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An old basic problem

I Arthur Cayley 1875

I Moser 1956 limit version. Consider n iid random variables
X1, . . . , Xn. Sequentially look at the realizations until you
decide to stop.

I Problem easily solved by dynamic programming. Explicit rules
known for specific distributions.



The Prophet Inequality (PI)

I Rather than looking at the optimal stopping rule, Krengel &
Sucheston 1977 ask the “Prophet vs Gambler” question

We have n independent and nonnegative random variables
X1, . . . , Xn with Xi ∼ Fi.
They arrive sequentially and upon arrival reveal their value.
Gambler with distributional knowledge, either keeps current
value, or drops it and continue.
Prophet sees the entire realization in advance and picks the
maximum.

How well can the Gambler do?

I Related to the Secretary problem: n arbitrary values arrive in
random order and we want to pick the maximum.



The Prophet Inequality (PI)

I How well can the Gambler do?

sup
t stopping time

E[Xt]︸ ︷︷ ︸ ≥
1

2
E
[
max
1≤i≤n

Xi

]
︸ ︷︷ ︸

Gambler vs Prophet

And 1/2 is best possible. Krengel, Sucheston, Garling 1977

I For the Secretary problem you have to scan a fraction 1/e of
the values and then pick the first value above the maximum
seen so far.

P(pick the maximum) = 1/e

I Yet another, the Prophet Secretary problem. Same as prophet
inequality but r.v. arrive in random order.
Can improve the 1/2 to 1− 1/e ≈ 0.63.



Auctions

AUCTIONS:

I We have one item and a set N of potential buyers.

I Buyers have independent random valuations for the item.

I Buyer i valuation is vi ∼ Fi.
I Revenue maximizing auction: Myerson, MOR 81

Difficult to implement and complicated.

POSTED PRICE MECHANISMS (PPM):

I Same setting

I Now customers arrive in some order (selected by the seller, or
random, or worst case)

I Seller sequentially makes take-it-or-leave-it offers

I Simple, no strategic behavior, easy to implement

GOAL: compare the revenue of these mechanisms
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PPM vs PI

I We are given n independent and nonnegative random
variables X1, . . . , Xn with Xi ∼ Fi.

I The rv’s arrive sequentially and upon arrival reveal their value.

I PI: you pick thresholds T1, . . . , Tn
I PPM: you pick prices p1, . . . , pn
I PI: if realization xi ≥ Ti you stop and get xi.

I PPM: if realization xi ≥ pi you stop and get pi.

I PI: compare revenue against E(maxiXi).

I PPM: compare revenue against Optimal mechanism.

Myerson’s Lemma: Optimal revenue equals E(maxi ci(Xi)), where

ci(x) = x− 1−Fi(x)
fi(x)

is the virtual valuation function (assume

monotone and nonnegative)



PPM and PI are Equivalent problems

I For any sequence of r.v. there exist thresholds achieving an
expected reward of α times the expected maximum, if and
only if for any sequence of r.v. there exists a PPM that
achieves a revenue of α times the optimal auction.

I Key: Move to the virtual valuations and back.

Example: Two buyers V1, V2 ∼ U [1, 2].

I Optimal Auction is a SPA, revenue is E(min(V1, V2)) = 4/3.

I PPM: Say set price P = 3/2, obtain 3
2 ×

3
4 = 9

8 .

I Virtual Values: Xi = Vi − 1−Fi(Vi)
fi(Vi)

= 2(Vi − 1) ∼ U [0, 2].

I E(max(X1, X2)) = 4/3

I Threshold: set T so that prob. stop stays at 1/2, then T = 1.

I Obtain 1
2E(X1|X1 > 1) + 1

4E(X2|X2 > 1) = 9
8



PPM and PI are Equivalent problems
Chawla et al 2010, C. Foncea, Pizarro, Verdugo 2017

I For any sequence of r.v. there exist thresholds achieving an
expected reward of α times the expected maximum, if and
only if for any sequence of r.v. there exists a PPM that
achieves a revenue of α times the optimal auction.

I Key: Move to the virtual valuations and back.

I Fact: Consider a r.v. V ∼ F and let the r.v. X be the virtual
valuation of V .

X = c(V ) = V − 1− F (V )

f(V )
.

