Beating the curse of dimensionality in options pricing and optimal stopping

(joint work with Ph.D. student Yilun Chen)

Cornell

LNMB

・ロト・日本・日本・日本・日本

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$	Intuition + Main results	Future Research
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Punchline ●੦੦	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$	Intuition + Main results	Future Research
Outline			

2 Model + Problem

Intuition + Main results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

• Opt. pricing and opt. stopping central to Fin. Math, OR, AP

- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have
 - High-dim process generating.7
- Leads to Curse of dimensionality
 Commensional Dimensionality

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
 Many approaches need fully pested cond. expl

・ロット (雪) ・ (日) ・ (日)

Backwards induction

Punchline ○●○	Model + P		Intuition + Main results	Future Research
Moti	ivation			
	Opt. pricing ar	nd opt. stopping	central to Fin.	Math, OR, AP

- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have
- Leads to Curse of dimensionality

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
 Many approaches need fully nested cond. exp.

(日)

Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~\mbox{Rich}$ history in $\mbox{NL} \rightarrow \mbox{Amsterdam}$ Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE,...., approaches

Seems theoretically intractable, vast lit.

Opt. dual martingales hard to understand explicitly

- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~\mbox{Rich}$ history in $\mbox{NL} \rightarrow \mbox{Amsterdam}$ Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE,..., approaches

Seems theoretically intractable, vast lit.

Opt. dual martingales hard to understand explicitly

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE,, approaches

Seems theoretically intractable, vast lit.

Opt. dual martingales hard to understand explicitly

イロト 不良 とくほ とくほう 二日

- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	•	Model + Problem	Intuition + Main results	Future Research
Moti	ivation			
	 Opt. pr 	icing and opt. stoppi	ng central to Fin. Math	ı, OR, AP

- $\bullet~\mbox{Rich}$ history in $\mbox{NL} \rightarrow \mbox{Amsterdam}$ Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Umited guarantees for comp. track -+ error bounds.
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)
 - Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~\mbox{Rich}$ history in $\mbox{NL} \rightarrow \mbox{Amsterdam}$ Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: can also consider alt_modeling frameworks (e.g. ro.)
 - Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

・ロット (雪) (日) (日) (日)

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - $\bullet~$ Limited guarantees for comp. tract. +~ error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - $\bullet~$ Limited guarantees for comp. tract. +~ error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)
 - Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)
 - Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

Seems theoretically intractable, vast lit.

• Opt. dual martingales hard to understand explicitly

Many approaches need fully nested cond. exp.

Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)
 - Seems theoretically intractable, vast lit.

Opt. dual martingales hard to understand explicitly
Many approaches need fully nested cond. exp.

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

Seems theoretically intractable, vast lit.

Opt. dual martingales hard to understand explicitly

Many approaches need fully nested cond. exp.

Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~$ Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.

Backwards induction

Punchline ○●○	Model + Problem	Intuition + Main results	Future Research
Motivation			

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- $\bullet~\mbox{Rich}$ history in $\mbox{NL} \rightarrow \mbox{Amsterdam}$ Bourse in 1600's
- Many real-world comp. problems have ...
 - Full path-dependence
 - High-dim process generating ${\cal F}$
- Leads to Curse of dimensionality
 - Cannot solve DP
 - Known ADP, Simulation, dual, PDE, ..., approaches
 - Limited guarantees for comp. tract. + error bounds
 - Especially for fully path-dependent + high-dim
 - But even for Mark + high-dim
 - Note: success in practice
 - Note: can also consider alt. modeling frameworks (e.g. ro)

・ロト・日本・日本・日本・日本

- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
 - Backwards induction

Punch	line
000	

Punchline

• We prove ...

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by a Easy to simulate!
- Yields efficient rand. ε-optimal algorithms
 - Continue Trev(-)
 - Data-driven : 7^{poly(1)} samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punch	line
000	

Punchline

• We prove ...

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms
 - Error bounded by
- Yields efficient rand. ε-optimal algorithms
 - Contine 7₽№(
 - Data-driven : 77%⁽¹⁾ samples
 - > Even with high-dim and path-dependences
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- We prove ...
 - $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
 - Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
 - Yields efficient rand. ε-optimal algorithms
 - Runtime Trev()
 - Data-driven : 77%⁽¹⁾ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. ε-optimal algorithms
 - Runtime 7Petro
 - Data-driven : 77°⁽¹⁾ samples.
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Dunchline			

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. ε-optimal algorithms
 - Runtime T^{poly(¹/_e)}
 - Data-driven : T^{rob(}¹) samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!

