Beating the curse of dimensionality in options pricing and optimal stopping

David A. Goldberg
(joint work with Ph.D. student Yilun Chen)

Cornell
LNMB

Outline

(1) Punchline
(2) Model + Problem
(3) Intuition + Main results

4 Future Research

Outline

2 Model + Problem
(3) Intuition + Main results

4 Future Research

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice
- Note: can also consider alt. modeling frameworks (e.g. ro)

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice
- Note: can also consider alt. modeling frameworks (e.g. ro)
- Seems theoretically intractable, vast lit.

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice
- Note: can also consider alt. modeling frameworks (e.g. ro)
- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice
- Note: can also consider alt. modeling frameworks (e.g. ro)
- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.

Motivation

- Opt. pricing and opt. stopping central to Fin. Math, OR, AP
- Rich history in NL \rightarrow Amsterdam Bourse in 1600's
- Many real-world comp. problems have ...
- Full path-dependence
- High-dim process generating \mathcal{F}
- Leads to Curse of dimensionality
- Cannot solve DP
- Known ADP, Simulation, dual, PDE, ..., approaches
- Limited guarantees for comp. tract. + error bounds
- Especially for fully path-dependent + high-dim
- But even for Mark + high-dim
- Note: success in practice
- Note: can also consider alt. modeling frameworks (e.g. ro)
- Seems theoretically intractable, vast lit.
- Opt. dual martingales hard to understand explicitly
- Many approaches need fully nested cond. exp.
- Backwards induction

Punchline

- We prove ...
\exists "simple and elegant formula" for opt. stop. as \propto
Even better, if you truncate the sum after k terms

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven : $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!
- (sample-based) PTAS for gen. opt. stop

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!
- (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
- Potential new hammer

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!
- (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
- Yields simple explicit dual mart sol.

Punchline

- We prove...
- \exists "simple and elegant formula" for opt. stop. as ∞ sum
- Even better, if you truncate the sum after k terms ...
- Error bounded by $\frac{1}{k}$
- Easy to simulate!
- Yields efficient rand. ϵ-optimal algorithms
- Runtime $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$
- Data-driven: $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ samples
- Even with high-dim and path-dependence
- Beats the curse of dimensionality!
- (sample-based) PTAS for gen. opt. stop
- New connection to net. flows
- Yields simple explicit dual mart sol.
- Potential new hammer

Outline

(1) Punchline

(2) Model + Problem
(3) Intuition + Main results

4 Future Research

Model

- Discrete time : T periods

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies
- Assume all conditionings etc. well-defined

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies
- Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_{t} \in[0,1]$ or $[0, U]$
- Could state in terms of u.b., trunc., etc.

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies
- Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_{t} \in[0,1]$ or $[0, U]$
- Simplifies notations etc.

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies
- Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_{t} \in[0,1]$ or $[0, U]$
- Simplifies notations etc.
- Could state in terms of u.b., trunc., etc.

Model

- Discrete time : T periods
- $\mathcal{F}=\left\{\mathcal{F}_{t}, t \in[1, T]\right\}$ gen. by D-dim process $\mathbf{Y}=Y_{1}, \ldots, Y_{T}$
- Cost functions $\left\{g_{t}, t \in[1, T]\right\}$
- $Z_{t} \triangleq g_{t}\left(Y_{[t]}\right)=$ cost of stop. at t
- Non-neg. + integrable
- \mathcal{T} : set of \mathcal{F}-adapted stop.times in $[1, T]$
- Note: disc. time, won't dwell on pathologies
- Assume all conditionings etc. well-defined
- Note: Sometimes assume $Z_{t} \in[0,1]$ or $[0, U]$
- Simplifies notations etc.
- Could state in terms of u.b., trunc., etc.
- Sometimes we make explicit

Problem statement

$\bullet \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
- Can transform max to min
- Ideas are clearer for min