I If q = P (X ≥ T ) then X ≥ T iff V ≥ F−1(1− q)
I Also E (X | X ≥ T ) = F−1 (1− q)

∫ ∞
F−1(1−q)

c(v)f(v)dv =

∫ ∞
F−1(1−q)

vf(v)dv −
(
v(1− F (v))|∞

F−1(1−q)
+

∫ ∞
F−1(1−q)

vf(v)dv

)

= qF
−1

(1− q)



From PI to PPM

I For i = 1, . . . , n let Vi ∼ Fi and Xi its virtual valuation.

I Take the PI thresholds Ti (for Xi) and qi = P (Xi ≥ Ti).
I Let r be the index of the first r.v. with virtual value above the

threshold. Then

E (Xr) =

n∑
i=1

E (Xi | i = r)P (i = r)

=

n∑
i=1

E (Xi | Xi ≥ Ti)P (Xi ≥ Ti, i is the first accepting)

=

n∑
i=1

F−1i (1− qi)P
(
Vi ≥ F−1i (1− qi) , i is the first accepting

)
= revenue of a PPM with prices

pi = F−1i (1− qi) for r.v. V1, . . . , Vn



From PI to PPM

I Then revenue of threshold rule over the virtual valuations
equals revenue of the PPM over the original valuations.

I Also expectation of maximum of X1, . . . , Xn equals optimal
auction revenue. Myerson, MOR 81

I We conclude since

E (PPM over V1, . . . , Vn) ≥ E (Xr)

≥ αE(max
i
Xi)

= αE(rev opt auction)



From PPM to PI

Converse is more involved

I Key Lemma: For any r.v. X there exist another random
variable Y whose (ironed) virtual valuation is distributed as X.

I Consider X1, . . . , Xn and the corresponding Y1, . . . , Yn.

I Take a PPM with a guarantee of α for sequence Y1, . . . , Yn
(w.r.t max virtual valuation)

I Transform the prices into thresholds

I Resulting thresholds achieve a guarantee of α for X1, . . . , Xn

(w.r.t max)
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The Prophet Inequality: Simple proof
I Many proofs Garling 78, Hill & Kertz 81, Samuel-Cahn 83, etc

I Recent one based on Kleinberg Weinberg 2012

I Pick a threshold T and accept first value above T
(Anonymous!!)

I Let r be the index of the first r.v. above the threshold
I p = P(maxXi > T )

Note that

P(Xr > x) ≥

{
p x ≤ T
(1− p)P(maxXi > x) x > T

Indeed,

P(Xr > x) =

n∑
i=1

P(Xi > x)
∏
j<i

P(Xj ≤ T )

≥ (1− p)
n∑
i=1

P(Xi > x) ≥ (1− p)P(maxXi > x)



The Prophet Inequality: Simple proof

Gambler = E(Xr) =

∫ ∞
0

P(Xr > x)

≥
∫ T

0
pdx+

∫ ∞
T

(1− p)P(maxXi > x)dx

Note that E(maxXi)=

∫ ∞
0

P(maxXi > x)dx ≤ T +

∫ ∞
T

P(maxXi > x)dx

≥ pT + (1− p) (E(maxXi)− T )

Pick T s.t.

{
T = E(maxXi)

2

p = 1
2

to obtain Gambler ≥ 1
2Prophet.



Tightness

I Worst case: Two rv’s. X1 = 1 a.s., and

X2 =

{
1/ε w.p. ε

0 w.p. 1− ε

Gambler gets 1 while Prophet gets ε(1/ε) + (1− ε) ≈ 2.

I The constant 1/2 cannot be beaten even if we choose
non-anonymous thresholds.

I So single threshold strategies are optimal!!



”You need to have 12
couples and discard all
of them, even if one is

Brad Pitt”

”...then you keep the
first better”



Recap

I Prophet inequality: Basic problem in optimal stopping.

I Equivalent to Posted price mechanisms through virtual values
I Basic setting: X1, . . . , Xn nonnegative r.v.s.

I Compare gambler, i.e., good stopping rule or algorithm to stop
I with Prophet, i.e., expectation of the maximum.

I Classic PI: Gambler can do 1/2 of the prophet by pick a
threshold and accept the first r.v. above it.

I The constant 1/2 cannot be beaten even with non-anonymous
thresholds.

