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Philosophy/Motivation

Operations Research/Management Science typically
starts with models and aims to make optimal
decisions. Data is often an afterthought.

Machine Learning/Statistics typically starts with data
and aims to make predictions. Decisions are typically
not considered.

Models, in my opinion, exist in our imagination.
Yet, we typically teach models to our students.



Opportunity

Availability of data (often big data) in electronic
form.

Can we develop a theory that unifies OR/MS and
ML/S that goes:
From data to predictions to prescriptions?

What are the implications in Education? Should we
change our courses?



Contributions

A theory that unifies OR/MS and ML/S that goes
From data to predictive to prescriptive analytics.

Asymptotic optimality, as the data increases the
decisions are optimal.

Computational Tractability

Coefficient of Prescriptiveness P that measures how
much auxiliary data improves a baseline, generalizing R’
for predictions.

Real world example that shows that this theory makes a
material improvement in a Global Fortune 100
multimedia media company.



A Real World Problem

* A Global Fortune 100 multimedia company.

* 1 billion units of entertainment media shipped per year

BT UL

e Sells 1/2 million different titles on
CD/DVD/Bluray at over 50,000

retailers worldwide




Key Issues

Limited shelf space at retail
ocations

Huge array of potential titles

Highly uncertain demand for
new releases

Which titles to order and in
what quantities?

Maximize number media sold




Data

* 4 years of sales data across a network
of 50,000 retailers

e Data harvested from public online

sources
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* How to leverage all this data?




The general problem

 Data y!, ..., yN on quantities of interest Y
E.g. demands at locations/of products,
* Data Cl?l, Cee 2™ on associated covariates X

E.g. recent sales figures, search engine attention

» Decision 2 € Z to minimize uncertain costs ¢(z;Y)
after observing X ==



Outline

* From Predictive to Prescriptive Analytics
— A gap in decision making
— Our approach
— Asymptotic optimality
— Coefficient of Prescriptiveness

— Real world problem



Standard Data-Driven Optimization

 Data y!, ..., yN on quantities of interest Y
» Decision z € Z to minimize uncertain costs c(z;Y")
* Problem of interest is

min E |c(z; V)]

* But we only have data

* Distributions only exist in our imagination



Standard Data-Driven Optimization

Problem of interest is

minE [¢(z;Y)]

zEZX

Standard data-driven solution is sample average approximation
N

1 .
SSAA : i
N Cargmin - E o(z:9°)

1=1

Other approaches: Stochastic Approximation (Robins 1951),
Robust SAA (Bertsimas, Gupta, Kallus 2014)

General theorem: solutions from these approaches converge
to the full-info problem (cf. Shapiro et al. 2009)

In our problem data-driven approaches like SAA account for
uncertainty but not for auxiliary data



Standard Supervised Learning in ML

* Data yl, Ce yN on quantities of interest Y

* Data xl, Ce e 2™ on associated covariates X

e Obtain a prediction my(x) for the future value of Y
after observing X = z so that the squared difference
between our best prediction and the true value is

small.

* For example, a random forest!



Standard Supervised Learning in ML

 Problem of interest is
E|Y|X =]

 How to use for decision-making?

* Fita ML predictive model mn(z) ~ E [Y|X = z]
(e.g. a random forest) and solve a deterministic

problem
~point-pred : .
27PN () € arg win c(z;my(x))
* |n our problem, this point-prediction-driven decision

accounts for auxiliary data but not for uncertainty



The predictive prescription problem

e Problem of interest:

2" (x) € arg gélg (2, )| X = 2]

* Task:
use data Sy = {(z',v1),..., (z",y™)} to construct a
data-driven predictive prescription

QN(QZ)X%Z



Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations
* Observe predictive features X about demand in a week
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Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations
* Observe predictive features X about demand in a week
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Portfolio example

* Mean-CVaR, portfolio allocation with 12 securities
e Observe market factors X correlated with future returns

(2 B)) = § + - max { =Ty — 5,0} ~ AsTy

d,
Z:{BGR,ZZO,Zzizl}
i=1



Portfolio example

* Mean-CVaR, portfolio allocation with 12 securities
e Observe market factors X correlated with future returns
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Our approach

e Construct predictive prescriptions of the form

Zn () EargrzréngwN y")

Thm: if c(2; y) is convex, Z convex, then we can compute Zy ()
in polynomial time.




kNN
SkNN

AN (x) €argmin o e(zy)

' is kNN of z
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kNN
SkNN

Zn (x) € argmin Z c(z;y")
ze€Z
x' is kNN of x
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kNN
SkNN