• Yields efficient rand. ϵ -optimal algorithms

- Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
- Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!
- (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Nields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. ϵ -optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Nields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research
Punchline			

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$	Intuition + Main results	Future Research
Punchline			

- We prove ...
 - $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
 - Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
 - Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$	Intuition + Main results	Future Research
Punchline			

- $\bullet~\exists$ "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research

Punchline

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research

Punchline

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline ○○●	Model + Problem	Intuition + Main results	Future Research

Punchline

- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
 - Error bounded by $\frac{1}{k}$
 - Easy to simulate!
- Yields efficient rand. *e*-optimal algorithms
 - Runtime $T^{\text{poly}(\frac{1}{\epsilon})}$
 - Data-driven : $T^{\text{poly}(\frac{1}{\epsilon})}$ samples
 - Even with high-dim and path-dependence
 - Beats the curse of dimensionality!
 - (sample-based) PTAS for gen. opt. stop

- New connection to net. flows
 - Yields simple explicit dual mart sol.
- Potential new hammer

Punchline	Model + Problem ●○○	Intuition + Main results	Future Research
Outline			

Intuition + Main results

Punchline	Model + Problem ○●○	Intuition + Main results	Future Research
Model			

Discrete time : T periods

- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$ • Cost functions $\{g_t, t \in [1, T]\}$
 - * $Z_t = g_t(Y_{(\eta)}) = \cos t$ of stop. at t * Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined.
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	Model + Problem ○●○	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
 - $= \{g_t, t \in [1, T]\}$
 - Non-neg. Integrable
- \mathcal{T} : set of \mathcal{F} -adapted stop.times in [1, \mathcal{T}]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined.
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	Model + Problem ○●○	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$

- Cost functions $\{g_t, t \in [1, T]\}$
 - $Z_t \triangleq g_t(Y_{[t]}) = \text{cost of stop. at t}$
 - Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined.
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	Model + Problem ○●○	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$
 - $Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$
 - Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F} -adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined.
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$
 - $Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$
 - Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F} -adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined.
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$

• Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	Model + Problem ○●○	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Could state in terms of u.b., trunc., etc..

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$

• Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$

• Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_t \in [0, 1]$ or [0, U]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Sometimes we make explicit

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume *Z_t* ∈ [0, 1] or [0, *U*]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.

Sometimes we make explicit

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \bullet \circ \end{array}$	Intuition + Main results	Future Research
Model			

- Discrete time : T periods
- $\mathcal{F} = \{\mathcal{F}_t, t \in [1, T]\}$ gen. by *D*-dim process $\mathbf{Y} = Y_1, \dots, Y_T$
- Cost functions $\{g_t, t \in [1, T]\}$

•
$$Z_t \stackrel{\Delta}{=} g_t(Y_{[t]}) = \text{cost of stop. at t}$$

- Non-neg. + integrable
- T: set of F-adapted stop.times in [1, T]
- Note: disc. time, won't dwell on pathologies
 - Assume all conditionings etc. well-defined
- Note: Sometimes assume *Z_t* ∈ [0, 1] or [0, *U*]
 - Simplifies notations etc.
 - Could state in terms of u.b., trunc., etc.
 - Sometimes we make explicit

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

・ロト・日本・日本・日本・日本

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $Model + Problem \\ \circ \circ \bullet$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \bullet \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Problem statement

- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
 - Can transform max to min
 - Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
 - Many problems reducible to this

Punc	hl	in	е

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

▲□▶▲□▶▲□▶▲□▶ □ のへで

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{000} \end{array}$

Intuition + Main results ○●○○○○○○○ Future Research

Main intuition

• OPT $\stackrel{\Delta}{=} \inf_{\tau \in \mathcal{T}} \boldsymbol{E}[\boldsymbol{Z}_{\tau}]$

- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1, \mathcal{T}]} Z_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t\right] + \inf_{\tau \in \mathcal{T}} E\left[Z_{\tau} E\left[\min_{i \in [1,T]} Z_i | \mathcal{F}_{\tau}\right]\right]$
- $Z_t^1 \stackrel{\Delta}{=} Z_t$, $Z_t^2 \stackrel{\Delta}{=} Z_t^1 E[\min_{i \in [1,T]} Z_i^1 | \mathcal{F}_t]$
- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}^1] = E[\min_{t \in [1,T]} Z_t^1] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^2]$
- $Z_t^3 \stackrel{\Delta}{=} Z_t^2 E[\min_{i \in [1,T]} Z_i^2 | \mathcal{F}_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t^1\right] + E\left[\min_{t \in [1,T]} Z_t^2\right] + \inf_{\tau \in T} E[Z_{\tau}^3]$
- $Z_t^{k+1} = Z_t^k E[\min_{i \in [1,T]} Z_i^k | \mathcal{F}_t]$
- OPT = $\sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_i^k] + \lim_{k \to \infty} \inf_{\tau \in T} E[Z_{\tau}^k]$
- THEOREM : OPT = $\sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_t^k]!$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results ○●○○○○○○○ Future Research

