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Motivation

Opt. pricing and opt. stopping central to Fin. Math, OR, AP
Rich history in NL→ Amsterdam Bourse in 1600’s
Many real-world comp. problems have . . .

Full path-dependence
High-dim process generating F

Leads to Curse of dimensionality
Cannot solve DP
Known ADP, Simulation, dual, PDE, . . ., approaches

Limited guarantees for comp. tract. + error bounds
Especially for fully path-dependent + high-dim
But even for Mark + high-dim
Note: success in practice
Note: can also consider alt. modeling frameworks (e.g. ro)

Seems theoretically intractable, vast lit.
Opt. dual martingales hard to understand explicitly
Many approaches need fully nested cond. exp.

Backwards induction
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Punchline

We prove . . .
∃ “simple and elegant formula” for opt. stop. as∞ sum
Even better, if you truncate the sum after k terms . . .

Error bounded by 1
k

Easy to simulate!
Yields efficient rand. ε-optimal algorithms

Runtime T poly( 1
ε

)

Data-driven : T poly( 1
ε

) samples
Even with high-dim and path-dependence
Beats the curse of dimensionality!
(sample-based) PTAS for gen. opt. stop

New connection to net. flows
Yields simple explicit dual mart sol.

Potential new hammer
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Model

Discrete time : T periods
F = {Ft , t ∈ [1,T ]} gen. by D-dim process Y = Y1, . . . ,YT

Cost functions {gt , t ∈ [1,T ]}
Zt

∆
= gt(Y[t]) = cost of stop. at t

Non-neg. + integrable

T : set of F-adapted stop.times in [1,T ]

Note: disc. time, won’t dwell on pathologies
Assume all conditionings etc. well-defined

Note: Sometimes assume Zt ∈ [0,1] or [0,U]

Simplifies notations etc.
Could state in terms of u.b., trunc., etc.

Sometimes we make explicit
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WLOG generally discuss the min. problem

Can transform max to min
Ideas are clearer for min

Once you have gen. opt. stop. you have a lot more
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Main intuition

OPT ∆
= infτ∈T E [Zτ ]

OPT = infτ∈T E [Zτ ] ≥ E
[
mint∈[1,T ] Zt

]
OPT = E

[
mint∈[1,T ] Zt

]
+ infτ∈T E

[
Zτ − E [mini∈[1,T ] Zi |Fτ ]

]
Z 1

t
∆
= Zt , Z 2

t
∆
= Z 1

t − E [mini∈[1,T ] Z 1
i |Ft ]

OPT = infτ∈T E [Z 1
τ ] = E

[
mint∈[1,T ] Z 1

t
]
+ infτ∈T E [Z 2

τ ]

Z 3
t

∆
= Z 2

t − E [mini∈[1,T ] Z 2
i |Ft ]

OPT = E
[
mint∈[1,T ] Z 1

t
]
+ E

[
mint∈[1,T ] Z 2

t
]
+ infτ∈T E [Z 3

τ ]

Z k+1
t = Z k

t − E [mini∈[1,T ] Z k
i |Ft ]

OPT =
∑∞

k=1 E [mini∈[1,T ] Z k
i ] + limk→∞ infτ∈T E [Z k

τ ]

THEOREM : OPT =
∑∞

k=1 E [mint∈[1,T ] Z k
t ]!
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A “formula” for opt. stopping : OPT =

E [ min
i∈[1,T ]

Zi ]+

E
[
min

i∈[1,T ]

(
Zi − E [ min

j∈[1,T ]
Zj |Fi ]

)]
+

E

[
min

i∈[1,T ]

(
Zi−E

[
min

j∈[1,T ]
Zj |Fi

]
−E
[

min
j∈[1,T ]

(
Zj−E

[
min

k∈[1,T ]
Zk |Fj

])∣∣Fi

])]
+
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Fast convergence

THEOREM :
∣∣OPT−

∑k
i=1 E [mint∈[1,T ] Z i

t ]
∣∣ ≤ U

k+1

Note : Also prove other bounds ind. of U (even if U =∞)
Note : analysis tight in the worst-case

In many examples converges much faster
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Algorithmic implications

E [mint∈[1,T ] Z k
t ] can be computed by sim!

No curse of dimensionality!
Completely data-driven
Recursive, complexity ↑ in k
But only need a few terms!
Explicit runtime depends on assumptions + type of approx.