Zn (x) € argmin Z c(z;y")
ze€Z
x' is kNN of x
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Parzen windows

N
2JI\<,R(33) € arg 2%12 K((azz —x)/hn)c(z; yz)
i=1




Parzen windows

N
2JI\<,R(33) € arg 2%12 K((azz —x)/hn)c(z; yz)
i=1




Parzen windows

N
2JI\<,R(33) € arg 2%12 K((azz —x)/hn)c(z; yz)
i=1




Parzen windows

N
EJI\SR(QZ) € arg :ggg K((azz —x)/hn)c(z; yz)
i=1




Recursive Parzen windows




Local linear regression

ENT (a) € arg géigz ki) (1 - Z kj(z)(a? — ) E(z) (2" ~ :U)) c(zy")

1=1

=(x Zk (' —2) (' — )" ki) (1—(H:Ci—xH/hN)S)S]I[Hxi—:UHShN]



CART

m(z) =+ (V' + v+ ¥+ + 9+ 0 + v  + 8 + 0 + ¢



.....
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CART

5 5 10

Implied binning rule R(z) = (j s.t. x € R;)

~CA - :
250 (2) € arg min Z c(z;y")

R(z?)=R ()



Random Forest

* Train 7T trees on bootstrapped samples and
randomly selected feature subsets

¢ Get Tbinning rules Rt( )= (jst.ze Rﬁ)

ARF ol
N 22122\{9 Ri(a) =Rt< T 2, )

Rt (x?)=R*(x)

.m Given x



Portfolio example

* Mean-CVaR, portfolio allocation with 12 securities
e Observe market factors X correlated with future returns
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Portfolio example

* Mean-CVaR, portfolio allocation with 12 securities
e Observe market factors X correlated with future returns
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Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations
* Observe predictive features X about demand in a week
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Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations
* Observe predictive features X about demand in a week
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Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations

* Observe predictive features X about demand in a week

True Risk ($)
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Asymptotic Optimality

* Want

Def: predictive prescription 2 (a:) is asymptotically optimal
if, with probability 1, for almost everywhere , as N — o0

]\;EnOOE c(En(2);Y)| X =z] = 1;%1%1 Elc(Y) X =2

L{{sn(x): N e N}) C argrréig E |c(z;Y)|X = x]

e Need

Assumption 1: The full-info problem is well defined, i.e.,
E [|e(2; Y)|] < o0

Assumption 2: c¢(z;¥y) is equicontinuous in 2.

Assumption 3: Z is closed and bounded, and ¢(z;y) is
convex.



Data collection as a mixing process

Instead of IID consider a data collection process

(xlv yl)p (332, yQ), ..

that is a stationary mixing process

i.e., as the lag/ gets bigger,

($1, yl),---a(iﬁt, yt)
and

(CUHE, yt+£), ($t+£+1a yt—|—€—|—1)7 e
are more and more independent.

Encompasses ARMA, GARCH, Markov processes.

Can represent more realistic data collection from
interdependent weekly demands, stock returns,
volume of Google searches on a topig, ...



Asymptotic Optimality:

kNN
AN (x) €argmin Y c(ziy)

2% is ENN of z

Thm: Suppose Assumptions 1, 2, & 3 hold, data collection is

IID, and k = min {[CN°],N — 1} with 0 < § < 1.

Then ézlifNN(il?) is asymptotically optimal.




Asymptotic Optimality:
Parzen Windows
N
AR () € argmin Y K ((2' — x)/hy)e(z; y")

zeZ 4
1=1

Thm: Suppose Assumptions 1, 2, & 3 hold, data collection is
mixing, costs satisfy E [|c(z;Y)| (log|c(z;Y)|)+] < o0,

K is one of given kernels, and hy = C’N“S, 0<d<1/d,;.

Then 25 () is asymptotically optimal.



Asymptotic Optimality:
Recursive Parzen Windows

N

AN (@) € argmin K ((a' — ) /hi)e(z:y')
1=1

Thm: Suppose Assumptions 1, 2, & 3 hold, data collection is

mixing, K is one of given kernels,

and h; =Ci % 0< 8 <1/(2d,).

Then Zne"R(2) is asymptotically optimal.



Asymptotic Optimality:
LOESS

]I\J[OESS( ) € arg Izrélgz ki(x) (1 — Z k; (,Cl’,‘)(gj] _ x)TE(gj)—l(gji _ x)) c(z; yz)

1=1

=(x Zk (' —2) (' — )" ki) (1—(H£Ui—$H/hN)3> H[H:I:i—:ﬁthN}

Thm: Suppose Assumptions 1, 2, & 3 hold, data collection is

mixing, ix abs. continuous, costs bounded |c(z;y)| < g(2),
and hy = CN %, 0< 6 < 1/d, .