- OPT $\stackrel{\Delta}{=} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$
- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t\right] + \inf_{\tau \in \mathcal{T}} E\left[Z_{\tau} E\left[\min_{i \in [1,T]} Z_i | \mathcal{F}_{\tau}\right]\right]$
- $Z_t^1 \stackrel{\Delta}{=} Z_t$, $Z_t^2 \stackrel{\Delta}{=} Z_t^1 E[\min_{i \in [1,T]} Z_i^1 | \mathcal{F}_t]$
- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
- $Z_t^3 \stackrel{\Delta}{=} Z_t^2 E[\min_{i \in [1,T]} Z_i^2 | \mathcal{F}_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t^1\right] + E\left[\min_{t \in [1,T]} Z_t^2\right] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^3]$
- $Z_t^{k+1} = Z_t^k E[\min_{i \in [1,T]} Z_i^k | \mathcal{F}_t]$
- OPT = $\sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_i^k] + \lim_{k \to \infty} \inf_{\tau \in T} E[Z_{\tau}^k]$
- THEOREM : OPT = $\sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_t^k]!$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results ○●○○○○○○○ Future Research

- OPT $\stackrel{\Delta}{=} \inf_{\tau \in \mathcal{T}} \boldsymbol{E}[\boldsymbol{Z}_{\tau}]$
- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t\right] + \inf_{\tau \in T} E\left[Z_{\tau} E\left[\min_{i \in [1,T]} Z_i | \mathcal{F}_{\tau}\right]\right]$
- $Z_t^1 \stackrel{\Delta}{=} Z_t$, $Z_t^2 \stackrel{\Delta}{=} Z_t^1 E[\min_{i \in [1,T]} Z_i^1 | \mathcal{F}_t]$
- OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
- $Z_t^3 \stackrel{\Delta}{=} Z_t^2 E[\min_{i \in [1,T]} Z_i^2 | \mathcal{F}_t]$
- OPT = $E\left[\min_{t \in [1,T]} Z_t^1\right] + E\left[\min_{t \in [1,T]} Z_t^2\right] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^3]$
- $Z_t^{k+1} = Z_t^k E[\min_{i \in [1,T]} Z_i^k | \mathcal{F}_t]$
- OPT = $\sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_i^k] + \lim_{k \to \infty} \inf_{\tau \in T} E[Z_{\tau}^k]$
- THEOREM : OPT = $\sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_t^k]!$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results ○●○○○○○○○ Future Research

Main intuition

• OPT $\stackrel{\Delta}{=}$ inf $_{\tau \in T} E[Z_{\tau}]$ • OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_t]$ • OPT = $E[\min_{t \in [1,T]} Z_t] + \inf_{\tau \in T} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_i | \mathcal{F}_{\tau}]]$ • $Z_t^1 \stackrel{\Delta}{=} Z_t$, $Z_t^2 \stackrel{\Delta}{=} Z_t^1 - E[\min_{i \in [1,T]} Z_i^1 | \mathcal{F}_t]$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results ○●○○○○○○○ Future Research

Main intuition

• OPT $\stackrel{\Delta}{=}$ inf $_{\tau \in T} E[Z_{\tau}]$ • OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E |\min_{t \in [1,T]} Z_t|$ • OPT = $E[\min_{t \in [1,T]} Z_t] + \inf_{\tau \in T} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_i | \mathcal{F}_{\tau}]]$ • $Z_t^1 \stackrel{\Delta}{=} Z_t$, $Z_t^2 \stackrel{\Delta}{=} Z_t^1 - E[\min_{i \in [1,T]} Z_i^1 | \mathcal{F}_t]$ • OPT = $\inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results ○●○○○○○○○ Future Research

