-server Kingman’s bound

Complicated corrections to the heavy-traffic approximation
Kollerstrom, Nagaev, Kennedy

All require FIXED n, p 1 1

No hope of general explicit bound
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@ Kingman derives a simple bound for G/G/n queues

By analyzing the cyclic routing bound
E[L] < 3(Var[Aua] + n x Var[Sps]) x 11
Later made rigorous by Wolff, Brumelle, Mori
The nin front of Var[Sug] renders it ineffective!
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The 70’s (cont.)

@ Kingman derives a simple bound for G/G/n queues

By analyzing the cyclic routing bound

E[L] < 3(Var[Aua] + n x Var[Sps]) x 11

Later made rigorous by Wolff, Brumelle, Mori

The nin front of Var[Sug] renders it ineffective!
@ Especially when n — oo, p 1 1 together

o Can we get rid of it?

(]
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Used to study quality-efficiency trade-off in service systems
Many servers, regular service times, sped-up arrivals
p~1—Bn2
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@ Halfin-Whitt scaling regime:

o Used to study quality-efficiency trade-off in service systems
Many servers, regular service times, sped-up arrivals
p~1—Bn2
Pyair has a non-trivial limiting value as n — ~o
Introduced in 1981 by Halfin and Whitt
Intensely studied in 90’s and 2000’s
Proven that L scales (roughly) as ﬂfp ~ nZ
Complicated non-explicit measure-valued weak limits

e HW,GM,PR,Reed,GG,DDG,AR,. ..
o Heavy-traffic corrections and bounds
@ Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, . ..

@ No general, scalable, simple and explicit bounds
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@ In spite of a century of work on multi-server queues . ..
o No universal explicit 1 bounds

@ No multi-server Kingman'’s bound
@ Normalized moments x

@ Daley has lamented / conjectured on this in 70’s,80’s,90’s

@ Such a bound may not even exist

o Negative results of Gupta et al.
o Complexity of HW limits
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For any G/G/n queue s.t. E[A®], E[S®] < oo,

Puait  is at most
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1090 E((Sus)*)E[(Aua®] ) (n(1 - )

_3
2

@ “Kicks in” exactly in HW regime

° (n(1 - p)2>_% = B3
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Better than ﬂTp

Corollary

For any G/G/n queue s.t. E[A3], E[S®] < oo,

E[L] is at most

3
10590 o <E[(SMS)3}E[(AMA)3]>

1

X (n(1—p)2)_§ X L

@ Vast generalization of M/M/n . ..
o E[L] = Pyait X ﬁ
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Other results in paper

@ More moments — better bounds
@ Need at least 2 + ¢

@ Explicit tail bounds
@ Implications for H-W regime
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@ GG.13 bounds L by 1-D random walk
@ Sups>o (A(t) - 27:1 Ni(t))
@ G.16 similarly bounds Py,
@ Previously analyzed asymptotically in HW regime
@ We analyze universally and non-asymptotically

@ Many novel explicit bounds . ..

o Pooled renewal processes
o Negative drift r.w. with stat. inc.
o Maximal inequalities
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Summary

@ First multi-server analogue of Kingman'’s bound
@ Explicit bounds with universal ﬂfp scaling

@ Higher moments and P,

@ Applications to HW regime

@ Broad theoretical foundation for 1
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Future research

Future research

@ Get that constant down!

o Tighter analysis
e Fundamentally different analysis

@ Bridge to known asymptotic results e.g. in HW

@ Bridge to moment results of Scheller-Wolf

@ Heavy tails

@ Other queueing models

@ How to trade off simplicity and accuracy in bounds?
@ What do we want from our analyses?
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