Problem statement

- $\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- Full path-dependence
- High dimensionality
- Massive state space
- Gen. disc-time optimal stopping
- Pricing Bermudan Options
- Fundamental problem in control theory
- WLOG generally discuss the min. problem
- Can transform max to min
- Ideas are clearer for min
- Once you have gen. opt. stop. you have a lot more
- Many problems reducible to this

Outline

(3) Intuition + Main results

4 Future Research

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t} \quad, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t} \quad, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t} \quad, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$
- $Z_{t}^{3} \triangleq Z_{t}^{2}-E\left[\min _{i \in[1, T]} Z_{i}^{2} \mid \mathcal{F}_{t}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- OPT $=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t}, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, \tau]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$
- $Z_{t}^{3} \triangleq Z_{t}^{2}-E\left[\min _{i \in[1, T]} Z_{i}^{2} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+E\left[\min _{t \in[1, T]} Z_{t}^{2}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{3}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\tau}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t} \quad, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$
- $Z_{t}^{3} \triangleq Z_{t}^{2}-E\left[\min _{i \in[1, T]} Z_{i}^{2} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+E\left[\min _{t \in[1, T]} Z_{t}^{2}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{3}\right]$
- $Z_{t}^{k+1}=Z_{t}^{k}-E\left[\min _{i \in[1, T]} Z_{i}^{k} \mid \mathcal{F}_{t}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{T}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- OPT $=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\mathcal{T}}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t} \quad, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, \tau]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$
- $Z_{t}^{3} \triangleq Z_{t}^{2}-E\left[\min _{i \in[1, T]} Z_{i}^{2} \mid \mathcal{F}_{t}\right]$
- OPT $=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+E\left[\min _{t \in[1, T]} Z_{t}^{2}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{3}\right]$
- $Z_{t}^{k+1}=Z_{t}^{k}-E\left[\min _{i \in[1, T]} Z_{i}^{k} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\sum_{k=1}^{\infty} E\left[\min _{i \in[1, T]} Z_{i}^{k}\right]+\lim _{k \rightarrow \infty} \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right]$

Main intuition

- $\mathrm{OPT} \triangleq \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{T}\right] \geq E\left[\min _{t \in[1, T]} Z_{t}\right]$
- OPT $=E\left[\min _{t \in[1, T]} Z_{t}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}-E\left[\min _{i \in[1, T]} Z_{i} \mid \mathcal{F}_{\mathcal{T}}\right]\right]$
- $Z_{t}^{1} \triangleq Z_{t}, \quad Z_{t}^{2} \triangleq Z_{t}^{1}-E\left[\min _{i \in[1, T]} Z_{i}^{1} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{1}\right]=E\left[\min _{t \in[1, \tau]} Z_{t}^{1}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{2}\right]$
- $Z_{t}^{3} \triangleq Z_{t}^{2}-E\left[\min _{i \in[1, T]} Z_{i}^{2} \mid \mathcal{F}_{t}\right]$
- OPT $=E\left[\min _{t \in[1, T]} Z_{t}^{1}\right]+E\left[\min _{t \in[1, T]} Z_{t}^{2}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{3}\right]$
- $Z_{t}^{k+1}=Z_{t}^{k}-E\left[\min _{i \in[1, T]} Z_{i}^{k} \mid \mathcal{F}_{t}\right]$
- $\mathrm{OPT}=\sum_{k=1}^{\infty} E\left[\min _{i \in[1, T]} Z_{i}^{k}\right]+\lim _{k \rightarrow \infty} \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right]$
- THEOREM : OPT $=\sum_{k=1}^{\infty} E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$!