• OPT
$$\triangleq \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$$

• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_{i} | \mathcal{F}_{\tau}]]$
• $Z_{t}^{1} \triangleq Z_{t}$, $Z_{t}^{2} \triangleq Z_{t}^{1} - E[\min_{i \in [1,T]} Z_{i}^{1} | \mathcal{F}_{t}]$
• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
• $Z_{t}^{3} \triangleq Z_{t}^{2} - E[\min_{i \in [1,T]} Z_{i}^{2} | \mathcal{F}_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}^{1}] + E[\min_{t \in [1,T]} Z_{t}^{2}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{3}]$
• $Z_{t}^{k+1} = Z_{t}^{k} - E[\min_{i \in [1,T]} Z_{i}^{k} | \mathcal{F}_{t}]$
• OPT $= \sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_{i}^{k}] + \lim_{k \to \infty} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k}]$
• THEOREM : OPT $= \sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_{t}^{k}]!$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results ○●○○○○○○○ Future Research

• OPT
$$\triangleq \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$$

• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_{i} | \mathcal{F}_{\tau}]]$
• $Z_{t}^{1} \triangleq Z_{t}$, $Z_{t}^{2} \triangleq Z_{t}^{1} - E[\min_{i \in [1,T]} Z_{i}^{1} | \mathcal{F}_{t}]$
• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
• $Z_{t}^{3} \triangleq Z_{t}^{2} - E[\min_{i \in [1,T]} Z_{i}^{2} | \mathcal{F}_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}^{1}] + E[\min_{t \in [1,T]} Z_{t}^{2}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{3}]$
• $Z_{t}^{k+1} = Z_{t}^{k} - E[\min_{i \in [1,T]} Z_{i}^{k} | \mathcal{F}_{t}]$
• OPT $= \sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_{i}^{k}] + \lim_{k \to \infty} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k}]$
• THEOREM : OPT $= \sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_{t}^{k}]$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results ○●○○○○○○○ Future Research

• OPT
$$\triangleq \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$$

• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_{i} | \mathcal{F}_{\tau}]]$
• $Z_{t}^{1} \triangleq Z_{t}$, $Z_{t}^{2} \triangleq Z_{t}^{1} - E[\min_{i \in [1,T]} Z_{i}^{1} | \mathcal{F}_{t}]$
• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
• $Z_{t}^{3} \triangleq Z_{t}^{2} - E[\min_{i \in [1,T]} Z_{i}^{2} | \mathcal{F}_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}^{1}] + E[\min_{t \in [1,T]} Z_{t}^{2}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{3}]$
• $Z_{t}^{k+1} = Z_{t}^{k} - E[\min_{i \in [1,T]} Z_{i}^{k} | \mathcal{F}_{t}]$
• OPT $= \sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_{i}^{k}] + \lim_{k \to \infty} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k}]$
• THEOREM : OPT $= \sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_{t}^{k}]!$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results ○●○○○○○○○ Future Research

• OPT
$$\triangleq \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$$

• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_{i} | \mathcal{F}_{\tau}]]$
• $Z_{t}^{1} \triangleq Z_{t}$, $Z_{t}^{2} \triangleq Z_{t}^{1} - E[\min_{i \in [1,T]} Z_{i}^{1} | \mathcal{F}_{t}]$
• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
• $Z_{t}^{3} \triangleq Z_{t}^{2} - E[\min_{i \in [1,T]} Z_{i}^{2} | \mathcal{F}_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}^{1}] + E[\min_{t \in [1,T]} Z_{t}^{2}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{3}]$
• $Z_{t}^{k+1} = Z_{t}^{k} - E[\min_{i \in [1,T]} Z_{i}^{k} | \mathcal{F}_{t}]$
• OPT $= \sum_{k=1}^{\infty} E[\min_{i \in [1,T]} Z_{i}^{k}] + \lim_{k \to \infty} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k}]$
• THEOREM : OPT $= \sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_{t}^{k}]!$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results ○●○○○○○○○ Future Research

• OPT
$$\triangleq \inf_{\tau \in \mathcal{T}} E[Z_{\tau}]$$

• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}] \ge E[\min_{t \in [1,T]} Z_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau} - E[\min_{i \in [1,T]} Z_{i}|\mathcal{F}_{\tau}]]$
• $Z_{t}^{1} \triangleq Z_{t}$, $Z_{t}^{2} \triangleq Z_{t}^{1} - E[\min_{i \in [1,T]} Z_{i}^{1}|\mathcal{F}_{t}]$
• OPT $= \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{1}] = E[\min_{t \in [1,T]} Z_{t}^{1}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{2}]$
• $Z_{t}^{3} \triangleq Z_{t}^{2} - E[\min_{i \in [1,T]} Z_{i}^{2}|\mathcal{F}_{t}]$
• OPT $= E[\min_{t \in [1,T]} Z_{t}^{1}] + E[\min_{t \in [1,T]} Z_{t}^{2}] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{3}]$
• $Z_{t}^{k+1} = Z_{t}^{k} - E[\min_{i \in [1,T]} Z_{i}^{k}] + \lim_{k \to \infty} \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k}]$
• THEOREM : OPT $= \sum_{k=1}^{\infty} E[\min_{t \in [1,T]} Z_{t}^{k}]!$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

