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Member of the leadership team of AIMMS. Worked with
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enable the successful use of the AIMMS optimization
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potential users and research analysts in and outside the
Operations Research community. Recently took up the role
as Product Owner AIMMS
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About AIMMS

>|s a Software Technology Company
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>Founded in 1989 by Johannes Bisschop, a math professor

>Employs over 50 highly skilled people
>Enables to rapidly build, configure and roll-out | } bl -]

business apps y é

> Provides built-in prescriptive analytics engines
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@ Bring the benefits of

optimization to society

Vision

Software is eating
the world’
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Selection of our Customers
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AIMMS Academic Community
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Quick Product Overview
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Positioning In field of Analytics

Analytics Human Input Gartner

Descriptive
What happened?

Diagnostic
"p"'n.lll'l"," did it ha |:|F:|E-r]"'.:'

Data — Decision
Predictive

Ililllllu|I Iul .a t ihin | j | Inl -a I:I I:] {:_"' i 2

Decision Support

Prescriptive
What should | do?

Decision Automation

The advantage over regular analytics is

the output of a recommended action.
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AIMMS Toolset characteristics

0 Easy to model

O Flexible & Fit for purpose {‘glass box’}

0 Gain direct insights of results

O Attractive & Easy to use
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AIMMS Toolset characteristics

I I

O

[0 Collaborative

[0 Scalable

[0 Easy to integrate

O Easy to deploy

AIMMS | PRO wm
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AIMMS Toolset characteristics
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]
O Stimulate innovation

0 Deliver Value




Simple

Fast
Secure
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1982

ment of a General Algebraic Modeling System (GAMS).[The aim of this system}

| is to provide one representation of a model which is easily understood by both |

[ humans and machines.] We have chosen a rigorous algebraic representation. of
both data and equations, coupled with relational database-type facilities. With
such a notation, the information content of the model representation is such that
a machine can not only check for algebraic correctness and completeness, but
also interface automatically with solution algorithms and report writers. In

J. Bisschop and A. Meeraus| A general algebraic m>deling system

Source: “On the development of a general algebraic modeling system in a strategic planning environment”. Mathematical Programming Study 20 (1982) 1-29 '
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So far so good, how does Data Science make us better?
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A Typical Data Science Workflow

Knowledge
or Insights

the data

ASK an
interesting
guestion

From Source: https://medium.freecodecamp.org/i-ranked-all-the-best-data-science-intro-courses-based-on-thousands-of-data-points-db5dc7e3eb8e ﬁ \

16 © AIMMS - 2017 Do not copy, cite or distribute without permission AI M M S



https://medium.freecodecamp.org/i-ranked-all-the-best-data-science-intro-courses-based-on-thousands-of-data-points-db5dc7e3eb8e
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A Typical Data Science Workflow: Challenges

> Data 15t mentality, everybody is an analyst

> No business logic included in data

> Error handling or data issues can be troublesome

> “Analysis Paralysis”

> Understanding of the results (Trends, Correlation, ML, Statistics)
> Assuring Deterministic interpretation of results

> No validated recommended actions

AIMMS
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A Typical Data Science Workflow: Opportunities

> Current Tools & Methods are very powerful

> Data 15t mentality, anybody can analyze

> Lots of examples of how it can improve quality of data

> Machine Learning can generate new insights else overlooked
> Data Science and Visualization go hand in hand

> Business accepts Data Science as a necessity

> Data Science # Operations Research

AIMMS



What about Data Science in AIMMS?

>Visual & Procedural data analysis and comparison
> Distribution functions, Statistical operators

> Histogram functions

> Forecasting library

>Data Link (databases, csv, xls, txt, tde, ...)

> R-link
- Machine Learning options
- More statistical options (any...)
- Matrix Manipulations

etc.

Demand
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A Typical AIMMS Optimization App User Workflow

EVALUATE
‘ Scenarios
RUN
O Optimization
Scenarios
ADJUST
the data
® (if needed)
GET
the data

DEPLOY
Best

Scenario
(execute)

Business
Value

AIMMS
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A Typical AIMMS Optimization App User Workflow: Characteristics

>Model based, includes business logic
>Done by a non-optimization expert (business user)
>Need for special optimization training

> Standard (manual) process

* be compliant .
. Optimiz_ation
* be repeatable Apusy | Soenaros

the data

(if needed)

° [ ]
feel comfortable GET

the data

>Could contain lots of iterations
>Becomes more complex over time

>Focus and needs will shift when more experienced

EVALUATE

Business
Value

DEPLOY
Best

Scenario
(execute)

AIMMS



Add Data Science to Optimization

MODEL
the data
EXPLORE
the data
GET
the data
ASK an
interesting
question
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COMMUNICATE
and VISUALIZE
the results

GET
the data

ADJUST

the data
(if needed)

RUN

Optimization

Scenarios

EVALUATE
Scenarios

DEPLOY
Best

Scenario
(execute)

Business
Value

AIMMS



Example DS+0O "Get Data”

> Use trigger to get data ahead of time (prepare)
> Learn what is ‘crucial data’ and what is not
> Analyze data to complete data

> Be smart about the user

> ...
DEPLOY
EVALUATE  Best
. Scenarios Scenario
RUN (execute)
Oplimization
L narios
ADJUST
the data
. i neaded)
GET
the data
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«@= Weighted Moving Average (WMA)
== Simple Moving Average [SMA)
=g~ Single Expanential Smoothing [SES)

Example DS+0O "Adjust Data” e -

> Show dynamic comparisons to norms (history, seasonal,

market data, etc.)

> Use learnings of previous adjustments to suggest new S F P F PP P I P A FEIFP

adjustments to user, or share “okay”

> Detect anomalies and bring those forward (e.g. based on

set of rules)

> Take out obvious mistakes

24



Examples DS+0 "Run Optimization Scenarios”

> Generate more scenarios based on certain conditions
> Store Solutions and analyze to support future decisions
> Understand behavior of planner and become pro-active

> Avoid (full) optimization if you can

. Develop surrogate/sub models that are good enough;

tune it regularly with full optimization

> ..
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Examples DS+0O "Evaluate Scenarios”

> Use e.g. ML algorithm to learn from past experiences
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> Analyze unmodeled Scenario Effects | IS, |
> Use Augmented data (unmodeled) to support evaluation /" ///3/@_ 2 r
: 4 LI ==l
> Detect outliers and filter those as unrealistic

> Determine ‘Likable’ or ‘Practical’ solutions “’l
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Add Data Science to Optimization: Adds Business Value

EXPLORE
the data
GET
the data
ASK an
interesting
question
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MODEL
the data

COMMUNICATE
and VISUALIZE
the results

¥
3
“\ Business
. Value
DEPLOY
EVALUATE Best
. Scenarios Scenario
¥ RUN (execute)
Optimization
® Scenarios
ADJUST "
the data -
(if needed) %,
GET B, .
the data 2 3

Package it well!

X
AIMMS
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Hide the smartness; make it a cool drivirg optimization experience
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Keep extending user base, find new ‘markets’
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DS+0O+Al+... Move to ALWAYS ON

Source: http://fortune.com/2015/03/11/target-walmart

% AIMMS
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Thank you

Free AIMMS Academic License!

[~ g.de.lange@aimms.com
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