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Dümmen Orange

“New” company: merger of 67 companies.
Largest producer of cuttings (stekken) in the world.
Over 1.4 billion cuttings sold each year; market share 8%.
Production sites all over the world.
4500 varieties; 57 crops.
Presented a problem at ‘Mathematics with Industry’.



Problem description

Mother plants are planted some months before harvesting;
cuttings are cut from these mother plants weekly.
The number of mother plants to plant is based on forecasts;
you must plant enough to fulfil the forecasts for the demand.
For each variety, the majority of sales takes place in the ‘peak
weeks’, which is a period of approximately 10 weeks. We use
T to denote the number of weeks here.
For each week you have to decide how many cuttings to cut
from the mother plants.
The number of cuttings that can be cut from a mother plant
depends (in some way) on the number of cuttings that have
been cut in previous weeks.



Problem description

Example: Can obtain (for instance) 2 cuttings per week per
plant.
Problem: can not consistently obtain 2 cuttings, goes down
after a few weeks.
Currently: plant 0.5× peak demand + 10% “buffer”.
Forecast: 80.000 plants/week in peak → plant 44.000 mother
plants.
Pressure from sales to offer more (from the buffer) for sale →
may not have enough later.



Research questions

1 Model how the number of cuttings produced goes down as
more cuttings are taken.

2 Determine how many mother plants should be planted to
meet predicted demand.

3 Determine how many cuttings to offer for sale in each week
(and thus how many to cut).

Currently, we only look at one variety of plant in isolation and
use a deterministic model (we ignore random disturbances).
Guidance by domain expert; some data available
Available data: 160 numbers (10 years, 16 weeks, average
harvest per mother plant)



LP approach (How many mother plants at least)

Since the current decisions depend on earlier decisions, we
work with feasible cutting patterns.
A cutting pattern tells you how many cuttings to cut on
average from a mother plant in each week; this number can
be fractional. For example (2.0; 1.8; 1.9; 1.7; 2.0; . . .).
If the domain expert has a list with all N feasible cutting
patterns that we can use, then ...

... we can solve the problem of finding the minimum number
of mother plants by formulating it as a Linear Programming
problem. Remark that we have to meet the forecasts.



LP formulation

Define xj as the number of mother plants that are cut
according to cutting pattern j , for j = 1, . . . ,N.
Define ajt as the number of cuttings that are obtained in week
t (t = 1, . . . ,T ), when one mother plant is cut according to
cutting pattern j .
Define bt as the forecasted demand in week t.



LP formulation (2)

LP formulation

minM = x1 + . . .+ xN

subject to∑N
j=1 ajtxj ≥ bt ∀t

xj ≥ 0 ∀j

The solution of this LP program gives you a lower bound to
the number of mother plants that have to be planted. The
company can decide to add more (for example to build in
some safety margin).
Unfortunately, the domain expert did not have a list of
feasible cutting patterns available.



Next attempt

This linear programming formulation looks a lot like the one
to solve the Cutting Stock problem (find the minimum
number of bars to cut a number of pieces with given length).
In Cutting Stock we work with cutting patterns as well; they
indicate how many pieces of each length to cut from a bar.
Cutting Stock is solved using column generation: let’s try
that here.
Major difference: for Cutting Stock it is clear when a cutting
pattern is feasible. For the flower cutting problem the
constraints to decide whether a cutting pattern is feasible are
unknown (this was one of the research questions).



Find the unknown constraints

Use the data that we have to find these constraints (and have
these confirmed by the experts).
We have data specifying the average number of cuttings taken
in week t (t = 1, . . . ,T ) per year; we assume that these are
related to what is actually possible.
Use data mining (or data search) to search for constraints
that are satisfied by all feasible cutting patterns; to specify a
cutting pattern we must specify the numbers (a1, . . . , aT ).
For example: infer constraints at ≤ C1 ∀t by determining C1
as the maximum over all at found in the data.
Similarly, at + at+1 ≤ C2: find C2 as the maximum value of
two consecutive weeks, etc.