A "formula" for opt. stopping : OPT =

$$E[\min_{i\in[1,T]}Z_i]+$$

$$E\left[\min_{i\in[1,T]} \left(Z_i - E\left[\min_{j\in[1,T]} Z_j | \mathcal{F}_i\right]\right)\right] + \\E\left[\min_{i\in[1,T]} \left(Z_i - E\left[\min_{j\in[1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j\in[1,T]} \left(Z_j - E\left[\min_{k\in[1,T]} Z_k | \mathcal{F}_j\right]\right) | \mathcal{F}_i\right]\right)\right] + \\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

A "formula" for opt. stopping : OPT =

$$E[\min_{i\in[1,T]}Z_i]+$$

$E\left[\min_{i\in[1,T]} (Z_i - E\left[\min_{j\in[1,T]} Z_j | \mathcal{F}_i\right])\right] + \\E\left[\min_{i\in[1,T]} \left(Z_i - E\left[\min_{j\in[1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j\in[1,T]} \left(Z_j - E\left[\min_{k\in[1,T]} Z_k | \mathcal{F}_j\right]\right) | \mathcal{F}_i\right]\right)\right] + \\$

◆□> <圖> < => < => < => <0 < ○</p>

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

- ロト・日本・日本・日本・日本・日本

A "formula" for opt. stopping : OPT =

$$E[\min_{i\in[1,T]}Z_i]+$$

$E\left[\min_{i\in[1,T]}\left(Z_i - E[\min_{j\in[1,T]}Z_j|\mathcal{F}_i]\right) ight] +$

 $E\left|\min_{i\in[1,T]}\left(Z_{i}-E\left[\min_{j\in[1,T]}Z_{j}|\mathcal{F}_{i}\right]-E\left[\min_{j\in[1,T]}\left(Z_{j}-E\left[\min_{k\in[1,T]}Z_{k}|\mathcal{F}_{j}\right]\right)|\mathcal{F}_{i}\right]\right)\right|+$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

A "formula" for opt. stopping : OPT =

$$E[\min_{i \in [1,T]} Z_i] + E\left[\min_{i \in [1,T]} (Z_i - E[\min_{j \in [1,T]} Z_j | \mathcal{F}_i])\right] + E\left[\min_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} (Z_j - E\left[\min_{k \in [1,T]} Z_k | \mathcal{F}_j\right]) | \mathcal{F}_i\right]\right)\right] + E\left[\min_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} (Z_j - E\left[\min_{k \in [1,T]} Z_k | \mathcal{F}_j\right]) | \mathcal{F}_i\right]\right)\right] + E\left[\min_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} (Z_j - E\left[\min_{k \in [1,T]} Z_k | \mathcal{F}_j\right]) | \mathcal{F}_i\right]\right)\right] + E\left[\max_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right]\right) | \mathcal{F}_i\right]\right] + E\left[\max_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right]\right) | \mathcal{F}_i\right]\right] + E\left[\max_{i \in [1,T]} (Z_i - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right] - E\left[\min_{j \in [1,T]} Z_j | \mathcal{F}_i\right]\right] + E\left[\max_{i \in [1,T]} Z_i | \mathcal{F}_i\right] +$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Fast convergence

• THEOREM : $\left| \text{OPT} - \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \le \frac{U}{k+1}$

• Note : Also prove other bounds ind. of U (even if $U = \infty$)

Note : analysis tight in the worst-case

In many examples converges much faster.

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fast convergence

- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_{t}^{i}] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)
- Note : analysis tight in the worst-case

In many examples converges much faster

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Fast convergence

- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_{t}^{i}] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)
- Note : analysis tight in the worst-case

In many examples converges much faster

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Fast convergence

- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_{t}^{i}] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)
- Note : analysis tight in the worst-case
 - In many examples converges much faster

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

- ロト・日本・日本・日本・日本・日本

Algorithmic implications

• $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!