A "formula" for opt. stopping : OPT =

A "formula" for opt. stopping : OPT =

$$
E\left[\min _{i \in[1, T]} Z_{i}\right]+
$$

A "formula" for opt. stopping : OPT =

$$
\begin{gathered}
E\left[\min _{i \in[1, T]} Z_{i}\right]+ \\
E\left[\min _{i \in[1, T]}\left(Z_{i}-E\left[\min _{j \in[1, T]} Z_{j} \mid \mathcal{F}_{i}\right)\right]+\right.
\end{gathered}
$$

A "formula" for opt. stopping : OPT =

$$
\begin{gathered}
E\left[\min _{i \in[1, T]} Z_{i}\right]+ \\
E\left[\min _{i \in[1, T]}\left(Z_{i}-E\left[\min _{j \in[1, T]} Z_{j} \mid \mathcal{F}_{i}\right]\right)\right]+
\end{gathered}
$$

$$
E\left[\min _{i \in[1, T]}\left(z_{i}-E\left[\min _{j \in[1, T]} z_{j} \mid \mathcal{F}_{i}\right]-E\left[\min _{j \in[1, T]}\left(z_{j}-E\left[\min _{k \in[1, T]} z_{k} \mid \mathcal{F}_{j}\right]\right) \mid \mathcal{F}_{i}\right]\right)\right]+
$$

Fast convergence

- THEOREM : $\left|\mathrm{OPT}-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]\right| \leq \frac{U}{k+1}$

Fast convergence

- THEOREM : $\left|\mathrm{OPT}-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]\right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U=\infty$)

Fast convergence

- THEOREM : $\left|\mathrm{OPT}-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]\right| \leq \frac{U}{k+1}$
- Note : Also prove other bounds ind. of U (even if $U=\infty$)
- Note : analysis tight in the worst-case

Fast convergence

- THEOREM : \mid OPT $-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right] \left\lvert\, \leq \frac{U}{k+1}\right.$
- Note : Also prove other bounds ind. of U (even if $U=\infty$)
- Note : analysis tight in the worst-case
- In many examples converges much faster

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k

But only need a few terms! Explicit runtime depends on assumptions + type of approx

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k
- But only need a few terms!

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- Also get efficient stopping strategies

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ-approx for OPT in $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ time! (w.h.p.)

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ-approx for OPT in $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ time! (w.h.p.)
- Also get efficient stopping strategies ...

Algorithmic implications

- $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$ can be computed by sim!
- No curse of dimensionality!
- Completely data-driven
- Recursive, complexity \uparrow in k
- But only need a few terms!
- Explicit runtime depends on assumptions + type of approx.
- In general ϵ-approx for OPT in $T^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ time! (w.h.p.)
- Also get efficient stopping strategies ...
- \approx Stop when $Z^{\text {poly }\left(\frac{1}{\epsilon}\right)}$ goes below ϵ

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.
- Then for all $\epsilon, \delta \in(0,1), \exists$ a rand. alg. $\mathcal{A}_{\epsilon, \delta}$ s.t.

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.
- Then for all $\epsilon, \delta \in(0,1), \exists$ a rand. alg. $\mathcal{A}_{\epsilon, \delta}$ s.t. \ldots

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.
- Then for all $\epsilon, \delta \in(0,1), \exists$ a rand. alg. $\mathcal{A}_{\epsilon, \delta}$ s.t. \ldots
- In time

$$
2^{O\left(\frac{1}{\epsilon^{2}}\right)} \times T^{O\left(\frac{1}{\epsilon}\right)} \times \log \left(\frac{1}{\delta}\right)
$$

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.
- Then for all $\epsilon, \delta \in(0,1), \exists$ a rand. alg. $\mathcal{A}_{\epsilon, \delta}$ s.t. \ldots
- In time

$$
2^{O\left(\frac{1}{\epsilon^{2}}\right)} \times T^{O\left(\frac{1}{\epsilon}\right)} \times \log \left(\frac{1}{\delta}\right)
$$

- With only \uparrow calls to a simulator for \mathbf{Y} (cond. on hist.),

Algorithmic implications (cont.)

