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Full path-dependence

High dimensionality

Massive state space

Gen. disc-time optimal stopping

Pricing Bermudan Options

Fundamental problem in control theory

WLOG generally discuss the min. problem
@ Can transform max to min
@ |deas are clearer for min

Once you have gen. opt. stop. you have a lot more
@ Many problems reducible to this
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® THEOREM : [OPT — S_; E[mineei 7y Z]]| < %
@ Note : Also prove other bounds ind. of U (even if U = o0)
@ Note : analysis tight in the worst-case

o In many examples converges much faster
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Also get efficient stopping strategies . ..
e ~ Stop when Zr¥(%) goes below ¢



Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem




Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem

@ Suppose P(Z; € [0,1]) =1 for all £.




Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem

@ Suppose P(Z; € [0,1]) =1 for all £.
@ Thenforalle,d € (0,1),F3arand. alg. A.sst. ...




Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem

@ Suppose P(Z; € [0,1]) =1 for all £.
@ Thenforalle,d € (0,1),F3arand. alg. A.sst. ...
o Intime

20(2) « TOG) x Iog(%),




Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem

@ Suppose P(Z; € [0,1]) =1 for all £.
@ Thenforalle,d € (0,1),F3arand. alg. A.sst. ...
o Intime

20(2) « TOG) x Iog(%),

e With only 1 calls to a simulator for Y (cond. on hist.),




Intuition + Main results
0000080000

Algorithmic implications (cont.)

“Canonical” Theorem

@ Suppose P(Z; € [0,1]) =1 for all £.
@ Thenforalle,d € (0,1),F3arand. alg. A.sst. ...
o Intime

2002) & TO) Iog(%),

e With only 1 calls to a simulator for Y (cond. on hist.),
o Returnsr.v. X s.t.

P(IX —OPT| <€) >1-4.
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The max-flow connection

@ A correspondence between opt. stop and min-cut
@ lllustrate in trivial 3-stage problem
o Driving process Y is 1-d, supp. {1,2}
e Z; = payout if stop at time t = most recent Y
@ Complicated duality lit — max-flow min-cut
@ Expansion = iterative flow alg.
@ Won't give all details of reduction

Will equate 2 stop. times with 2 cuts

o Idea is simple and intuitive

@ Previously overlooked, not focused on the “right” marts
o Past marts yielded soln V subproblems — comp. slow
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The max-flow connection (cont.)

@ 7:1fZ =1, STOP ; else STOP at time 2
@ Cutvalue = 1Py +1P51 + 2Ps = E[ZT]

\‘
N

I\
“\ \Aﬁu
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The max-flow connection (cont.)

@ 7 : STOP when you see a 1 or the horizon ends
@ Cutvalue = 1Py + 1Psy + 1Ppo1 + 2Pap = E[Z;] = OPT

3| \P""
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The max-flow connection (cont.)

@ THEOREM : Solving opt.stop equal to solving min-cut

@ OBS : Novel unification of many duality results for opt.stop
e Karatzas, Kogan and Haugh, Rogers, Glasserman, ...
@ Opt. dual martingale ++ max-flow

@ OBS : Simple proofs and intuition about many past results
o Tree network — greedy works, block. flow is opt, ...

@ OBS : Our algorithms can be interpreted as . ..

o Fast rand. iter. method for max-flow on massive tree
o Amount pushed on a given edge inround K is . ..
@ Explicit (normed) cond. exp.

o Total flow pushed in round k is E[minepr, 77 Zf]
@ OBS : Expansion — simple and explicit opt. dual sol.
@ OBS : Expansion — simple and explicit opt. stop. rule
(4] StOp when Z; = E[Zlo(o:1 min,'€[177-] Zik|.7:[]
e Stop when you reach sat. edge (min-cut)
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Future research

@ Fast implementation and comparison to past approaches

@ Glasserman, Longstaff-Schwartz, Andersen and Broadie,
Belomestny, Schoenmakers, Bender, Christensen, Ibanez,
Jamshidian, Farias, Kohler, Lelong, ...

@ Especially on real financial data and problems
@ Produce and share a usable code
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Future research cont.

@ Better understanding of conv.
@ Smarter algs. with better sim. techniques
@ Gen. to mult. stop. , stoch. con., cont. time, oo horizon, ...
@ Lower bounds, comp. complexity, randomization
@ Modified / different such expansions
@ Other tools from network flows
@ Application to other stopping problems
@ Probs. from seq. stat. (esp. Gittins!)

Probs. from OM, rev. man, choice mod., etc.
Probs. from control, robotics, etc.
Robust stopping and games
New prophet inequalities

@ Note: our approach a kind of proph. ineq.
@ New potential hammer - interesting nails?
@ Thanks!

®© 6 66 o
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Extra credit : fast convergence proof

e Recall : ZF = Zf" — E[minjcpy 1 ZF 7| A

@ Claim: Zf > 0forall t, k

@ Claim: {Zf k> 1}is | forall t

e Claim: Zk = Zr — Y7 minyey 1 Z} for all k

— Zr — (k—1) x miney 1 ZF~ >0 w.p.1

= mingep, 7] Ztk_1 < % w.p.1

— infrer E[ZK] <

But OPT = 3K | Elmingcs 1y Zf] + infrer E[ZEH1] Yk
THEOREM : |OPT — _f; E[minees 1y Z]]| < %

Note : Also prove other bounds ind. of U (even if U = o)
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