- No curse of dimensionality!
- Completely data-driven
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

 $\sim \sim
m Stop$ when $Z^{
m poly}(z)$ goes below e

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

- ロト・日本・日本・日本・日本・日本

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...
 - $\sim pprox$ Stop when $Z^{
 m roly(d)}$ goes below e

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...
 - $\sim pprox$ Stop when $Z^{
 m roly}(z)$ goes below e

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

 $\sim pprox$ Stop when $Z^{\mathrm{roly}(2)}$ goes below e

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

 $\sim pprox$ Stop when $Z^{\mathrm{roly}(2)}$ goes below e

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $T^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

 $\sim \sim$ Stop when $Z^{
m poly}(z)$ goes below ϵ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $\mathcal{T}^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies . . .

• pprox Stop when $Z^{
m poly}(rac{1}{\epsilon})$ goes below ϵ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $\mathcal{T}^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

• \approx Stop when $Z^{ ext{poly}(rac{1}{\epsilon})}$ goes below ϵ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Algorithmic implications

- $E[\min_{t \in [1,T]} Z_t^k]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity ↑ in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ -approx for OPT in $\mathcal{T}^{\text{poly}(\frac{1}{\epsilon})}$ time! (w.h.p.)
- Also get efficient stopping strategies ...
 - \approx Stop when $Z^{\text{poly}(\frac{1}{\epsilon})}$ goes below ϵ

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. . . .

$2^{O(\frac{1}{2})} \times 7^{O(\frac{1}{2})} \times \log(\frac{1}{2}),$

With only † calls to a simulator for Y (cond. on hist.),
 Returns r.v. X s.t.

$P(|X - OPT| \le \epsilon) \ge 1 - \delta.$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. . . .

$\mathcal{O}(\frac{1}{\epsilon^2}) \times \mathcal{T}^{\mathcal{O}(\frac{1}{\epsilon})} imes \log(\frac{1}{\delta}),$

With only † calls to a simulator for Y (cond. on hist.),
 Returns r.v. X s.t.

$P(|X - OPT| \le \epsilon) \ge 1 - \delta.$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. ...

In time

 $2^{O(rac{1}{\epsilon^2})} imes T^{O(rac{1}{\epsilon})} imes \log(rac{1}{\lambda}),$

With only ↑ calls to a simulator for Y (cond. on hist.),
 Returns r.v. X s.t.

 $P(|X - OPT| \le \epsilon) \ge 1 - \delta.$

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. ...

In time

$$2^{O(rac{1}{\epsilon^2})} imes T^{O(rac{1}{\epsilon})} imes \log(rac{1}{\delta}),$$

With only ↑ calls to a simulator for Y (cond. on hist.),
Returns r.v. X s.t.

 $P(|X - OPT| \le \epsilon) \ge 1 - \delta.$

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. ...

In time

$$2^{O(rac{1}{\epsilon^2})} imes T^{O(rac{1}{\epsilon})} imes \log(rac{1}{\delta}),$$

With only ↑ calls to a simulator for Y (cond. on hist.),
Returns r.v. X s.t.

 $\mathsf{P}(|X - \mathsf{OPT}| \le \epsilon) \ge 1 - \delta.$

・ロト・西ト・ヨト・ヨー シタぐ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P(Z_t \in [0, 1]) = 1$ for all *t*.
- Then for all $\epsilon, \delta \in (0, 1)$, \exists a rand. alg. $A_{\epsilon, \delta}$ s.t. ...

In time

$$2^{O(rac{1}{\epsilon^2})} imes T^{O(rac{1}{\epsilon})} imes \log(rac{1}{\delta}),$$

• With only \uparrow calls to a simulator for **Y** (cond. on hist.),

• Returns r.v. X s.t.

$$P(|X - OPT| \le \epsilon) \ge 1 - \delta.$$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

The max-flow connection

A correspondence between opt. stop and min-cut

- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- \bullet Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop: times with 2 cuts.
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - \sim Past marts yielded soln V subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop: times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - \sim Past marts yielded soln V subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- $\bullet\,$ Complicated duality lit $\rightarrow\,$ max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop: times with 2 cuts.
 - Idea is simple and intuitive.
 - Previously overlooked, not focused on the "right" marts
 - \circ Past marts yielded soln V subproblems ightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive.
 - Previously overlooked, not focused on the "right" marts

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- $\bullet\,$ Complicated duality lit $\rightarrow\,$ max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - Past marts yielded soln \forall subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- $\bullet\,$ Complicated duality lit $\rightarrow\,$ max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - Past marts yielded soln \forall subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- $\bullet\,$ Complicated duality lit $\rightarrow\,$ max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - Past marts yielded soln \forall subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - Past marts yielded soln \forall subproblems \rightarrow comp. slow

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
 - Driving process Y is 1-d , supp. {1,2}
 - Z_t = payout if stop at time t = most recent Y
- $\bullet\,$ Complicated duality lit $\rightarrow\,$ max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
 - Will equate 2 stop. times with 2 cuts
 - Idea is simple and intuitive
 - Previously overlooked, not focused on the "right" marts
 - Past marts yielded soln \forall subproblems \rightarrow comp. slow

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

The max-flow connection (cont.)

