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General G/G/n only requiring finite 2 + ε moments
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In some cases we even beat 1
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Implications for Halfin-Whitt regime
Broadly justifies the 1

1−ρ heuristic for multi-server queues
Proof of concept , work to do!
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E [L] ≤ 1

2

(
Var [AµA] + ρ2Var [SµS]

)
× 1

1−ρ

E [L] ≤ 1
2

(
Var [AµA] + Var [SµS]

)
× 1

1−ρ

Simple, explicit, general, scalable
Useful in theory and practice
1
2

(
Var [AµA] + Var [SµS]

)
is scale-free

Scales as 1
1−ρ as ρ ↑ 1 in a broad sense
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Kingman’s heavy-traffic analysis for G/G/1 queue
Consider a sequence of queues indexed by intensity ρ
Let Lρ be the s.s. r.v. for system with intensity ρ
{(1− ρ)Lρ, ρ ↑ 1} ⇒ 1

2

(
Var [AµA] + Var [SµS]

)
× Expo(1)

Certain technical conditions required
Shows Kingman’s bound is tight as ρ ↑ 1
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Kollerstrom solves the multi-server heavy-traffic analysis
FIXED n, ρ ↑ 1
{(1− ρ)Lρ, ρ ↑ 1} ⇒ 1

2

(
Var [AµA] + Var [SµS]

)
× Expo(1)

System behaves like a single sped-up server as ρ ↑ 1
Same 1

1−ρ scaling as single-server case
Related results by Whitt, Borovkov, Iglehart, Loulou

Attempts to use for a multi-server Kingman’s bound
Complicated corrections to the heavy-traffic approximation
Kollerstrom, Nagaev, Kennedy
All require FIXED n, ρ ↑ 1
No hope of general explicit bound
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The 70’s (cont.)

Kingman derives a simple bound for G/G/n queues
By analyzing the cyclic routing bound
E [L] ≤ 1

2

(
Var [AµA] + n × Var [SµS]

)
× 1

1−ρ

Later made rigorous by Wolff, Brumelle, Mori
The n in front of Var [SµS] renders it ineffective!

Especially when n→∞, ρ ↑ 1 together

Can we get rid of it?
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Digression: When n→∞, ρ ↑ 1 together

Halfin-Whitt regime

Halfin-Whitt scaling regime:
Used to study quality-efficiency trade-off in service systems
Many servers, regular service times, sped-up arrivals
ρ ∼ 1− Bn− 1

2

Pwait has a non-trivial limiting value as n→∞
Introduced in 1981 by Halfin and Whitt
Intensely studied in 90’s and 2000’s
Proven that L scales (roughly) as 1

1−ρ ∼ n
1
2

Complicated non-explicit measure-valued weak limits
HW,GM,PR,Reed,GG,DDG,AR,. . .

Heavy-traffic corrections and bounds
Dai, Brav., Gurvich, Leeuw., Zwart, Ramanan, . . .

No general, scalable, simple and explicit bounds
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Until the present

In spite of a century of work on multi-server queues . . .
No universal explicit 1

1−ρ bounds
No multi-server Kingman’s bound
Normalized moments × 1

1−ρ

Daley has lamented / conjectured on this in 70’s,80’s,90’s
Such a bound may not even exist

Negative results of Gupta et al.
Complexity of HW limits
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Multi-server Kingman’s Bound

Corollary

For any G/G/n queue s.t. E [A3],E [S3] <∞,

E [L] is at most

10500
(

E
[
(SµS)

3]E[(AµA)
3])3

× 1
1− ρ

.
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Universal and explicit Pwait bounds

Theorem

For any G/G/n queue s.t. E [A3],E [S3] <∞,

Pwait is at most

10500
(

E
[
(SµS)

3]E[(AµA)
3])3(

n(1− ρ)2
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