I So single threshold strategies are optimal!!
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Personalization and Adaptivity

I For the basic PI single threshold strategies are optimal
I T = E(maxXi)/2 or
I T such that P(maxXi > T ) = 1/2

What if the order can be selected by the Gambler or the order is
RANDOM (Prophet Secretary)?

I Optimal strategies through exponential dynamic programs.
Complexity open.

I Role of Personalization?
Thresholds may depend on the index of the r.v. that is seen.

I Role of Adaptivity?
Strategy may be adjusted depending on what is left.



Observations

I What if the order can be selected by the Gambler?
Can obtain a fraction 1− 1/e Chawla et al., 2010, Yan 2011

Uses personalization

I What if the order is RANDOM? Prophet Secretary
Can obtain a fraction 1− 1/e Esfandiari et al. 2015

Uses adaptivity
Can obtain a fraction 1− 1/e nonadaptively C. et al. 2017

Uses personalization
1− 1/e is best possible nonadaptively C. et al. 2017

1− 1/e+ 1/400 just obtained Azar et al. 2018

Uses personalization and adaptivity

I Prophet Secretary, single threshold? Ehsani et al. 2018

I What about iid rv’s as in Cayley-Moser? C. et al. 2017



Single Threshold: Is 1/2 best possible?

I Consider n random variables

I n− 1 are deterministic and always give 1.

I The other gives n with probability 1/n and zero with
probability 1− 1/n.

I The r.v. arrive in random order.

E(maxXi) = n× 1/n+ 1× (1− 1/n) ≈ 2

Now fix a threshold T .

→ If T < 1, Gambler gets n w.p. 1
n2 , and 1 ow. So Gambler ≈ 1

→ If T ≥ 1 Gambler gets n w.p. 1
n . So Gambler = 1

I So 1/2 is best possible.



Single random threshold

I To beat 1/2 one can use personalization or adaptivity.

I Not needed. A random threshold does it! Ehsani et al. 2018

I Take the example again. Set T = 1 and break ties at random.

I Say you accept a 1 w.p. 1/n.
Equivalently think that X1, . . . , Xn−1 are 1 w.p. 1/n and 0
o.w. and that you accept the first nonzero.

P(Gambler gets something) = 1− P(Gambler gets nothing)

= 1− (1− 1/n)n ≈ 1− 1/e

E(Gambler| gets something) = n× 1/n+ 1× (1− 1/n) ≈ 2.

Therefore E(Gambler) ≈ 2(1− 1/e) ≈ (1− 1/e)E(maxXi).



Single random threshold

I Can get 1− 1/e in general!

I Here is a simple proof C. Cristi, Saona, last week

I Proof for continuous and strictly increasing distributions.

I Let X1, . . . , Xn be nonnegative r.v. Xi ∼ Fi, they come in
random order.

I Set a threshold T so that P(maxXi < T ) =
∏
Fi(T ) = 1/e.

I Stop at (a random) time r; the first time you see T or more.

I THM: E(Xr) ≥ (1− 1/e)E(maxXi).



Proof

I We prove a stronger statement:
P(Xr > x) ≥ (1− 1/e)P(maxXi > x)

I σ random permutation. So Xi comes at time σ(i).

P(r = σ(i)|Xi > T ) =
∑

S⊂[n]\i

1

|S|+ 1

∏
j∈S

(1− Fj(T ))
∏

j 6∈S,j 6=i

Fj(T )

=
1

eFi(T )

∑
S⊂[n]\i

1

|S|+ 1

∏
j∈S

1− Fj(T )

Fj(T )

≥ 1

eFi(T )
· min∏

j xj=
1

eFi(T )

∑
S⊂[n]\i

1

|S|+ 1

∏
j∈S

1− xj
xj

≥ 1− 1

e

For the minimization problem we change variables yj = − ln(xj)
and note that the resulting objective is Schur-Convex i.e.,
(yi − yj)(∂g/∂yi − ∂g/∂yj) ≥ 0 so by the Schur-Ostrowski
criterion it is minimized when all variables are equal.