τ : If Z₁ = 1, STOP ; else STOP at time 2 Cut value = 1P₁ + 1P₂₁ + 2P₂₂ = E[Z_τ]

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

The max-flow connection (cont.)

• τ : If $Z_1 = 1$, STOP ; else STOP at time 2 • Cut value = $1P_1 + 1P_{21} + 2P_{22} = E[Z_{\tau}]$

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

The max-flow connection (cont.)

• τ : STOP when you see a 1 or the horizon ends

▲□▶★@▶★≧▶★≧▶ 差 のくぐ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

The max-flow connection (cont.)

• τ : STOP when you see a 1 or the horizon ends

• Cut value = $1P_1 + 1P_{21} + 1P_{221} + 2P_{222} = E[Z_{\tau}] = OPT$

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○● Future Research

イロト 不良 とくほう 不良 とうほ

The max-flow connection (cont.)

• THEOREM : Solving opt.stop equal to solving min-cut

- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - $\bullet~\mbox{Tree}~\mbox{network} \rightarrow \mbox{greedy works, block. flow is opt, } \ldots$
- OBS : Our algorithms can be interpreted as ...
 - Pastrand, iter method for max-flow on massive tree.
 - Amount pushed on a given edge in round k is
 - Total flow pushed in round k is $E[\min_{t \in [1,1]} Z^t]$
- \bullet OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule
 - Slop when 2(----2) [2], min_{el (0}, 2/2].
 Slop when you reach sat, edge (min.ed).

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - $\bullet~\mbox{Opt.}$ dual martingale $\leftrightarrow \mbox{max-flow}$
- OBS : Simple proofs and intuition about many past results
 Tree network -> greedy works, block, flow is ont
- OBS : Our algorithms can be interpreted as ...
 - Fast rand, iter, method for max-low on massive tree.
 Amount pushed on a given edge in round A is set.
 - Clotel flow pushed in round k is E[mintel J] Z
- \bullet OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule
 - < ロ > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < =

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
 Fast rand, iter, method for max-flow on massive tree
 - Total flow pushed in round kits Elminiet 7 Z^A
- \bullet OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
 - Fast rand, iter, method for max-flow on massive tree
 - Amount pushed on a given edge in round *k* is
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- \bullet OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- \bullet OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

(日) (日) (日) (日) (日) (日) (日)

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...

• Explicit (normed) cond. exp.

• Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$

- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

(日) (日) (日) (日) (日) (日) (日)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

(日) (日) (日) (日) (日) (日) (日)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule
 - Stop when $Z_t = E\left[\sum_{k=1}^{\infty} \min_{i \in [1,T]} Z_i^k | \mathcal{F}_t\right]$
 - Stop when you reach sat. edge (min-cut)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- $\bullet~\text{OBS}$: Expansion \rightarrow simple and explicit opt. dual sol.
- $\bullet~\text{OBS}:\text{Expansion}\rightarrow\text{simple}~\text{and}~\text{explicit}~\text{opt.}$ stop. rule
 - Stop when $Z_t = E\left[\sum_{k=1}^{\infty} \min_{i \in [1,T]} Z_i^k | \mathcal{F}_t\right]$
 - Stop when you reach sat. edge (min-cut)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results ○○○○○○○○● Future Research

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q (2)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
 - Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
 - Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
 - Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as
 - Fast rand. iter. method for max-flow on massive tree
 - Amount pushed on a given edge in round k is ...
 - Explicit (normed) cond. exp.
 - Total flow pushed in round k is $E[\min_{t \in [1,T]} Z_t^k]$
- $\bullet~\text{OBS}$: Expansion \rightarrow simple and explicit opt. dual sol.
- \bullet OBS : Expansion \rightarrow simple and explicit opt. stop. rule
 - Stop when $Z_t = E\left[\sum_{k=1}^{\infty} \min_{i \in [1,T]} Z_i^k | \mathcal{F}_t\right]$
 - Stop when you reach sat. edge (min-cut)

Punchline	$\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$	Intuition + Main results	Future Research ●০০০
Outline			

2 Model + Problem

Intuition + Main results

 $\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research

Fast implementation and comparison to past approaches

- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems
- Produce and share a usable code

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems
- Produce and share a usable code

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems
- Produce and share a usable code

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems
- Produce and share a usable code

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research cont.