Then ALOESS(:C) is asymptotically optimal.
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Value of a Prescription

* Coefficient of Prescriptiveness

N N
min » c(z;y') — ) c(En(z');y")
zeZ 4
P = =1 1=1 <1
& N = [0,1]
mip D e(5y) — 3 migelzi)

 Measures the prescriptive value of X
and of the of the prescription trained

 Contrast with R2.



Shipment planning example

e Stock 4 warehouses to fulfill demand in 12 locations
* Observe predictive features X about demand in a week

Coefficient of Prescriptiveness P

100 1000 10000 100000
Training sample size



Outline

* From Predictive to Prescriptive Analytics

— Real world problem



Back to our media distribution application

e Recall: want to maximize number of items sold.
* Focus on video media, Europe
* rindex locations, t index periods, j index products.

* Y, demand forj, z,; order, x,, auxiliary data.

trj

[ d
max [ E min{Y;, z¢;} | X = 24
j=1

d
S.t. Zztrj S Kr,a

g=1
th,anO \Vljzl,,d



Internal Company Data

» Sales by item/location, 2010 to present

 ~50GB after aggregating transaction records by week
10%

| : :

% Percentage of all sales in Berlin
for 13 titles from the point of

6%\ release to home entertainment

4%

Percentage of total sales

2% |-

0%

Week number on sale



Dealing with Censored Data

* Observe sales, not demand (quantity of interest Y)
U =min{Y, V}
* Adjust weights for right-censored data

N
( Wy (p) () ) il (ze_mww,(e)(x)) £ < o0,
k<i—

N N
D o—; Wi, (e) () 1 u(®) <yk) > o=k WN,(0) (%)

y

W, (5)(T) = <

0 otherwise.

\

Thm: Under same assumptions as before and if in addition (a) Y and
J conditionally independent given X, (b) Y and V' share no atoms,
and (c) upper support of V greater than that of Y given X =x,

then Zy () is asymptotically optimal.



Internal Company Data

Sales by item/location, 2010 to present
~50GB after aggregating transaction records by week

Location info:

— Address
* Google Geocoding API

ltem info:
— Medium (DVD/BLU)

— Obfuscated title
e Disambiguation



Beyond internal company data:
Harvesting public data (more X)

LN\ /

Movie/series

Actors (find actor communities; Blondel et al 2008)

Plot summary (cosine similarities, hierarchically clustered)
Box office gross, US

Oscar wins and nominations and other awards
Professional (meta-)ratings, user ratings

Num of user ratings

Genre (can be multiple)

MPAA rating




Beyond internal company data:
Harvesting public data (more X)

0.5F
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Box office gross IMDb rating Number user votes
p=0.32 p =0.02 p=0.25




Beyond internal company data:
Harvesting public data (more X)




Beyond internal company data:
Harvesting public data (more X)

“Skyfall” vs “@”

C;t.r(e)ndsglei

November 2012
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Beyond internal company data:
Harvesting public data (more X)
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Beyond internal company data:
Harvesting public data (more X)
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Beyond internal company data:
Harvesting public data (more X)

1.5- —
<
o 2
z 219 2
P) VS ]
g = % < — World
3 §fF 3 =k . .
2 £ = =l — North Rhine-Westphalia
5 & T 5 ! )
e Z =l 1 — Baden-Wiirttemberg
. A 0] 1
= © i
LA\
11
11
11
11
11
11
11
i
1
05+ “//‘
P2y Sa>eglaa TN

20/09/13 03/11/13 08/12/13 12/01/14 16/02/14 23/03/14 27/04/14 01/06/14 06/07/14 10/08/14



Predicting Demand

Random forest  New titles:
regressor out-of-sample R? = 0.67

Search volume at relase, country
Mean sales at location

Search volume recent, —1, country
09- Box Office Gross (US)
- Sales at location rece
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.
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Count

Prescribing Order Quantities

Construct a predictive prescription
based on our random forest...

* Out-of-sample
P=0.88
3500 -
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1.0
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Waterloo

P =0.85
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Conclusions

A new framework

— Unifies ML and OR/MS
— General purpose

Theory

— Computational tractability
— Asymptotic optimality
Performance metric

— Coefficient of prescriptiveness

Practice
— Material Improvement for A Global Fortune 100 company.



Education

e A new class at the Master level that starts with Data:
Analytics Edge

* Anew class at the PhD level that aspires to go
From Data to predictions to prescriptions.