Proof

I We prove a stronger statement:
P(Xr > x) ≥ (1− 1/e)P(maxXi > x)

I To finish the proof we condition on the stopping time

P(Xr > x) =

n∑
i=1

P(Xi > x|r = σ(i))P(r = σ(i))

≥
n∑

i=1

P(Xi > x|r = σ(i))(1− 1

e
)P(Xi > T )

= (1− 1

e
)

n∑
i=1

P(Xi > x)

P(Xi > T )
P(Xi > T )

≥ (1− 1

e
)P(maxXi > x)



Personalization
Non-Adaptive Setting

C., Foncea, Hoeksma, Oosterwijk, Vredeveld 2017

I Think of a direct mail campaign.
Buyers are simultaneously contacted by email with a
personalized offer. They respond in random order and the
offer is valid until the item is sold.

I X1, . . . , Xn arrive in random order.

I Gambler precomputes thresholds T1, . . . , Tn.

I Whenever Xi comes stop iff xi ≥ Ti.
I Thresholds ONLY depend on a priori knowledge of the r.v’s.

I Cannot beat single threshold bound even with iid r.v.!!



Personalization
Non-Adaptive Setting

I IID Instance where no non-adaptive algorithm can achieve a
factor better than 1− 1/e.

I Consider n2 r.v.’s with i.i.d. valuations

X =


n
e−2 w.p. 1

n3 ,

1 w.p. 1
n ,

0 w.p. 1− 1
n −

1
n3 .

I Expectation of maximum goes to e−1
e−2 as n→∞.

I BEST threshold strategy: Set threshold 1 for n r.v.’s and
threshold n

e−2 for the rest.

I Revenue approaches (e−1)2
e(e−2) , as n→∞ .



Adaptivity

I Think of business class upgrades at check-in. Customers
arrive in random order (say at times 1, 2, . . . , n) and are
offered a price for a seat upgrade.

I If Customer i arrives at time k is offered a price that depends
on the customers that already declined.

I If she accepts, she immediately gets the item.

I Prices adapt to the current situation.

Known result: There is an adaptive strategy obtaining a fraction
1− 1/e+ 1/400 of optimal revenue. Azar et al 2018

Known result: For IID r.v.s we can get to 0.745 and this is best
possible C., Foncea, Hoeksma, Oosterwijk, Vredeveld 2017



Outline
Motivation

Prophet inequality
Posted price mechanisms

Equivalence between PPM and PI
PPM vs PI
From PI to PPM
From PPM to PI

Prophet Inequality
Simple Proof
Tightness

Personalization and Adaptivity
Prophet Secretary
Single random threshold
Tightness

Adaptive Setting: IID Prophet Inequality
Some history
Algorithm
Analysis



The IID Prophet Inequality

I Initiated by Gilbert and Moser 1965

I Hill and Kertz 82 provide some recursively defined upper
bounds that computationally evaluate to 0.745.

I Also prove lower bound of 1− 1/e = 0.63....

I Conjecture that tight bound is 1− 1/(e+ 1) = 0.731

I Samuel-Cahn 84 reports that Kertz proved that the upper
bound is actually 1/β∗ ≈ 0.745 the unique solution to∫ 1

0

1

y(1− ln(y)) + (β − 1)
dy = 1. (1)

I Kertz 86 and Saint-Mount 02 conjectured that this
constitutes the best possible upper bound.

I We prove this conjecture.
C., Foncea, Hoeksma, Oosterwijk, Vredeveld 2017



Algorithm’s Overview

INPUT: Random variables Xi, i = 1, . . . , n, with distribution F .

ALGORITHM:

I Partition interval [0, 1] into intervals Ai = [εi−1, εi], s.t.
ε0 = 0, εn = 1.

I Sample qi from Ai with density fi(q) = (n− 1)(1− q)n−2/γi.
here γi is the normalization.

I When the i−th r.v comes, stop if value at least F−1(1− qi).

NOTES:
1. Appropriate choice of εi’s gives the bound.
2. Threshold is high for the first comers and lowers later on.
3. Can get rid of randomization.
4. Easy to extend to general distributions.



Analysis Summary

I Gambler =
∑n

i=1

∫ εi
εi−1

(n− 1)(1− q)n−2R(q)dq · ρi.

I Prophet = n
∫ 1
0 (n− 1)(1− q)n−2R(q)dq.

I TRICK: Choose intervals Ai such that ρ1 = ρ2 = . . . = ρn.

I This implies that the revenue is at least 1
nγ1

OPT .

I The rest of the proof is to bound the term (nγ1) by
1.341 = 1/0.745.

I Set up a recursion whose solution determines γ1.