"Canonical" Theorem

- Suppose $P\left(Z_{t} \in[0,1]\right)=1$ for all t.
- Then for all $\epsilon, \delta \in(0,1), \exists$ a rand. alg. $\mathcal{A}_{\epsilon, \delta}$ s.t. \ldots
- In time

$$
2^{O\left(\frac{1}{\epsilon^{2}}\right)} \times T^{O\left(\frac{1}{\epsilon}\right)} \times \log \left(\frac{1}{\delta}\right)
$$

- With only \uparrow calls to a simulator for \mathbf{Y} (cond. on hist.),
- Returns r.v. X s.t.

$$
P(|X-\mathrm{OPT}| \leq \epsilon) \geq 1-\delta
$$

The max-flow connection

- A correspondence between opt. stop and min-cut

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is $1-\mathrm{d}$, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
- Will equate 2 stop. times with 2 cuts

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
- Will equate 2 stop. times with 2 cuts
- Idea is simple and intuitive

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is 1-d, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
- Will equate 2 stop. times with 2 cuts
- Idea is simple and intuitive
- Previously overlooked, not focused on the "right" marts

The max-flow connection

- A correspondence between opt. stop and min-cut
- Illustrate in trivial 3-stage problem
- Driving process Y is $1-\mathrm{d}$, supp. $\{1,2\}$
- $Z_{t}=$ payout if stop at time $\mathrm{t}=$ most recent Y
- Complicated duality lit \rightarrow max-flow min-cut
- Expansion = iterative flow alg.
- Won't give all details of reduction
- Will equate 2 stop. times with 2 cuts
- Idea is simple and intuitive
- Previously overlooked, not focused on the "right" marts
- Past marts yielded soln \forall subproblems \rightarrow comp. slow

The max-flow connection (cont.)

- τ : If $Z_{1}=1$, STOP ; else STOP at time 2

The max-flow connection (cont.)

- τ : If $Z_{1}=1$, STOP ; else STOP at time 2
- Cut value $=1 P_{1}+1 P_{21}+2 P_{22}=E\left[Z_{\tau}\right]$

The max-flow connection (cont.)

- τ : STOP when you see a 1 or the horizon ends

The max-flow connection (cont.)

- τ : STOP when you see a 1 or the horizon ends
- Cut value $=1 P_{1}+1 P_{21}+1 P_{221}+2 P_{222}=E\left[Z_{\tau}\right]=$ OPT

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.
- Total flow pushed in round k is $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.
- Total flow pushed in round k is $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.
- Total flow pushed in round k is $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.
- Total flow pushed in round k is $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule
- Stop when $Z_{t}=E\left[\sum_{k=1}^{\infty} \min _{i \in[1, T]} Z_{i}^{k} \mid \mathcal{F}_{t}\right]$

The max-flow connection (cont.)

- THEOREM : Solving opt.stop equal to solving min-cut
- OBS : Novel unification of many duality results for opt.stop
- Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
- Opt. dual martingale \leftrightarrow max-flow
- OBS : Simple proofs and intuition about many past results
- Tree network \rightarrow greedy works, block. flow is opt, ...
- OBS : Our algorithms can be interpreted as ...
- Fast rand. iter. method for max-flow on massive tree
- Amount pushed on a given edge in round k is ...
- Explicit (normed) cond. exp.
- Total flow pushed in round k is $E\left[\min _{t \in[1, T]} Z_{t}^{k}\right]$
- OBS : Expansion \rightarrow simple and explicit opt. dual sol.
- OBS : Expansion \rightarrow simple and explicit opt. stop. rule
- Stop when $Z_{t}=E\left[\sum_{k=1}^{\infty} \min _{i \in[1, T]} Z_{i}^{k} \mid \mathcal{F}_{t}\right]$
- Stop when you reach sat. edge (min-cut)

Outline

(1) Punchline

(2)
 Model + Problem

(3) Intuition + Main results

4 Future Research

Future research

- Fast implementation and comparison to past approaches

Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez Jamshidian, Farias, Kohler, Lelong Especially on real financial data and problems

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems

Future research

- Fast implementation and comparison to past approaches
- Glasserman, Longstaff-Schwartz, Andersen and Broadie, Belomestny, Schoenmakers, Bender, Christensen, Ibanez, Jamshidian, Farias, Kohler, Lelong, ...
- Especially on real financial data and problems
- Produce and share a usable code

Future research cont.