In general ε-approx for OPT in T poly( 1
ε

) time! (w.h.p.)
Also get efficient stopping strategies . . .

≈ Stop when Z poly( 1
ε ) goes below ε
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“Canonical” Theorem
Suppose P(Zt ∈ [0,1]) = 1 for all t .
Then for all ε, δ ∈ (0,1), ∃ a rand. alg. Aε,δ s.t. . . .

In time
2O( 1

ε2 ) × T O( 1
ε ) × log(

1
δ
),

With only ↑ calls to a simulator for Y (cond. on hist.),
Returns r.v. X s.t.

P
(
|X − OPT| ≤ ε

)
≥ 1− δ.
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The max-flow connection

A correspondence between opt. stop and min-cut
Illustrate in trivial 3-stage problem

Driving process Y is 1-d , supp. {1,2}
Zt = payout if stop at time t = most recent Y

Complicated duality lit→ max-flow min-cut
Expansion = iterative flow alg.
Won’t give all details of reduction

Will equate 2 stop. times with 2 cuts
Idea is simple and intuitive
Previously overlooked, not focused on the “right” marts
Past marts yielded soln ∀ subproblems→ comp. slow
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τ : If Z1 = 1, STOP ; else STOP at time 2
Cut value = 1P1 + 1P21 + 2P22 = E [Zτ ]
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The max-flow connection (cont.)

τ : STOP when you see a 1 or the horizon ends
Cut value = 1P1 + 1P21 + 1P221 + 2P222 = E [Zτ ] = OPT
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The max-flow connection (cont.)

THEOREM : Solving opt.stop equal to solving min-cut
OBS : Novel unification of many duality results for opt.stop

Karatzas, Kogan and Haugh, Rogers, Glasserman, . . .
Opt. dual martingale↔ max-flow

OBS : Simple proofs and intuition about many past results
Tree network→ greedy works, block. flow is opt, . . .

OBS : Our algorithms can be interpreted as . . .
Fast rand. iter. method for max-flow on massive tree
Amount pushed on a given edge in round k is . . .

Explicit (normed) cond. exp.
Total flow pushed in round k is E [mint∈[1,T ] Z k

t ]

OBS : Expansion→ simple and explicit opt. dual sol.
OBS : Expansion→ simple and explicit opt. stop. rule

Stop when Zt = E
[∑∞

k=1 mini∈[1,T ] Z k
i |Ft

]
Stop when you reach sat. edge (min-cut)
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Fast implementation and comparison to past approaches
Glasserman, Longstaff-Schwartz, Andersen and Broadie,
Belomestny, Schoenmakers, Bender, Christensen, Ibanez,
Jamshidian, Farias, Kohler, Lelong, . . .
Especially on real financial data and problems
Produce and share a usable code
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Future research cont.

Better understanding of conv.
Smarter algs. with better sim. techniques
Gen. to mult. stop. , stoch. con., cont. time,∞ horizon, . . .
Lower bounds, comp. complexity, randomization
Modified / different such expansions
Other tools from network flows
Application to other stopping problems

Probs. from seq. stat. (esp. Gittins!)
Probs. from OM, rev. man, choice mod., etc.
Probs. from control, robotics, etc.
Robust stopping and games
New prophet inequalities

Note: our approach a kind of proph. ineq.

New potential hammer - interesting nails?
Thanks!
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Extra credit : fast convergence proof

Recall : Z k
t = Z k−1

t − E [mini∈[1,T ] Z k−1
i |Ft ]

Claim : Z k
t ≥ 0 for all t , k

Claim : {Z k
t , k ≥ 1} is ↓ for all t

Claim : Z k
T = ZT −

∑k−1
i=1 mint∈[1,T ] Z i

t for all k

→ ZT − (k − 1)×mint∈[1,T ] Z k−1
t ≥ 0 w.p.1

→ mint∈[1,T ] Z k−1
t ≤ U

k−1 w.p.1

→ infτ∈T E [Z k
τ ] ≤ U

k

But OPT =
∑k

i=1 E [mint∈[1,T ] Z i
t ] + infτ∈T E [Z k+1

τ ] ∀ k

THEOREM :
∣∣OPT−

∑k
i=1 E [mint∈[1,T ] Z i

t ]
∣∣ ≤ U

k+1

Note : Also prove other bounds ind. of U (even if U =∞)
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