Example constraints from data mining

at ≤ 2
at + at+1 ≤ 3, 9
at + at+2 ≤ 3, 85
at + at+3 ≤ 3, 9
at +at+1+at+2 ≤ 5, 75

at + at+1 + at+4 ≤ 5, 71
at + at+3 + at+4 + at+5 ≤ 7, 4
at + at+3 + at+5 + at+6 ≤ 7, 41
at + at+4 + at+5 + at+6 ≤ 7, 41
at + at+5 + at+6 + at+7 ≤ 7

at + at+1 + at+3 + at+4 + at+5 + at+6 ≤ 10, 9
at + at+6 + at+7 + at+8 + at+9 + at+10 ≤ 10, 5



Back to column generation

We can formulate the pricing problem then as: find the best
cuttern pattern (a1, . . . , aT ) that satisfies the constraints
determined using data mining.
Since the constraints are linear, this is an LP problem (again).
We can use Constraint Satisfaction to solve the pricing
problem in case of non-linear complicated constraints.
Useful Observation
In case the feasibility of a cutting pattern is described using
linear constraints only, then we do not need column
generation to solve the problems!



Convex combination of patterns

Suppose that the cutting patterns a1, . . . , aN satisfy the linear
constraints, where aj = (aj1, . . . , ajT).
Take any set of non-negative real values λ1, . . . , λN with∑N

j=1 λj = 1.
Define cutting pattern C as the convex combination of the
cutting pattterns a1, . . . , aN:

C =
N∑

j=1
λjaj

Then C satisfies the linear constraints and is a feasible cutting
pattern.



Computing number of mother plants (1)

Define xj as the number of mother plants that are cut
according to cutting pattern j , for j = 1, . . . ,N.
Define bt as the forecasted demand in week t.
LP formulation

minM = x1 + . . .+ xN

subject to∑N
j=1 ajtxj ≥ bt ∀t

xj ≥ 0 ∀j

Theorem
Let x∗ = (x∗

1 , . . . , x∗
n ) denote an optimal solution. Then there

exists an equivalent solution in which we use only 1 cutting pattern
C = (C1, . . . ,CT )

Here: put λj = x∗
j /M =⇒ MCt =

∑N
j=1 ajtx∗

j .



Computing number of mother plants (2)

Observation: If you want to produce bt cuttings in week t
using one cutting pattern only, then you should cut
at = bt/M cuttings on average.
Determine M such that (a1, a2, . . . , aT ), where at = bt/M,
corresponds to a feasible cutting pattern.
Satisfying for example constraint at + at+1 ≤ 3, 9 implies that
bt
M + bt+1

M ≤ 3, 9.
Working things out yields the constraint

M ≥ bt + bt+1
3, 9 .

Each constraint from data mining yields a lower bound on M;
put M equal to the maximum of these bounds.



Optimize sales income

The number of mother plants M is a decision variable; cost
per mother plant is cM .
Again, xj denotes the number of mother plants cut according
to pattern j (j = 1, . . . ,N).
We assume that for each week we know how many cuttings
we can sell additionally; call this ADt .
Define decision variables yt as additional sales realized in week
t.
Define pt as profit of selling additional cuttings in week t
(refinements are possible).
The problem can be formulated as an LP again.



LP formulation

max
∑

t ptyt −McM

subject to∑N
j=1 ajtxj − yt ≥ bt ∀t∑N

j=1 xj ≤ M
0 ≤ yt ≤ ADt ∀t

xj ≥ 0 ∀j

Again, in the optimal solution we need only one cutting
pattern.



Reformulation of the LP

Define zt as the number of cuttings produced in week t.
Since we only need one cutting pattern, at = zt/M. This
yields the LP:

max
∑

t pt(zt − bt)−McM

subject to
bt ≤ zt ≤ bt + ADt ∀t

‘the variables at = zt/M form a feasible cutting pattern’

zt/M is not linear; rewrite the constraints.
For example: at + at+1 ≤ 3, 9; multiply with M.
This yields the constraint zt + zt+1 ≤ 3, 9M =⇒ LP-again.



Extensions

More varieties of plants: just extend the LP.
Uncertainty in growth of mother plants: work with scenarios
(use information from historical data).



Conclusions

Having just a few data may make a huge difference.
Using data mining to describe an unknown part of the model
is a neat trick (which we have not seen being used before).
If linear constraints suffice, then sometimes you can simplify
the model a lot.