- Better understanding of conv.

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs from control, robotics, etc.

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs. from control, robotics, etc.
- Robust stopping and games

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs. from control, robotics, etc.
- Robust stopping and games
- New prophet inequalities

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs. from control, robotics, etc.
- Robust stopping and games
- New prophet inequalities
- Note: our approach a kind of proph. ineq.

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs. from control, robotics, etc.
- Robust stopping and games
- New prophet inequalities
- Note: our approach a kind of proph. ineq.
- New potential hammer - interesting nails?

Future research cont.

- Better understanding of conv.
- Smarter algs. with better sim. techniques
- Gen. to mult. stop. , stoch. con., cont. time, ∞ horizon, ...
- Lower bounds, comp. complexity, randomization
- Modified / different such expansions
- Other tools from network flows
- Application to other stopping problems
- Probs. from seq. stat. (esp. Gittins!)
- Probs. from OM, rev. man, choice mod., etc.
- Probs. from control, robotics, etc.
- Robust stopping and games
- New prophet inequalities
- Note: our approach a kind of proph. ineq.
- New potential hammer - interesting nails?
- Thanks!

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1
- $\rightarrow \min _{t \in[1, T]} Z_{t}^{k-1} \leq \frac{U}{k-1}$ w.p. 1

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1
- $\rightarrow \min _{t \in[1, T]} Z_{t}^{k-1} \leq \frac{U}{k-1}$ w.p. 1
$\bullet \rightarrow \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right] \leq \frac{U}{k}$

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1
- $\rightarrow \min _{t \in[1, T]} Z_{t}^{k-1} \leq \frac{U}{k-1}$ w.p. 1
- $\rightarrow \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right] \leq \frac{U}{k}$
- But OPT $=\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k+1}\right] \forall \mathrm{k}$

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1
- $\rightarrow \min _{t \in[1, T]} Z_{t}^{k-1} \leq \frac{U}{k-1}$ w.p. 1
- $\rightarrow \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right] \leq \frac{U}{k}$
- But OPT $=\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k+1}\right] \forall \mathrm{k}$
- THEOREM : \mid OPT $-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right] \left\lvert\, \leq \frac{U}{k+1}\right.$

Extra credit : fast convergence proof

- Recall : $Z_{t}^{k}=Z_{t}^{k-1}-E\left[\min _{i \in[1, T]} Z_{i}^{k-1} \mid \mathcal{F}_{t}\right]$
- Claim : $Z_{t}^{k} \geq 0$ for all t, k
- Claim : $\left\{Z_{t}^{k}, k \geq 1\right\}$ is \downarrow for all t
- Claim : $Z_{T}^{k}=Z_{T}-\sum_{i=1}^{k-1} \min _{t \in[1, T]} Z_{t}^{i}$ for all k
- $\rightarrow Z_{T}-(k-1) \times \min _{t \in[1, T]} Z_{t}^{k-1} \geq 0$ w.p. 1
- $\rightarrow \min _{t \in[1, T]} Z_{t}^{k-1} \leq \frac{U}{k-1}$ w.p. 1
- $\rightarrow \inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k}\right] \leq \frac{U}{k}$
- But OPT $=\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right]+\inf _{\tau \in \mathcal{T}} E\left[Z_{\tau}^{k+1}\right] \forall \mathrm{k}$
- THEOREM : \mid OPT $-\sum_{i=1}^{k} E\left[\min _{t \in[1, T]} Z_{t}^{i}\right] \left\lvert\, \leq \frac{U}{k+1}\right.$
- Note : Also prove other bounds ind. of U (even if $U=\infty$)