• Better understanding of conv.

- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, . . .
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittinsl)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittinsl)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc..
 - Robust stopping and games
 - New prophet inequalities.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- $\bullet\,$ Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittinsl)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.;
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

Punc	hli	ine	3

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittinsl)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.;
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

Punc	hli	ine	3

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - . Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc..
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

Punc	hli	ine	3

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.;
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities

Note: our approach a kind of proph. ineq.

- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

(日) (日) (日) (日) (日) (日) (日)

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?

Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \text{ooo} \end{array}$

Intuition + Main results

Future Research

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, \ldots
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
 - Probs. from seq. stat. (esp. Gittins!)
 - Probs. from OM, rev. man, choice mod., etc.
 - Probs. from control, robotics, etc.
 - Robust stopping and games
 - New prophet inequalities
 - Note: our approach a kind of proph. ineq.
- New potential hammer interesting nails?
- Thanks!

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Extra credit : fast convergence proof

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

• Claim : $Z_t^k \ge 0$ for all t, k

• Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t

- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

• $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$

- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \quad \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \le \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Extra credit : fast convergence proof

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

• Claim :
$$Z_t^k \ge 0$$
 for all t, k

• Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t

- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

• $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$

- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \le \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

- Recall : $Z_t^k = Z_t^{k-1} E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$
- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1
- $\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$ w.p.1
- $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$
- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1
- $\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$ w.p.1
- $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$
- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1
- $\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$ w.p.1
- $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$
- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

Extra credit : fast convergence proof

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

• $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$

- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

•
$$\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$$

- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in T} E[Z_{\tau}^{k+1}] \quad \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \le \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{l} \textbf{Model} + \textbf{Problem} \\ \textbf{000} \end{array}$

Intuition + Main results

Future Research

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

- Claim : $Z_t^k \ge 0$ for all t, k
- Claim : $\{Z_t^k, k \ge 1\}$ is \downarrow for all t
- Claim : $Z_T^k = Z_T \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$ for all k
- $\rightarrow Z_T (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$ w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

- $\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$
- But OPT = $\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k+1}] \quad \forall k$
- THEOREM : $\left| \text{OPT} \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] \right| \le \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U=\infty$)

 $\underset{000}{\text{Model}} + \text{Problem}$

Intuition + Main results

Future Research

Extra credit : fast convergence proof

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

• Claim :
$$Z_t^k \ge 0$$
 for all t, k

• Claim :
$$\{Z_t^k, k \ge 1\}$$
 is \downarrow for all t

• Claim :
$$Z_T^k = Z_T - \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$$
 for all k

•
$$\rightarrow Z_T - (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$$
 w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

•
$$\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$$

• But OPT =
$$\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k+1}] \quad \forall k$$

• THEOREM :
$$\left| \text{OPT} - \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_{t}^{i}] \right| \leq \frac{U}{k+1}$$

• Note : Also prove other bounds ind. of U (even if $U = \infty$)

 $\begin{array}{c} \textbf{Model} + \textbf{Problem} \\ \circ \circ \circ \end{array}$

Intuition + Main results

Future Research

Extra credit : fast convergence proof

• Recall :
$$Z_t^k = Z_t^{k-1} - E[\min_{i \in [1,T]} Z_i^{k-1} | \mathcal{F}_t]$$

• Claim :
$$Z_t^k \ge 0$$
 for all t, k

• Claim :
$$\{Z_t^k, k \ge 1\}$$
 is \downarrow for all t

• Claim :
$$Z_T^k = Z_T - \sum_{i=1}^{k-1} \min_{t \in [1,T]} Z_t^i$$
 for all k

•
$$\rightarrow Z_T - (k-1) \times \min_{t \in [1,T]} Z_t^{k-1} \ge 0$$
 w.p.1

•
$$\rightarrow \min_{t \in [1,T]} Z_t^{k-1} \leq \frac{U}{k-1}$$
 w.p.1

•
$$\rightarrow \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^k] \leq \frac{U}{k}$$

• But OPT =
$$\sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_t^i] + \inf_{\tau \in \mathcal{T}} E[Z_{\tau}^{k+1}] \quad \forall k$$

• THEOREM :
$$\left| \text{OPT} - \sum_{i=1}^{k} E[\min_{t \in [1,T]} Z_{t}^{i}] \right| \leq \frac{U}{k+1}$$

• Note : Also prove other bounds ind. of U (even if $U = \infty$)