I Approximate the recursion with an ordinary differential
equation.

NOTE:

Bound is best possible Hill & Kertz, Ann. Probab. 1982



A useful expression

I Let X1, . . . , Xn be non-negative iid. rv’s, with distribution F .

I We will assume F is continuous and increasing for simplicity.

I Let R(q) =
∫ q
0 F

−1(1− θ)dθ.

I By Fubini and integration by parts Prophet gets:

E(max{X1, . . . , Xn}) =
∫ ∞
0

1− Fn(t)dt =
∫ 1

0
F−1( n

√
z)dz

= n

∫ 1

0
(1− q)n−1F−1(1− q)dq

= n

∫ 1

0
(n− 1)(1− q)n−2R(q)dq .



Local reward of quantile

Suppose we face a rv and accept with probability q (i.e., stop if
value above τ(q) = F−1(1− q)).
Then the expected reward in that step equals R(q). Indeed, the
reward can be calculated as:

P(X > τ(q))E[X|X > τ(q)]

=

∫ ∞
0

P(X > t,X > τ(q))dt

=

∫ ∞
τ(q)

1− F (t)dt

=

∫ q

0
F−1(1− θ)dθ = R(q).



Quantile stopping rule

I We take a quantile approach.

I We define quantiles 0 < q1 < · · · < qn < 1 and stop in the
i-th step if Xi ≥ τ(qi).

I To define the q′is partition the interval A = [0, 1] into n
intervals Ai = [εi−1, εi], with
0 = ε0 < ε1 < . . . < εn−1 < εn = 1.

I Draw qi at random from Ai, according to the density function
fi(q) =

ψ(q)
γi

, where ψ(q) = (n− 1)(1− q)n−2 and

γi =
∫
q∈Ai

ψ(q)dq.

Right choice of εi...



Our Reward

I At step i reward equals R(qi).

I Probability that we get to step i is
∏i−1
j=1(1− qj).

By linearity of expectation and independence of qi’s, Gambler gets:

Gambler =
n∑
i=1

E(R(qi))
i−1∏
j=1

E(1− qj)

=

n∑
i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq

∏i−1
j=1

∫ εj
εj−1

ψ(q)(1− q)dq∏i
j=1 γi

=

n∑
i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq · ρi.

Where ρ1 =
1
γ1

and ρi+1 = ρi

∫ εi
εi−1

ψ(q)(1−q)dq
γi+1



Choosing the εi’s
Choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn, then

Prophet = E(max{X1, . . . , Xn}) = nγ1Gambler.

This choice amounts to choosing εi’s such that∫ εi+1

εi

ψ(q)dq =

∫ εi

εi−1

ψ(q)(1− q)dq.

Since ψ(q) = (n− 1)(1− q)n−2, and substituting xi = 1− εi this
is equivalent to

xi−1
n

n
− xi

n

n
=
xi
n−1

n− 1
− xi+1

n−1

n− 1
, (2)

where x0 = 1 and xn = 0.

Quantity of interest nγ1 = n
∫ ε1
0 ψ(q) dq = n(1− x1n−1)



Concluding through an ODE

I Consider y(t) : [0, 1]→ R, defined by the ODE:

y′ = y(ln(y)− 1)− (β − 1) ,

y(0) = 1 .

I We prove that if n(1− x1n−1) > β then xi
n−1 < y( in).

(y(1) := limt↑1 y(t) is the continuous extension of y(t)).

I Take β such that y(1) = 0 to contradict xn = 0.

I y(t) is invertible so look at t as a function of y. We know
t(1) = 0 and we want to choose β such that t(0) = 1.

t(1) = t(0) +

∫ 1

0

dt

dy
dy = 1 +

∫ 1

0

1
dy
dt

dy

= 1−
∫ 1

0

1

y(1− ln(y)) + (β − 1)
dy.

This yields β∗ ≈ 1.3415, and thus nγ1 ≤ 1.3415.



Final Remarks

I Results extend to sequential posted pricing context.

I OPEN: What about general rv’s (independent but not
identical) that arrive in random order?

know how to obtain 0.63 + 1/400. Can we do better? Is IID
the worst case?

I Do not know how to do this EVEN if Gambler can choose the
order.

I What about the IID case but when we do not know the
distribution (as in the secretary problem)?
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